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Abstract

We propose a method for improving confidence in the
correctness of Haskell programs by combining testing and
proving. Testing is used for debugging programs and speci-
fication before a costly proof attempt. During a proof devel-
opment, testing also quickly eliminates wrong conjectures.
Proving helps us to decompose a testing task in a way that
is guaranteed to be correct. To demonstrate the method we
have extended the Agda/Alfa proof assistant for dependent
type theory with a tool for random testing. As an example
we show how the correctness of a BDD-algorithm written in
Haskell is verified by testing properties of component func-
tions. We also discuss faithful translations from Haskell to
type theory.

Keywords: program verification, random testing, proof-
assistants, type theory, BDDs and Haskell.

1. Introduction

Haskell is a functional programming language with
higher order functions and lazy evaluation. As a conse-
quence it supports the writing of modular programs [18].
Haskell programs are often more concise and easier to read
and write than programs written in more traditional lan-
guages.

Haskell programs are thus good candidates for formal
verification. In particular, we are interested in verification
in the framework of type theory [20], as we believe that its
logic matches Haskell’s functional style well. Our case stud-
ies are developed in the proof assistant Agda/Alfa [7, 15] for
dependent type theory developed at Chalmers University of
Technology. For a brief introduction, see Appendix A.

Despite the good match, current proof-assistant technol-
ogy is such that a complete correctness proof of even a mod-
erately complex program requires great effort of a user. If
full correctness of the program is not vital, then the cost
of such an effort may exceed its value. In a system where
we can combine testing and proving we can keep the cost

of verification down by leaving some lemmas to be tested
only. In this way it is possible to balance the cost of verifi-
cation and the confidence in the correctness of the program
in a more appropriate way.

QuickCheck [6] is an automatic random testing tool
for Haskell programs. It is a combinator library written in
Haskell for an embedded specification language with test
data generation and test execution. It can test whether a
given function � satisfies a specification �����	��
��� �������������
with a decidable property � by randomly generating val-
ues for � .

When � is defined in terms of component functions
������������� � � , the above is a top-level testing of � . It gives
little information about how much ��! is tested, what sub-
properties have been tested and why � follows from those
sub-properties.

Our method combines testing and interactive proving to
obtain such information. Testing and proving are comple-
mentary. Proving is used to decompose the property � of
the function � into sub-properties �"! of components �#! and
to show why � ! ’s are sufficient for � . Testing each � ! with
respect to � ! increases confidence in test code coverage
and locates potential bugs more precisely. Testing is used
also during proving to quickly eliminate wrongly formu-
lated lemmas.

We illustrate this methodology by verifying a Haskell
implementation of a BDD algorithm by J. Bradley ([3],
see Appendix B.) BDDs (Binary Decision Diagrams) [4]
are a canonical representation for Boolean functions that
makes testing of functional properties such as satisfiability
and equivalence very efficient. BDD based model checkers
are widely used. Various formulations of BDD algorithms
have been verified in several theorem provers, e.g., [19, 22],
but our interest is rather in trying an existing Haskell pro-
gram not necessarily written with verification in mind.

All the code in the paper can be found at http://www.
cs.chalmers.se/˜qiao/papers/BDDs/.

Related Work: The idea of combining proving and test-
ing is part of the Cover project [9] at Chalmers Univer-
sity of Technology, the goal of which is to develop a sys-



tem that integrates a wide range of techniques and tools
that are currently available only separately. It is partly in-
spired by the Programatica project [21] at Oregon Graduate
Centre, which has similar goals. The combination of testing
and proving has also been investigated by Chen, Tse and
Zhou [5], who propose to check the correctness of a pro-
gram by proving selected metamorphic relations with re-
spect to the function. Some early work on combining prov-
ing and testing was done by Hayashi [17], who used test-
ing to debug lemmas while doing proofs in his PX-system.
Geller [14] argued that test data can be used in proving pro-
gram correctness. This paper reports a case study based on
our previous work on combining testing and proving in de-
pendent type theory [11].
Plan of the paper: Section 2 describes our testing tool. Af-
ter a general discussion on the benefits of the combination
(Section 3), we discuss how to translate a Haskell program
into Agda/Alfa (Section 4), and how to verify it (Section 5).
Section 6 concludes the article with future directions for the
work.

2. The Testing Tool

We have extended Agda/Alfa with a testing tool simi-
lar to QuickCheck, a tool for random testing of Haskell pro-
grams. However, our tool can express a wider range of prop-
erties and is integrated with the interactive reasoning capa-
bilities of Agda/Alfa.

The form of properties that can be tested is

� � � � � � 
 � ��� � ��� � � � � � � ��� � ��� ����� � � 

�"��� � �#� ��� ��� � � ��� ��� �	� ��
 � � ����� � � � � � ��� � � ��� ��� ��� � � � 


Here
� ! � � �#� ��� ��� � ! � � � is a type depending on � �#� ��� � �� ! � � ;

� ! is a precondition satisfied by relevant data; and


is the
target property, typically relating the outputs of functions
being tested with the inputs � ��� � ��� �� � . The predicates ��!
and


must be decidable.

Under the Curry-Howard correspondence between pred-
icate logic and dependent type theory, such a property is a
dependent function type of the Agda/Alfa language:

( � � :: � � ) -> ��� � ( ��� :: � � � � � � � ��� � ����� � � ) ->
� � � � � ��� ��� � ��� � -> ��� � -> � 
 � � � � ��� ��� ��� � -> � � � ��� ��� � ��� �

For decidability, we require the predicates (now them-
selves dependent types) to have the decidable form
T (� � � � � ��� ��� ��� � ) (the term � :: Bool lifted1 to the type
level). We call properties of this form testable.

1 See Appendix A, but we mostly omit writing T in what follows.

An example is the following property of the function
taut::BoolExpr -> Bool, which decides if a given
boolean expression is a tautology (see Appendix B, C.)
(t::BoolExpr) -> (x::Nat) ->
T (taut t) ->
T (taut(t[x:=0]) && taut(t[x:=1]))

(If t is a tautology, so are the results of replacing the vari-
able Var x by constants.)

By making this a goal ( � 0), tests can be invoked from the
Alfa menu:

The testing procedure in this case is as follows:
do (at most predetermined � times)

repeat generate test data � t � x � randomly
until the precondition taut t computes to True

while taut(t[x:=0]) && taut(t[x:=0])
computes to True

The tool then reports the success of � tests, or the coun-
terexample (t,x) found. (A success, in this case.)

A test data generator ����� � for the type � is a function
written in Agda/Alfa. It maps random seeds of a fixed type
to elements of

�
. The current implementation uses binary

trees of natural numbers as seeds:
data BT = Leaf(n::Nat)

| Branch(n::Nat)(l::BT)(r::BT)

randomly generates � � ��� � � ��� � :: BT while using ����� � � � ,
����� � � � , � ��� :: �

as test data. For example, one possible
way to write a genBoolExpr (see Appendix B for Bool-
Expr) is
genBoolExpr::BT -> BoolExpr
genBoolExpr (Leaf n) = Var n
genBoolExpr (Branch n l r) =
let x = genNat l

v = genBool r
e1 = genBoolExpr l
e2 = genBoolExpr r

in choice4 n (Var x) (Val v)
(Not e1) (And e1 e2)

where choice4 chooses one of the four constructs de-
pending on n mod 4.

As ����� � is written in Agda/Alfa, we can prove proper-
ties about it in Agda/Alfa. For example, we can prove the
important property of surjectivity (“any � ::

� could be
generated.”)

( � :: � ) -> ��� :: BT 
������ � � == �



The above genBoolExpr is surjective when genNat and
genBool are, and proving so in Agda/Alfa is immediate.

The reader is referred to [11] for more information about
the testing tool and test data generation.

3. Combining Testing and Proving

Our method interleaves proving steps and testing steps,
as we see in the next sections. The benefits are the follow-
ing:

� The essence of creative user interaction is the intro-
duction of lemmas, including strengthening of induc-
tion hypotheses. This is often a speculative process. If
a user fails to prove a possible lemma or its hypothe-
ses, she must backtrack and try another formulation.
Testing before proving is a quick way to discard wrong
conjectures and inapplicable lemmas.

� Analysis of failed tests gives useful information for
proving. Tests can fail both because of bugs in pro-
grams and because of bugs in specifications. Concrete
counterexamples help our search for bugs of either
type. Further, applying interactive proof steps to prop-
erties which are known to be false is an effective way
to analyse the failure.

� All goals (properties to be proved) do not have a form
which makes them testable, and even if they have
testable form it may be hard to test them properly
because it is difficult to write good test data gener-
ators. When interaction with the proof assistant pro-
duces testable subgoals, it is guaranteed that testing all
of them is at least as good as testing the original goal;
we know that no logical gaps are introduced.

� Interactive proving increases confidence in the code
coverage of testing. Suppose a program consists of var-
ious components and branches, and it passes a top-
level test for a property. When we try to prove the
goal, the proof assistant typically helps us to derive
appropriate subgoals for the different components and
branches. Testing these subgoals individually reduces
the risk of missing test cases in the top-level testing.

4. Translating Haskell Programs to
Agda/Alfa

In this section we will briefly describe how we faithfully
translate Haskell programs into Agda/Alfa. Testing is al-
ready helpful at this stage.

The non-dependent fragment of the Agda/Alfa language
is already close to the basic part of Haskell, but the function
definitions are required to be total.

Two causes of partiality in Haskell are non-terminating
computation and explicit use of the error function. Here

we concentrate on the latter (The BDD implementation is
structurally recursive). For example, totalEvalBool-
Expr2 is undefined on open expressions.

totalEvalBoolExpr :: BoolExpr -> Bool
totalEvalBoolExpr t = case t of
(Var x) -> error "vars still present"
(Val v) -> v

��� �
Such a partial function is made total in Agda/Alfa by giv-

ing it a more precise dependent type. One way3 is to require,
as an extra argument, a proof that the arguments are in the
domain. With the domain constraint closed characteris-
ing the domain, the translation becomes:

closed(t::BoolExpr)::Bool = case t of
(Var x ) -> False
(Val v ) -> True
(Not t1 ) -> closed t1
(And t1 t2) -> closed t1 && closed t2

totalEvalBoolExpr ::
(t::BoolExpr) -> T(closed t) -> Bool
totalEvalBoolExpr t p = case t of
(Var x) -> case p of

���

(Val v) -> v
��� �

Type-checking statically guarantees that totalEval-
BoolExpr is never applied to an open t at run-time, as
there is no well-typed value of type T(closed t), which
is the empty type.

The only modification we allow in translating from
Haskell to Agda/Alfa is the addition of those extra
proof-arguments (and extra type arguments, see Ap-
pendix A). This is a faithful translation in that the two
versions have the same computational behaviour.

The domain constraint for one function propagates to
others. For example, getNextBddTableNode h has
a constraint that the argument h::BddTable be non-
null. This propagates to the same constraint for insert-
Bdd h � ��� and makeBddTableNode h through a chain
of function calls.

This propagation represents both benefits and difficul-
ties. On the one hand, we locate a source of run-time errors
when constraints on a caller function does not imply those
on a called function. On the other hand, this may be a re-
sult of wrong characterisation of domains, which are not
known a priori. Testing can help during the translations.

2 It evaluates boolean expressions to their values (Appendix B)
3 Another is to redesign data structure with dependent types, which is

often more elegant but requires changes in program structure as well.



At one stage, we characterised the constraint on build-
BDDTable by VarIn t vs (free variables of expression
t are contained in the list vs):
buildBddTable4 :: (t::BoolExpr) ->

(vs::[Nat]) -> VarIn t vs ->
BddTI -> BddTI

The function constructs an intermediate value h1 :: Bd-
dTablewith two recursive calls and then calls makeBdd-
TableNode h1 � ��� . As above, this h1 must be non-null,
but it is not immediately clear whether VarIn t vs im-
plies that. Now we might attempt a proof, but this may be
costly if our guess turns out to be wrong. So we test instead.

A sufficient condition for the implication to hold is:
(t ::BoolExpr) ->
(vs::[Nat]) -> (p::VarIn t vs) ->
(hi::BddTI) ->
NotNull (buildBddTable t vs p hi).fst5

A test immediately reveals this to be false.

Further, counterexamples always have hi.fst = [].
Analysing the code in this light, we realize that build-
BddTable is never called with hi.fst null. So we
revise the constraint in the Agda/Alfa version to
buildBddTable:: (t::BoolExpr)->
(vs::[Nat]) -> VarIn t vs ->
(hi::BddTI) -> NotNull hi.fst -> BddTI

The revised sufficient condition
(t ::BoolExpr) ->
(vs::[Nat]) -> (p::VarIn t vs) ->
(hi::BddTI) -> (q::NotNull hi.fst) ->
NotNull (buildBddTable t vs p hi q).fst

passes the tests and the proof-argument required for that call
to makeBddTableNode is constructed.

4 It computes t’s BDD with a variable ordering given by vs. A
BDD is represented by a pair of type BddTI = (BddTable, Bd-
dTableIndex). The first component is the list of linked, shared
nodes of the BDD. The second is the index into the root node of the
BDD. The function’s last BddTI argument is an accumulating argu-
ment of ‘currently constructed’ BDD, threaded through recursion.

5 The record struct � fst = a; snd = b � in Agda/Alfa is used
to represent the pair (a, b) in Haskell, and the dot notation is used
to select a field value in a record.

5. Checking the Correctness of the BDD Im-
plementation

The correctness of the BDD implementation is verified
through a combination of testing and proving.

The informal statement of the correctness is: “the im-
plementation computes a boolean expression to the BDD 1
(truth) if and only if it is a tautology.” We formalise this as
the following equivalence.6

(t ::BoolExpr) ->
(vs::[Nat]) -> (p::VarIn t vs) ->
iff
(isBddOne
(buildBddTable t vs p initBddOne tt))

(taut t)

The function taut::BoolExpr -> Bool is the direct
BDD implementation without sharing (see Appendix C).
It can be seen as a definition of tautology in terms of the
boolean algebra on binary decision trees.

The correctness statement has testable form, and it
passes the test. Being reasonably sure that this state-
ment is formulated correctly, we start proving it by decom-
posing it to a completeness (if part) and a soundness (only
if part). The completeness part is

(t ::BoolExpr) ->
(vs::[Nat]) -> (p::VarIn t vs) ->
taut t ->
isBddOne
(buildBddTable t vs p initBddOne tt)

A naive induction on vs does not go through, since the step
case vs � v � vs � requires
isBddOne(buildBddTable t[v:=0] vs’ p1 h1 q1)
isBddOne(buildBddTable t[v:=1] vs’ p2 h2 q2)

where h1 and h2, the values for the accumulating argu-
ment, are different from the initial value initBddOne. So
we need to strengthen the induction hypothesis, generalis-
ing with respect to this accumulating argument.

In this situation, we typically need to analyse values that
can occur (are reachable from the initial value) in the course
of buildBddTable recursion and formulate an appropri-
ate property of them. However, testing is cheap, so before
such an analysis we try the strongest form (the most gen-
eral form, within the constraint on buildBddTable from
Section 4):

(t ::BoolExpr) ->
(vs::[Nat]) -> (p::VarIn t vs) ->

6 isBddOne( ���	��
 �	������	��� ) is true if ��������� points to the node ‘1’ in
���	��
 � . initBddOne is the initial value for the accumulating argu-
ment, containing nodes ‘1’ and ‘0’. tt is the trivial proof that this is
non-null.



(hi::BddTI) -> (q::NotNull hi.fst) ->
taut t ->
isBddOne (buildBddTable t vs p hi q)

Surprisingly, testing returns no counterexample. So we start
verifying this in more detail. The base case amounts to

(t::BoolExpr) -> (p::Closed t) ->
taut t ->
totalEvalBoolExpr t p == true

This requires a logically straightforward but tedious proof:
we content ourselves with successful tests and move on.
With the strengthened induction hypothesis, the step case
is reduced to the following properties:

(h::BddTable) -> (p::NotNull h) ->
(i, v0, v1::BddTableIndex) ->
v0 == 1 && v1== 1 -> (1)
(makeBddTableNode

h p (i, v0, v1)).snd == 1

(t::BoolExpr) -> (x::Nat) ->
taut t -> (2)
taut (t[x:=0]) && taut (t[x:=1])

We prove the first property. The second property, which can
be considered as a natural property that a definition of tau-
tology must satisfy in any case, is however only tested.

The proof of the soundness also requires a strengthening
of the induction hypothesis. Again, we start by testing the
strongest form.

(t ::BoolExpr) ->
(vs::[Nat]) -> (p::VarIn t vs) -> (3)
(hi::BddTI) -> (q::NotNull hi.fst) ->
isBddOne(buildBddTable t vs p hi q) ->
taut t

Testing this fails. This time we do need to formulate an ap-
propriate property of the reachable values for the accumu-
lating argument hi in the course of buildBddTable re-
cursion.

Here we aim to find an appropriate decidable predicate
Pos::BddTable -> Bool on hi.fst that makes the
induction go through. Combined testing and proving is use-
ful in this context too. Counterexamples from a failed test
hint at what should be excluded. When this is not specific
enough, we may interactively decompose the failing prop-
erty into more specific properties of components that fail.
Counterexamples to these give better information for defin-
ing Pos, as well as a better understanding of the program.

The values of hi.fst in counterexamples to (3) give
little information except that they are not reachable from
initBddOne. Interactive steps show that (3) follows from
the reverse direction of (1) and (2). At least one of them
must fail, and tests reveal that the former, i.e.,

(h::BddTable) -> (p::NotNull h) ->
(i, v0, v1::BddTableIndex) ->
(makeBddTableNode (4)
h p (i, v0, v1)).snd == 1 ->

v0 == 1 && v1 == 1

is false. Counterexamples to this are still not very informa-
tive. So we continue to decompose it to possible properties
of component functions:

(h::BddTable) -> (p::NotNull h) ->
(e::BddTableEntry) -> (5)
(insertBddTable h p e).snd /= 1

(h::BddTable) -> (p::NotNull h) ->
(e::BddTableEntry) -> (6)
(q::isJust(findBddTableEntry h e) ->
fromJust(findBddTableEntry h e) q
/= 1

Both are false. The false statements and counterexamples
are specific enough to help us define Pos. In all counterex-
amples to (5), h has the form7(0, � � � ):h’, and in coun-
terexamples to (6) h always contains a node of the form
(1, Just ��� � ). These are impossible since a BDD ta-
ble is built up from the initial one [(1,Nothing),
(0,Nothing)] by insertBddTable, which only
adds nodes of the form (i, Just e) at the head, with in-
creasing node index i ��� . It is easy to see this from the
program, but only after we know what to look for.

To exclude these cases, we define Pos as follows:
Pos::BddTable -> Bool
Pos [x1,x2] = [x1,x2] == initBddTable
Pos (x1:x2:xs) = x1.fst > 1 && Pos (x2:xs)
Pos _ = false

This is weaker but much simpler than an exact characteri-
sation of reachable values. There is no guarantee that this
is enough, but testing again can quickly give a good indica-
tion.

Adding Pos hi.fst as a precondition to (3), a
strengthening of the soundness property

(t ::BoolExpr) ->
(vs::[Nat]) -> (p::VarIn t vs) ->
(hi::BddTI) -> (q::NotNull hi.fst) ->
Pos hi.fst -> (3’)
isBddOne(buildBddTable t vs p hi q) ->
taut t

passes the tests. So do (4), (5), and (6) with precondition
Posh added (let us call them (4’), (5’), and (6’), respec-
tively).

7 A table h is a list of nodes, each of which is (node index, Just(var in-
dex, high branch, low branch)) except for (0, Nothing), (1, Noth-
ing) for the constants.



The proofs of the implication (5) � (6) � (4)
and (reverse direction of 2) � (4) � (3) can easily be
adapted to the primed versions (5’) � (6’) � (4’) and
(reverse direction of 2) � (4’) � (3’) respectively, us-
ing the following lemma

(t ::BoolExpr) ->
(vs::[Nat]) -> (q::VarIn t vs) ->
(hi::BddTI) -> (p::NotNull hi.fst) ->
Pos hi.fst ->
Pos (buildBddTable t vs q hi p).fst

which is tested and proven. (5’) is trivial to prove. A proof
of (6’), which is ’clear’ from a code inspection, would take
slightly more effort than it is worth, so it is left as a tested
assumption. Finally, the proof of (3’) is instantiated with
hi � initBddOne and trivial proofs of NotNull and
Pos. This concludes the proof of soundness.

6. Conclusions and Future Work

Random testing and interactive theorem proving bene-
fit each other. Though obvious as a general idea, few sys-
tems make it easy to combine the two. Using our testing ex-
tention to the proof-assistant Agda/Alfa in the context of a
Haskell program verification, we have illustrated some con-
crete aspects of the benefits: testing before proving; testing
to help formulating domain-constraints of functions; start-
ing optimistically from a strong but false statement and then
using counterexamples and interactive proof steps to obtain
the right formulation; decomposing testing tasks; balancing
the cost of proof-efforts against the gain in confidence; etc.

One direction of future work is to add various automatic
theorem proving techniques to our system. Currently, a user
must write a decidable predicate in the special form ac-
cepted by our tool. This is inflexible and inefficient both in
terms of human efforts and testing implementation. There
are many other forms of predicates with efficient decision
procedures. We believe that the combination of such deci-
sion procedures with random test data generation and sup-
port for interactive proving has a great potential to be ex-
plored. For a start, we are integrating the very BDD pro-
gram we verified here in our tool.

For another direction, we plan to extend and automate
the method, covering more features of functional program-
ming not present in type theory: possibly non-terminating
general recursion, lazy evaluation manipulating infinite ob-
jects, IO operations, etc. Bove [2] provides a uniform
method for representing general recursive partial pro-
grams in type theory. Hancock and Setzer [16] model
interactive systems in type theory with a structure re-
lated to the Haskell’s IO-monad. Applying these and
other works, we hope to make our method more practi-
cal.
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A. The Proof Assistant Agda/Alfa

Agda [7] is the latest version of the ALF-family of proof
systems for dependent type theory developed in Göteborg
since 1990. Alfa [15] is a window interface for Agda. They
assist users as structure editors for well-typed programs and
correct proofs, by checking each step of the construction on
the fly, by presenting possible next steps, by solving simple
problems automatically, etc.

Roughly speaking, the language of Agda/Alfa is a
typed lambda calculus extended with the type Set of
(small) types, which is equipped with formation of induc-
tive data types, dependent function types, and dependent
record types. Its concrete syntax comes to a large ex-
tent from Cayenne [1], a Haskell-related language with
dependent types.

Basic data types are introduced much like in Haskell,
e.g., the types of booleans and natural numbers are
Bool::Set = data true | false
Nat ::Set = data zer | suc(n::Nat)

Dependent types may refer to terms of other types: e.g.,
one may have the type Vect � � :: Set for lists of spec-
ified length � :: Nat with elements in � :: Set.

A dependent function type ( � :: � ) -> � � � � is the
type of functions that sends argument � :: � to a value
of type � � � � , which may depend on � . The ordinary func-
tion type � -> � is a special case. As an example we show
how dependent types are used for representing information
about the length of a list in the type of the cons-function
for Vect
cons :: (A::Set) -> (n::Nat) ->

A -> Vect A n -> Vect A (suc n)

As above, polymorphic functions explicitly take type ar-
guments (e.g., cons Nat � ��� � cons Bool � � � ). Agda can
infer them in most cases, and Alfa has an option to hide
them from the user’s view.

A dependent record type, also called a signature,
sig { � � :: � � � � ��� ���� :: � � }, is the type of records (tu-
ples) struct { � � = � � ��� � � � ��� = ��� } labelled with
� ! ’s, where �#! :: ��! and � ! may depend on � ����� ��� � ��! � � .
Haskell tuples are a non-dependent special case. The � !
component of record � is written ��
 � ! .

(Constructive) logic is represented in type theory by
recognising propositions as types of their proofs. A propo-
sition holds when it has a proof, i.e., when it is a non-empty
type. A predicate � on type

�
is a function � :: � -> Set,

which is regarded as a propositional function since sets rep-
resent propositions. Logical connectives map to type form-
ing operations; e.g., a function of type � -> � is a proof of
an implication, sending a proof of � to a proof of � ; sim-
ilarly, a function of type ( � :: �

) -> � � is a proof of a
universally quantified statement.

Truth values in Bool lift to propositions (sets) by

T::Bool -> Set
T True = data tt (singleton of trivial proof)
T False = data (empty type; no proofs)

A predicate � on
�

is decidable if � � � � 
�� ������� �
constructively. It is equivalent to having some � :: �

->
Bool such that � � � � 
 � ��� T � � � ���� . In our tool, we
require decidable predicates to have the latter form.

For a more complete account of the logical framework
underlying Agda/Alfa including record types see the paper
about structured type theory [8] and for the inductive defi-
nitions available in type theory, see Dybjer [10] and Dybjer
and Setzer [12, 13].
Remark. The reader is warned that the dependent type
theory code given here is not accepted verbatim by the
Agda/Alfa system, although it is very close to it. To get
more readable notation and avoiding having to discuss some
of the special choices of Agda/Alfa we borrow some nota-
tions from Haskell, such as writing [A] for the set of lists
of elements in A.

B. Part of BDD Haskell Implementation [3]

module BddTable where

type BddTableIndex = Int

type BddTableEntry =
(BddTableIndex,BddTableIndex,BddTableIndex)

-- (Variable Index, Low branch pointer,
High branch pointer)

type BddTable =
[(BddTableIndex, Maybe BddTableEntry)]

type BddTI = (BddTable, BddTableIndex)



initBddTable::BddTable
initBddTable =
(1, Nothing) : (0, Nothing) : []

initBddOne::BddTI
initBddOne = (initBddTable, 1)

toIndex::Bool -> BddTableIndex
toIndex v = if v then 1 else 0

makeBddTableNode::BddTable -> BddTableEntry
-> BddTI

makeBddTableNode h (i, v0, v1)
| (v0 == v1) = (h, v0)
| (isJust f) = (h, fromJust f)
| otherwise =

(insertBddTable h (i, v0, v1)) where
f = findBddTableEntry h (i, v0, v1)

insertBddTable::BddTable -> BddTableEntry
-> BddTI

insertBddTable [] _ =
error "table not initialised"

insertBddTable hs e = ((ni, Just e):hs, ni)
where ni = getNextBddTableNode hs

getNextBddTableNode::BddTable -> BddTableIndex
getNextBddTableNode [] =

error "table not initialised"
getNextBddTableNode ((i,_):_) = (i + 1)

findBddTableEntry::BddTable -> BddTableEntry
-> Maybe BddTableIndex

findBddTableEntry h e
| null h2 = Nothing
| otherwise = Just (fst $ head h2) where

h2 = dropWhile (f e) h
f::BddTableEntry ->
(BddTableIndex, Maybe BddTableEntry) -> Bool

f _ (_, Nothing) = True
f e1 (_, Just e2) = (e1 /= e2)

buildBddTable::BoolExpr -> [BoolVar]
-> BddTI -> BddTI

buildBddTable t [] (h, _) =
(h, toIndex $ totalEvalBoolExpr t)

buildBddTable t (x:xs) (h, i) =
makeBddTableNode h1 (i, v0, v1) where

(h0, v0) =
buildBddTable (rewriteBoolExpr t (False,x))

xs (h, i + 1)
(h1, v1) =

buildBddTable (rewriteBoolExpr t (True,x))
xs (h0, i + 1)

module BoolAlgebra where

type BoolVar = Int

data BoolExpr = Var BoolVar
| Val Bool
| Not BoolExpr
| And BoolExpr BoolExpr

totalEvalBoolExpr::BoolExpr -> Bool
totalEvalBoolExpr t =
case t of

Var x ->
error "variables still present in expression"
Val v -> v

Not (Val v) -> if v then False else True
Not (Not x) -> (totalEvalBoolExpr x)
Not x -> not $ totalEvalBoolExpr x
And (Val v) y ->
if v then (totalEvalBoolExpr y) else False

And x (Val v) ->
if v then (totalEvalBoolExpr x) else False

And x y -> (totalEvalBoolExpr x)
&& (totalEvalBoolExpr y)

C. The Tautology Checker

module Bdt where
data Bdd = O | I | (/\) Bdd Bdd

neg::Bdd -> Bdd
neg O = I
neg I = O
neg (b /\ d) = neg b/\ neg d

and_bdd::Bdd -> Bdd -> Bdd
and_bdd O h’ = O
and_bdd I h’ = h’
and_bdd h O = O
and_bdd h I = h
and_bdd (b /\ d)(b’ /\ d’) =

mkt (and_bdd b b’) (and_bdd d d’)

mkt::Bdd -> Bdd -> Bdd
mkt O O = O
mkt I I = I
mkt h1 h2 = h1 /\ h2

next::Bdd -> Bdd
next h = h /\ h

var::Nat -> Bdd
var Zero = I /\ O
var (Succ n) = next (var n)

bdt::BoolExpr -> Bdd
bdt (Val True) = I
bdt (Val False) = O
bdt (Var n) = var n
bdt (Not t) = neg (bdt t)
bdt (And t1 t2) = and_bdd (bdt t1)(bdt t2)

taut::BoolExpr -> Bool
taut t = bdt t == I


