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Constru
tive mathemati
sand 
omputer programming{ the original paradigm

Curry-Howard for programming:a :: Aelement belongs to set/typeproof proves propositionprogram satis�es spe
i�
ationMartin-L�of type theory:� a fun
tional language with dependent types where all programs terminate; 2



� a spe
i�
ation language in
luding predi
ate logi
;� a full-s
ale 
onstru
tive set theory { a \ZF" for 
onstru
tive mathemati
s!
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Example: sorting

SortProp = 8xs :: [Nat℄:9ys :: [Nat℄:Sorted ys ^ Perm xs ysProve this proposition!sortProof :: SortPropExtra
t a programsortProg :: [Nat℄ -> [Nat℄ 4



with its proof sortProgProof :: 8xs :: [Nat℄:Sorted (sortProg xs) ^Perm xs (sortProg xs)
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Program extra
tion

Set vs Prop. Distinguish between 
omputationally relevant and irrelevant partsby using Set/Prop-distin
tion. The sorting proposition be
omes eg�xs :: [Nat℄:fys :: [Nat℄ j Sorted ys ^ Perm xs ysg

One-element types are not 
omputationally relevant. Eg use that Sorted (andPerm) are de
idable:sorted :: [Nat℄ -> BoolSorted :: [Nat℄ -> SetSorted xs = T (sorted xs) 6



whereT :: Bool -> SetT True = Unit = ()T False = Empty
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Constru
tive mathemati
sand 
omputer programming- what happened?

1979 - The paper \Constru
tive mathemati
s and 
omputer programming".Formation of Cornell and Chalmers type theory groups. Early implementations(NuPRL, GTT system).1984 - The 
al
ulus of 
onstru
tions. Logi
al frameworks. INRIA and Edinburghgroups. Implementations of intensional type theory.1989 - The Logi
al Framework/TYPES 
onsortium. Lego, Coq, Alf. Indu
tivede�nitions, pattern mat
hing, re
ords, ... 8



2002 Impressive progress. But dependent type theory has not (yet?)revolutionized programming.
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The next 700 MLs

Extensions of the Hindley-Milner type system (polymorphi
 typed lambda
al
ulus with re
ursive type and fun
tion de�nitions):� Equality types in ML.� ML's module system. Haskell's 
lass system.� Arrays. Sized types. Embedded ML.� Metaprogramming. Meta-ML.� Generi
 programming. PolyP, Generi
 Haskell. 10



� Spe
i�
ation language for testing. Qui
kChe
k.
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Dependent types in pra
ti
al programming

Dependent types from the point of view of the fun
tional programmer (ML,Haskell):Cayenne Augustsson 1998.DML Xi 1998, Xi and Pfenning 1999.Series of workshops on DTP: G�oteborg 1999, Ponte de Lima 2000, S
hlossDagstuhl 2001, ...
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What is Cayenne?

Augustsson 1998: \Although dependent types have been used before in proofsystems, e.g., [CH88℄, to our knowledge this is the �rst time that the full powerof dependent types has been integrated into a programming language."� A lazy fun
tional language with dependent types, similar to Agda, but intendedto be used as a \real" programming language, like Haskell. Unlike Agda it hasprede�ned types Int, String, et
.� Intended to be used as a partial type theory with unrestri
ted re
ursion in typeand fun
tion de�nitions.� Type-
he
king unde
idable, but nevertheless pra
ti
al. 13



� Compiled by removing types and translating to LML, whi
h has a 
ompilerprodu
ing eÆ
ient 
ode.
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What is DML?

Xi and Pfenning 1999: \To our knowledge, no previous type system fora general purpose programming language su
h as ML has 
ombined dependenttypes with features in
luding datatype de
larations, higher-order fun
tions, generalre
ursions, let-polymorphism, mutable referen
es, and ex
eptions."� A stri
t fun
tional language with dependent types. DML = Dependent ML.� A 
onservative extension of ML. Translate to ML by removing dependent types.� De
idable type 
he
king is obtained by restri
ting types to depend on indexexpressions, eg arithmeti
 expressions, with de
idable 
onstraint solving.
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Plan

1. Haskell 
lasses and dependent re
ords.2. Dependently typed datastru
tures.3. Testing and dependent types.4. Generi
 programming and universal algebra.5. Metaprogramming. Well-typed interpreters and partial evaluators.6. Coping with general re
ursion.
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Notation - logi
al framework

Inspired by Haskell, Cayenne, Agda. 17



here otherx :: a x : aa -> b (a)b(x :: a) -> b (x:a)b, �x:a.bf 
 f(
)nx -> e �x.e, (x)e(a,b) a�b(x::a,b) �x:a.b(x::a,y::b) sig{x:a,y:b}r.x, r.y fst, snd(
,d), (x=
,y=d) stru
t{x=
,y=d}() N1;1, UnitBool N2;2Set #, *, PropT :: Bool -> Set Lift 18



Notation - datatypes
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here otherNat :: Set data Nat = ZeroZero :: Nat | Su

 NatSu

 :: Nat -> Nat[a℄ List aVe
t a n an[℄ Nilx : xs x.xs, Cons x xsxs ++ ys append xs ysBT a BinaryTree aBST a BinarySear
hTree aIsBST t T (isBST t)(==) eq 20



Also argument hiding, overloading, Haskell (-) notation for in�x operations, et
.
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1. Haskell 
lasses and dependent re
ords
22



The Eq-
lass in Haskell


lass Eq a where(==) :: a -> a -> Boolinstan
e Eq Bool where(==) = eqBoolwhereeqBool :: Bool -> Bool -> Boolis de�ned byeqBool True True = True 23



eqBool False False = TrueeqBool _ _ = False
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Eq with re
ords

Haskell's 
lass de
laration 
orresponds toEq :: Set -> SetEq a = a -> a -> BoolIf we want to spe
ify the name (==) of the operation we 
an instead use a re
ordtype:Eq a = ((==) :: a -> a -> Bool)(This is the Eq \
lass" in Cayenne.)The instan
e de
laration 
orresponds to 25



eqBool :: Eq Boolor, as a re
ord with one �eld,((==) = eqBool)) :: Eq Bool
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Overloading via 
lasses

Wadler's original purpose of Haskell-
lasses was to have a systemati
 approa
hto overloading. Having de�ned an instan
e Eq a we 
an simply use(==) :: a -> a -> Boolfor the equality on a.This is not 
aptured by our dependent re
ords. Ifr :: Eq ais a re
ord, we have to writer.(==) :: a -> a -> Bool 27



I will however in some future examples assume that we 
an hide the r alsowhen we work in dependent type theory.
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Eq with properties

The Eq-re
ord with properties (de
idable setoids = \datoids"):Eq a = ((==) :: a -> a -> Bool,ref :: (x :: a)-> T (x == x),sym :: (x,y :: a)-> T (x == y)-> T (y == x),tra :: (x,y,z :: a)-> T (x == y) -> T (y == z)-> T (x == z)) 29



Deriving equality

What about writing a fun
tioneq :: (a :: Set) -> Eq a ?In total type theory this means that we should de�ne a de
idable equality for alla :: Set. But equality is not de
idable for all sets! However, we 
ould haveeq :: (a :: EqSet) -> Eq awhere EqSet is a universe of sets for whi
h we 
an \derive" de
idable equality (
fML's equality types). This leads us towards \generi
 programming" { more later.
30



Sub
lasses

Re
ords are �rst-
lass 
itizens in dependent type theory. This helps us modelsome further 
lass-related language 
onstru
ts.In Haskell Ord is a sub
lass of Eq. A simpli�ed version:
lass Eq a => Ord a where(<) :: a -> a -> BoolIn dependent type theory this 
orresponds toOrd a = (r :: Eq a,(<) :: r.a -> r.a -> Bool) 31



List equality

In Haskell:instan
e Eq a => Eq [a℄ where[℄ == [℄ = True[℄ == (y:ys) = False(x:xs) == [℄ = False(x:xs) == (y:ys) = x == y && xs == ysIn dependent type theory we writelistEq :: (a :: Set) -> Eq a -> Eq [a℄ie essentially a fun
tion 32



listEq :: (a :: Set) -> (a -> a -> Bool)-> [a℄ -> [a℄ -> BoollistEq f [℄ [℄ = TruelistEq f [℄ (y:ys) = FalselistEq f (x:xs) [℄ = FalselistEq f (x:xs) (y:ys) = f x y && listEq xs ys
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2. Dependently typed datastru
tures
34



The zip-fun
tion

Haskell library fun
tionzip :: [a℄ -> [b℄ -> [(a,b)℄zip [℄ [℄ = [℄zip (x:xs) (y:ys) = (x,y) : zip xs yszip _ _ = [℄ex
eptional 
ases when lists are of unequal length.
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Ve
tors

Ve
t :: Set -> Nat -> SetVe
t a n is the set of lists of length n, ie the set of n-tuples. Then zip gets thetypezip :: (a,b :: Set) -> (n :: Nat)-> Ve
t a n -> Ve
t b n-> Ve
t (a,b) nNote that ve
tors 
an be de�ned either indu
tively (as an \indu
tive family")Nil :: (a :: Set) -> Ve
t a ZeroCons :: (a :: Set) -> (n :: Nat) 36



-> a -> Ve
t a n-> Ve
t a (Su

 n)or re
ursively (using \large elimination")Ve
t a Zero = ()Ve
t a (Su

 n) = (a, Ve
t a n)
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Balan
ed binary trees

Bal a h is the set of balan
ed binary trees of height h and with a-elementsin the nodes. \Balan
ed" here means \as in AVL-trees".Bal :: Set -> Nat -> SetEmpty :: (a :: Set)-> Bal a 0Bran
hE :: (a :: Set) -> (h :: Nat)-> a -> Bal a h -> Bal a h-> Bal a (h+1)Bran
hL :: (a :: Set) -> (h :: Nat)-> a -> Bal a (h+1) -> Bal a h 38



-> Bal a (h+2)Bran
hR :: (a :: Set) -> (h :: Nat)-> a -> Bal a h -> Bal a (h+1)-> Bal a (h+2)
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Binary sear
h trees

Empty :: (min,max :: Nat) -> T (min < max)-> BST min maxBran
h :: (min,max,root :: Nat)-> T (min < root) -> T (root < max)-> BST min root -> BST root max-> BST min maxBran
h min max root p q left rightis a binary sear
h tree with bounds min and max, root root, left and rightsubtrees left and right, and p and q proofs that root is between min and max.binSear
h :: (min,max,key :: Nat) 40



-> T (min < key) -> T (key < max)-> BST min max -> Boolinsert :: (min,max,key :: Nat)-> T (min < key) -> T (key < max)-> BST min max-> BST min max

41



Corre
tness of binary sear
h

BST min max forget -BT���������binSear
h R 	�������
��memberNat ! Boolwhere BT is the set of binary trees with natural numbers in the nodes:Empty :: BTBran
h :: Nat -> BT -> BT -> BT 42



andmember :: BT -> Nat -> Boolforget :: (min,max :: Nat) -> BST min max -> BTare the obvious membership and binary sear
h tree stru
ture forgetting fun
tions.
43



Corre
tness of insertionin binary sear
h trees

BST min max insert key- BST min max

Nat ! Bool
binSear
h ? fkeyg [ �- Nat ! Bool
binSear
h?

([) :: (Nat -> Bool) -> (Nat -> Bool) 44



-> Nat -> Boolf�g :: Nat -> Nat -> Bool
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The binary sear
h tree property

isBST :: Nat -> Nat -> BT -> BoolisBST min max Empty = min < maxisBST min max (Bran
h root left right)= min < root && root < max&& isBST min root left&& isBST root max rightThe dependently typed \integrated" representation is isomorphi
 to the\external" one:BST min max �= (t :: BT, T (isBST min max t))
46



3. Testing and dependent types

47



Random testing

Qui
kChe
k (Claessen and Hughes 2000) is a tool for testing Haskell programsautomati
ally. The programmer provides a spe
i�
ation of the program, in theform of properties whi
h fun
tions should satisfy, and Qui
kChe
k then tests thatthe properties hold in a large number of randomly generated 
ases. Spe
i�
ationsare expressed in Haskell, using 
ombinators de�ned in the Qui
kChe
k library.Qui
kChe
k provides 
ombinators to de�ne properties, observe the distribution oftest data, and de�ne test data generators.

48



From the ICFP programming 
ontest

Tom Moertel wrote the following ...Lesson 4. Test early, test often.This one I got right. Early on I de
ided to invest a substantial portion ofmy time on 
orre
tness. I bene�ted from Haskell's wi
ked-powerful type system,whi
h 
at
hes a lot of problems all by itself, and then I used Qui
kChe
k, anautomati
 testing tool, to further automate away the pain of testing. Here area few examples from my log that show how a tool like Qui
kChe
k 
an be yourbest friend in a tight 
oding 
orner:

49



Thu 17:13 EDT. Qui
kChe
k is revealing that something is going wrong witheither the Parser or my Show instan
es. . . .Thu 17:37 EDT. Qui
kChe
k to the res
ue! Qui
kChe
k found a test 
ase thatfalsi�ed my RoundTrip property for Show->Parse->Show, and I was able tohand-feed that 
ase to my parser to determine the error. . . .Fri 12:19 EDT. My naive optimizer is done. Not so fast, Qui
kChe
k spotted a
orner 
ase that 
auses the optimizer to dis
ard untagged text at the end of ado
ument. Oops.Qui
kChe
k found these problems and more, many that I wouldn't have foundwithout a massive investment in test 
ases, and it did so qui
kly and easily. Fromnow on, I'm a Qui
kChe
k man!
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Qui
kChe
kable properties

Qui
kChe
k 
an test 
onditional properties writtenp x ==> q xwherep, q :: D -> Boolare de
idable predi
ates written in Haskell.In dependent type theory:(x :: D) -> T (p x) -> T (q x) 51



The user writes a generator of random D-elements. Qui
kChe
k uses this to
he
k the 
onditional property for 100 
ases, where only 
ases whi
h pass p are
ounted. If a 
ounterexample is found, Qui
kChe
k stops and reports it.
52



Testing binary sear
h

binSear
h :: BT -> Nat -> Boolis a Haskell version of binary sear
h (now forgetting about bounds).The 
orre
tness 
riterion written in Qui
kChe
k's spe
i�
ation language isisBST t ==> binSear
h t key == member t keyand in dependent type theory:(t :: BT) -> (key :: Nat) -> T (isBST t)-> T (binSear
h t key == member t key)Write a random generator for binary sear
h trees! 53



Combining Qui
kChe
kand dependent type theory

Methodology:� Debug the goal by running Qui
kChe
k. (The spe
i�
ation may as often bewrong as the program!)� If su

essful re�ne the goal, until you get some subgoal that seems hard toprove. Run Qui
kChe
k on this. And so on.Hayashi used testing when doing proofs in his PX system already in the 1980-ies.Other bene�t of 
ombining Qui
kChe
k and dependent type theory: 54



� Prove surje
tivity (\
overage") properties of generators of random elements.
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4. Generi
 programming and universal algebra
56



Generi
 equality

Re
all that we said that we would like a fun
tioneq :: (a :: EqSet) -> a -> a -> Boolinside our language, whi
h derives an equality for ea
h set in EqSet - a universeof \equality sets" (like ML's equality types).We 
ould even derive the equality with properties:eq :: (a :: EqSet)-> ((==) :: a -> a -> Bool,ref :: (x :: a)-> T (x == x), 57



sym :: (x,y :: a)-> T (x == y)-> T (y == x),tra :: (x,y,z :: a)-> T (x == y) -> T (y == z)-> T (x == z))

58



Generi
 map

Another motivating example of generi
 programming.map :: (a -> b) -> [a℄ -> [b℄is one of the most basi
 fun
tions for list programming. But we have an analogousfun
tion for binary trees:mapBT :: (a -> b) -> BT a -> BT bIn general we 
an de�ne a generi
 mapmap :: (a -> b) -> D a -> D bwhere 59



D :: Set -> Setis a unary datatype 
onstru
tor. However, we 
annot de�ne map for an arbitrarysu
h D, but only ones whi
h are drawn from a suitable universe of \regular"datatypes.

60



Regular datatypes in PolyP

PolyP (Jansson and Jeuring, 1996 - ) as in \polytypi
" (= generi
)programming, is an extension of Haskell.Polytypi
 fun
tions are de�ned by indu
tion on a universe of 
odes for \regulardatastru
tures". These are unary type 
onstru
tors of the formDX = �Y:FXYwhere F is a \pattern fun
tor" built up from variables and 
onstants by sum,produ
t, and 
omposition. Eg the type of lists of X's is a regular datastru
turede�ned by [X℄ = �Y:() + (X;Y ) 61



The fun
tionality of PolyP 
an be simulated in dependent type theory.
62



Generi
 programmingand universal algebra

We 
onsider term algebras T� for one-sorted signatures �.A signature is just a list of arities:Sig = [Nat℄andT :: Sig -> Settakes a signature and returns its term algebra.Some signatures and their term algebras: 63



[℄ Empty[0,0℄ Bool[0,1℄ Nat[0,1,1℄ [Bool℄[0,2℄ BT ()
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A generi
 size fun
tion

How to programsize :: (Sigma :: Sig) -> T Sigma -> Natby indu
tion on Sig?
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Generi
 formation, introdu
tion, elimination, and equalityrules

Use the well-know initial algebra diagram:
F�T� Intro� - T�

F�C
F0�(iter�d) ? d -C
iter�d?

T :: Sig -> Set 66



Intro :: (Sigma :: Sig)-> F Sigma (T Sigma) -> T Sigmaiter :: (Sigma :: Sig) -> (C :: Set)-> (F Sigma C -> C) -> T Sigma -> Citer Sigma d (Intro Sigma x)= d (F' Sigma (T Sigma) C (iter Sigma d) x)

67



The pattern fun
tor

Obje
t and arrow partsF :: Sig -> Set -> SetF' :: (Sigma :: Sig) -> (X,Y :: Set)-> (X -> Y)-> F Sigma X -> F Sigma Yare de�ned by F[n1;:::;nm℄X = Xn1 + � � �+XnmF0[n1;:::;nm℄XY f = fn1 + � � �+ fnm 68



Remark. It is possible to modify the elimination rule to a

ount for generi
primitive re
ursion rather than just iteration.
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Generi
 dependent type theory

It is possible to en
ode a large 
lass of indu
tive types (in
luding the T�)using well-orderings, but to derive the rules we need extensional type theory (seeDybjer 1997).A generi
 formulation of dependent type theory with indu
tive-re
ursivede�nitions was given by Dybjer and Setzer 1999 and for indexed indu
tive-re
ursive de�nitions by Dybjer and Setzer 2001.The rules for initial algebras 
an be derived in this theory. In fa
t, theDybjer-Setzer axiomatization is obtained by 
onsidering a more general universeof signatures and a modi�ed initial algebra diagram.
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Generi
 size

A spe
ial 
ase of the initial algebra diagram. Let � = [n1; : : : ; nm℄.

Tn1� + � � �+ Tnm� Intro� -T�

Natn1 + � � �+ Natnm

sizen1� + � � �+ sizenm� ? step� - Nat
size�?

where step�(Ini(x1; : : : ; xni)) = 1 + x1 + � � �+ xni 71




an be de�ned by indu
tion on �.

72



5. Metaprogramming.Well-typed interpretersand partial evaluators

73



A well-typed interpreter

Consider a small typed programming language based on 
ombinators. Withdependent types we 
an formalize this obje
t language as a type-indexed familyof terms.Ty :: SetTe :: Ty -> SetSome typesNAT :: Ty(=>) :: Ty -> Ty -> Ty
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Some terms

(�) :: (A,B :: Ty)-> Te (A => B) -> Te A -> Te BK :: (A,B :: Ty)-> Te (A => B => A)S :: (A,B,C :: Ty)-> Te ((A => B => C)=> (A => B) => A => C)ZERO :: Te NATSUCC :: Te (NAT => NAT)ITER :: (C :: Ty)-> Te ((C => C) => C => NAT => C)We hide type arguments and write eg f � 
 rather than (�) A B f a. 75



Semanti
s = interpretation

Interpretation of types:Eval :: Ty -> SetEval NAT = NatEval (A => B) = Eval A -> Eval BInterpretation of terms:eval :: (A :: Ty) -> Te A -> Eval Aeval (f � 
) = eval f (eval 
)eval K = k = \x y -> x 76



eval S = s = \x y z -> (x z) y zeval ZERO = Zeroeval SUCC = Su

eval ITER = iteras usual hiding the type argument. iter is the iteratoriter :: (C :: Set) -> (C -> C) -> C -> Nat -> C
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Partial evaluation

Consider the fun
tionpower :: Nat -> Nat -> Natpower m n = iter (mult m) 1 nmult m n = iter (add m) 0 nadd m n = iter Su

 m nwhere we have hidden the �rst argument Nat of iter.
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Stati
 and dynami
 arguments

In partial evaluation we distinguish between binding-times, that is,stati
 arguments, whi
h are known, anddynami
 arguments, whi
h are not knownat spe
ialization time. If m is dynami
 and n is stati
 in power m n then we 
anspe
ialize and simplify the de�nition. Eg n = 3power m 3 = iter (mult m) 1 3= mult m (mult m (mult m 1)= mult m (mult m m) 79



The simpli�ed program is 
alled the residual program.
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2-level lambda 
al
ulus

In 2-level lambda 
al
ulus types and terms are given binding-time annotations.Eg the type Nat exists in both a stati
 version Nat and a dynami
 version Nat.The fun
tion power with a �rst dynami
 and a se
ond stati
 argument thusgets the type: powerDS :: Nat -> Nat -> NatpowerDS m n = iter (mult m) ($ 1) nwhere $ :: Nat -> Nattransforms a stati
 number into the 
orresponding dynami
 one.
81



Binding-times

There are four di�erent versions of power depending on the binding-times ofthe arguments: powerDS :: Nat -> Nat -> Nat

powerSD :: Nat -> Nat -> Nat

powerDD :: Nat -> Nat -> Nat

powerSS :: Nat -> Nat -> Nat 82



Binding-times again

With dependent types and the 
orresponden
esdynami
 obje
t languagestati
 meta languageto get types for \generating extensions" 
orresponding to the binding timeannotations:powerDS :: Nat -> Te (NAT => NAT)powerSD :: Nat -> Te (NAT => NAT)powerDD :: Te (NAT => NAT => NAT) 83



powerSS :: Nat -> Nat -> NatNote the analogy between the binding-time annotated types and the dependenttypes, ex
ept that powerDS ex
hanges the order of its arguments, be
ause astati
 argument is always given before a dynami
 one.
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Terms-in-
ontext

Combinatory logi
 is not quite suitable for partial evaluation, and we want towork in lambda 
al
ulus instead. Therefore we need to formalize terms-in-
ontext.We use a name-free approa
h withTe :: [Ty℄ -> Ty -> Setso that Te [A1,...,An℄ A is the set of terms of type A, where the variables (deBruijn indi
es) have the types A1,...,An.Pure typed lambda terms are then generated by the following rules:(�) :: (As :: [Ty℄) -> (A,B :: Ty)-> Te As (A => B) -> Te As A -> Te As B 85



LAM :: (As :: [Ty℄) -> (A,B :: Ty)-> Te (A:As) B -> Te As (A => B)VAR :: (As :: [Ty℄) -> (A :: Ty)-> Member A As -> Te As AWe hide 
ontext and type arguments.
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A well-typed interpreterfor typed lambda terms

The interpretation of types is as before, but now we need to interpret 
ontextstoo:Eval :: [Ty℄ -> SetEval [℄ = ()Eval (A:As) = (Eval A, Eval As)Interpretation of terms:eval :: (As :: [Ty℄) -> (A :: Ty)-> Eval As -> Eval A 87



eval (f � 
) as = eval f as (eval 
 as)eval (LAM e) as = \x -> eval e (x,as)eval (VAR n) as = proj n asagain hiding the 
ontext and type arguments.

88



Partially evaluating power again

When we spe
ialize power with a stati
 se
ond argument n we get the term\x -> iter (mult x) 1 n :: Nat -> Natwhi
h we want to simplify by using that iter is a stati
 operation.The 
orresponding obje
t language term is:LAM (ITER � (MULT � (VAR X0)) � ($ 1) � ($ n)):: Te [℄ (NAT => NAT)where$ :: (As :: [Ty℄) -> Nat -> Te As NAT 89



is the inje
tion of a metalanguage natural number into the obje
t language:$ Zero = ZERO$ (Su

 n) = SUCC ($ n)
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Some typings

In the termLAM (ITER � (MULT � (VAR X0)) � ($ 1) � ($ n)):: Te [℄ (NAT => NAT)we use the following instan
es:ITER :: Te [NAT℄((NAT => NAT) => NAT => NAT => NAT)MULT :: Te [NAT℄ (NAT => NAT => NAT)X0 :: Member NAT [NAT℄
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Exe
uting a stati
 operation

The fa
t that iter is a stati
 operation here is expressed by the fa
t that forall n :: Nat the obje
t language term obtained by exe
utingiter (\t -> MULT � (VAR X0) � t) ($ 1) nhas the same semanti
s asITER � (MULT � (VAR X0)) � ($ 1) � ($ n)For n = 2:iter (\t -> MULT � (VAR X0) � t) ($ 1) 2= MULT � (VAR X0) � (MULT � (VAR X0) � ($ 1)) 92



This term 
an be further simpli�ed to the semanti
ally equal termMULT � (VAR X0) � (VAR X0) :: Te [Nat℄ NatThis is the residual program (normal form).
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6. Coping with general re
ursion

94



Re
ursion in type theory

Total type theory. Re
ursion in Martin-L�of type theory is primitive (stru
tural)re
ursion. General re
ursive algorithms are not dire
tly typable in total typetheory. This is one of the main obsta
les to making total type theory aprogramming language.Partial type theory. There is a version of Martin-L�of type theory with generalre
ursion (Martin-L�of's domain interpretation of type theory 1983, Palmgren1991). Cayenne 
an be said to be an implementation of partial type theory.Partial type theory allows non-terminating 
omputations and does not supportthe Curry-Howard 
orresponden
e.We want both logi
 and general re
ursion. How? There are many suggestions.95



We shall look at a method for generating spe
ial purpose a

essibility predi
atesfor general re
ursive de�nitions (Bove 1999 and Bove and Capretta 2001).
96



Qui
ksort in Haskell

qSort :: [Nat℄ -> [Nat℄qSort [℄ = [℄qSort (x : xs)= qSort (filter (< x) xs)++ x : qSort (filter (>= x) xs)(A more eÆ
ient version whi
h partitions xs in one pass 
an easily be written.)
97



Qui
ksort in total type theory

We 
an de�ne a termination predi
ate for qui
ksort:D :: [Nat℄ -> SetC0 :: D [℄C1 :: (x :: Nat) -> (xs :: [Nat℄)-> D (filter (< x) xs)-> D (filter (>= x) xs)-> D (x : xs)Qui
ksort 
an then be represented as a fun
tion of two arguments: a list and aproof that qui
ksort terminates for this list. 98



qSort :: (xs :: [Nat℄) -> D xs -> [Nat℄qSort [℄ C0 = [℄qSort (x : xs) (C1 x xs p q)= qSort (filter (< x) xs) p++ x : qSort (filter (>= x) xs) q
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Termination of qui
ksort

Qui
ksort terminates for all lists:qSortTerm :: (xs :: [Nat℄) -> D xsHen
e\xs -> qSort xs (qSortTerm xs):: [Nat℄ -> [Nat℄
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Treesort

treeSort = buildBST . preorderbuildBST :: [Nat℄ -> BSTpreorder :: BST -> [Nat℄This is essentially the same algorithm as fun
tional qui
ksort, but it isstru
turally re
ursive!(C. M
Bride)The idea of strong fun
tional programming!(D. Turner)
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M
Carthy's 91-fun
tion in Haskell

The Bove-Capretta method is appli
able to nested re
ursion as well.Haskell 
ode for M
Carthy's 91-fun
tion:f91 :: Nat -> Natf91 n = if n > 100 then n - 10else f91 (f91 (n + 11))
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M
Carthy's 91-fun
tionin total type theory

We get a simultaneous indu
tive-re
ursive de�nition of the terminationpredi
ate and the stru
tural re
ursive version of f91:D :: Nat -> Setf91 :: (n :: Nat) -> D n -> NatC0 :: (n :: Nat) -> T (n > 100) -> D nC1 :: (n :: Nat) -> T (n <= 100)-> (p :: D (n + 11))-> D (f91 (n + 11) p)-> D n 103



f91 n (C0 n r) = n - 10f91 n (C1 n r p q)= f91 (f91 (n + 11) p) q
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Summary

� Dependent types for ML/Haskell style programming:{ 
lasses, modules{ arrays, sized types, simple datatype invariants{ generi
 programming{ metaprogramming� Corre
tness in the short term:{ modest use of dependent types (eg a la DML){ 
ombining testing and dependent types� General re
ursion and dependent types. 105


