Dependent Types in Programming

Peter Dybjer
Chalmers

TYPES summer school
Giens, 5 September 2002

Constructive mathematics
and computer programming
— the original paradigm

Curry-Howard for programming:
a - A
element belongs to set/type

proof proves proposition
program satisfies specification

Martin-Lof type theory:

e a functional language with dependent types where all programs terminate;

e a specification language including predicate logic;

e a full-scale constructive set theory — a “ZF" for constructive mathematics!

Example: sorting

SortProp = Vxs :: [Nat].dys :: [Nat].
Sorted ys /A Perm xs ys
Prove this proposition!
sortProof :: SortProp
Extract a program

sortProg :: [Nat] -> [Nat]

with its proof

sortProgProof :: Vxs :: [Nat].
Sorted (sortProg xs) A

Perm xs (sortProg xs)

Program extraction

Set vs Prop. Distinguish between computationally relevant and irrelevant parts
by using Set/Prop-distinction. The sorting proposition becomes eg

[Ixs :: [Nat].{ys :: [Nat] | Sorted ys A Perm xs ys}

One-element types are not computationally relevant. Eg use that Sorted (and
Perm) are decidable:

sorted :: [Nat] -> Bool
Sorted :: [Nat] -> Set
Sorted xs = T (sorted xs)

where

T :: Bool —-> Set
T True = Unit = ()
T False = Empty

Constructive mathematics
and computer programming
- what happened?

1979 - The paper “Constructive mathematics and computer programming”.

Formation of Cornell and Chalmers type theory groups. Early implementations
(NuPRL, GTT system).

1984 - The calculus of constructions. Logical frameworks. INRIA and Edinburgh
groups. Implementations of intensional type theory.

1989 - The Logical Framework/ TYPES consortium. Lego, Coq, Alf. Inductive
definitions, pattern matching, records, ...

2002 Impressive progress. But dependent type theory has not (yet?)
revolutionized programming.

The next 700 MLs

Extensions of the Hindley-Milner type system (polymorphic typed lambda
calculus with recursive type and function definitions):

e Equality types in ML.

e ML's module system. Haskell's class system.
e Arrays. Sized types. Embedded ML.

e Metaprogramming. Meta-ML.

e Generic programming. PolyP, Generic Haskell.

10

e Specification language for testing. QuickCheck.

11

Dependent types in practical programming

Dependent types from the point of view of the functional programmer (ML,
Haskell):

Cayenne Augustsson 1998.

DML Xi 1998, Xi and Pfenning 1999.

Series of workshops on DTP: Goteborg 1999, Ponte de Lima 2000, Schloss
Dagstuhl 2001, ...

12

What is Cayenne?

Augustsson 1998: “Although dependent types have been used before in proof
systems, e.g., [CH88], to our knowledge this is the first time that the full power
of dependent types has been integrated into a programming language.”

e A lazy functional language with dependent types, similar to Agda, but intended
to be used as a “real” programming language, like Haskell. Unlike Agda it has
predefined types Int, String, etc.

e Intended to be used as a partial type theory with unrestricted recursion in type
and function definitions.

e Type-checking undecidable, but nevertheless practical.

13

e Compiled by removing types and translating to LML, which has a compiler
producing efficient code.

14

What is DML?

Xi and Pfenning 1999: “To our knowledge, no previous type system for

a general purpose programming language such as ML has combined dependent
types with features including datatype declarations, higher-order functions, general
recursions, let-polymorphism, mutable references, and exceptions.”

e A strict functional language with dependent types. DML = Dependent ML.
e A conservative extension of ML. Translate to ML by removing dependent types.

e Decidable type checking is obtained by restricting types to depend on index
expressions, eg arithmetic expressions, with decidable constraint solving.

15

Plan

. Haskell classes and dependent records.

. Dependently typed datastructures.

. Testing and dependent types.

. Generic programming and universal algebra.

. Metaprogramming. Well-typed interpreters and partial evaluators.

. Coping with general recursion.

16

Notation - logical framework

Inspired by Haskell, Cayenne, Agda.

17

here other

X a X : a
a->b (a)b

(x :: a) => b (x:a)b, [Ix:a.b
f ¢ f(c)

\x -> e Mx.e, (x)e
(a,b) axb

(x::a,b) Yx:a.b
(x::a,y::b) sig{x:a,y:b}
r.X, r.y fst, snd

(c,d), (x=c,y=d) struct{x=c,y=d}

O Ni,1, Unit
Bool NQ, 2
Set #, *x, Prop

T :: Bool -> Set Lift

Notation - datatypes

19

here

Nat
Zero
Succ

[a]
Vect a n

N
X . XS
Xs ++ ys

BT a
BST a
IsBST t

(==

Set

:: Nat
:: Nat -> Nat

other

data Nat = Zero
| Succ Nat

List a

aIl

Nil

x.xs, Cons x xs
append Xs ys

BinaryTree a

BinarySearchTree a
T (isBST t)

eq

20

Also argument hiding, overloading, Haskell (-) notation for infix operations, etc.

21

1. Haskell classes and dependent records

22

The Eg-class in Haskell

class Eq a where
(==) :: a -> a -> Bool

instance Eq Bool where
(==) = eqBool

where
eqBool :: Bool -> Bool -> Bool

is defined by

eqBool True True = True

23

eqBool False False
eqBool _

True
False

24

Eq with records

Haskell's class declaration corresponds to

Eq :: Set -> Set

Eq a = a -> a -> Bool

If we want to specify the name (==) of the operation we can instead use a record
type:

Eq a = ((==) :: a -> a -> Bool)
(This is the Eq “class” in Cayenne.)

The instance declaration corresponds to

25

eqBool :: Eq Bool
or, as a record with one field,

((==) = eqBool)) :: Eq Bool

26

Overloading via classes

Wadler's original purpose of Haskell-classes was to have a systematic approach
to overloading. Having defined an instance Eq a we can simply use

(==) :: a -> a -> Bool
for the equality on a.
This is not captured by our dependent records. If
r :: Eq a
Is a record, we have to write
r.(==) :: a -> a -> Bool

27

| will however in some future examples assume that we can hide the r also
when we work in dependent type theory.

28

Eq with properties

The Eg-record with properties (decidable setoids = “datoids”):

Eq a = ((==) :: a -> a —-> Bool,
ref :: (x :: a)
-> T (x == x),
sym :: (x,y :: a)
-> T (x == y)
-> T (y == x),
tra :: (x,y,z :: a)

> T (x==y) >T (y == 2)
> T (x == z)

Deriving equality

What about writing a function
eq :: (a :: Set) > Eq a 7

In total type theory this means that we should define a decidable equality for all
a :: Set. But equality is not decidable for all sets! However, we could have

eq :: (a :: EgSet) -> Eq a

where EqSet is a universe of sets for which we can “derive” decidable equality (cf
ML's equality types). This leads us towards “generic programming” — more later.

30

Subclasses

Records are first-class citizens in dependent type theory. This helps us model
some further class-related language constructs.

In Haskell Ord is a subclass of Eq. A simplified version:

class Eq a => Ord a where
(<) :: a ->a -> Bool

In dependent type theory this corresponds to

Ord a = (r :: Eq a,
(<) :: r.a -> r.a -> Bool

)

31

List equality

In Haskell:

instance Eq a => Eq [a] where

[] == [] = True
[] == (y:ys) = False
(x:x8) == [] = False

(x:x8) == (y:ys) = x ==y && xs == ys
In dependent type theory we write
listEq :: (a :: Set) -> Eq a -> Eq [a]
le essentially a function

32

listEq :: (a :: Set) -> (a -> a -> Bool)
-> [a] -> [a] -> Bool

listEq £ [] []
listEq f [] (y:ys)
listEq f (x:xs) []
listEq f (x:xs) (y:ys)

True
False
False
f xy & listEq xs ys

33

2. Dependently typed datastructures

34

The zip-function

Haskell library function

zip :: [a]l -> [b] -> [(a,b)]

zip [] [] = [1]
zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip _ _ =[]

exceptional cases when lists are of unequal length.

35

Vectors

Vect :: Set -> Nat -> Set

Vect a n is the set of lists of length n, ie the set of n-tuples. Then zip gets the
type

zip :: (a,b :: Set) -> (n :: Nat)
-> Vect an -> Vect bn
-> Vect (a,b) n

Note that vectors can be defined either inductively (as an “inductive family”)

Nil :: (a :: Set) -> Vect a Zero
Cons :: (a :: Set) -> (n :: Nat)

36

-> a —-> Vect a n
-> Vect a (Succ n)

or recursively (using “large elimination”)

Vect a Zero = ()
Vect a (Succ n) = (a, Vect a n)

37

Balanced binary trees

Bal a h is the set of balanced binary trees of height h and with a-elements

in the nodes. “Balanced” here means “as in AVL-trees'.

Bal :: Set —>

Empty :: (a ::
->
BranchE :: (a ::
->
->

BranchL :: (a ::

->

Nat —-> Set

Set)

Bal a O

Set) -> (h :: Nat)

a -> Bal a h -> Bal a h

Bal a (h+1)

Set) -> (h :: Nat)

a -> Bal a (h+l1) -> Bal a h

38

BranchR ::

-> Bal a (h+2)

(a :: Set) -> (h :: Nat)

-> a -> Bal a h -> Bal a (h+1)
-> Bal a (h+2)

39

Binary search trees

Empty :: (min,max :: Nat) -> T (min < max)
-> BST min max
Branch :: (min,max,root :: Nat)

-> T (min < root) -> T (root < max)
-> BST min root —-> BST root max
-> BST min max

Branch min max root p q left right

is a binary search tree with bounds min and max, root root, left and right
subtrees left and right, and p and q proofs that root is between min and max.

binSearch :: (min,max,key :: Nat)

40

insert

-> T (min < key) -> T (key < max)
-> BST min max -> Bool

(min,max,key :: Nat)

-> T (min < key) -> T (key < max)
-> BST min max

-> BST min max

41

Correctness of binary search

. forget
BST min max BT

binSearch member

Nat — Bool
where BT is the set of binary trees with natural numbers in the nodes:

Empty :: BT
Branch :: Nat -> BT -> BT -> BT

42

and

member :: BT -> Nat -> Bool
forget :: (min,max :: Nat) -> BST min max -> BT

are the obvious membership and binary search tree structure forgetting functions.

43

Correctness of insertion
in binary search trees

insert key

BST min max BST min max
binSearch binSearch
Nat — Bool Nat — Bool
{key} U —

(U) : (Nat -> Bool) -> (Nat -> Bool)

44

=7

-> Nat -> Bool

Nat -> Nat

-> Bool

45

The binary search tree property

1sBST :: Nat -> Nat -> BT -> Bool

1isBST min max Empty = min < max
isBST min max (Branch root left right)
= min < root && root < max

&% 1sBST min root left

&&% 1sBST root max right

The dependently typed “integrated” representation is isomorphic to the

“external” one:

BST min max = (t :: BT, T (isBST min max t))

46

3. Testing and dependent types

47

Random testing

QuickCheck (Claessen and Hughes 2000) is a tool for testing Haskell programs
automatically. The programmer provides a specification of the program, in the
form of properties which functions should satisfy, and QuickCheck then tests that
the properties hold in a large number of randomly generated cases. Specifications
are expressed in Haskell, using combinators defined in the QuickCheck library.
QuickCheck provides combinators to define properties, observe the distribution of
test data, and define test data generators.

48

From the ICFP programming contest

Tom Moertel wrote the following ...
Lesson 4. Test early, test often.

This one | got right. Early on | decided to invest a substantial portion of
my time on correctness. | benefited from Haskell's wicked-powerful type system,
which catches a lot of problems all by itself, and then | used QuickCheck, an
automatic testing tool, to further automate away the pain of testing. Here are
a few examples from my log that show how a tool like QuickCheck can be your
best friend in a tight coding corner:

49

Thu 17:13 EDT. QuickCheck is revealing that something is going wrong with
either the Parser or my Show instances. . . .

Thu 17:37 EDT. QuickCheck to the rescue! QuickCheck found a test case that
falsified my RoundTrip property for Show->Parse->Show, and | was able to
hand-feed that case to my parser to determine the error. . . .

Fri 12:19 EDT. My naive optimizer is done. Not so fast, QuickCheck spotted a
corner case that causes the optimizer to discard untagged text at the end of a
document. Oops.

QuickCheck found these problems and more, many that | wouldn't have found
without a massive investment in test cases, and it did so quickly and easily. From
now on, I'm a QuickCheck man!

50

QuickCheckable properties

QuickCheck can test conditional properties written
p X ==>qX
where
p, 9 :: D -> Bool
are decidable predicates written in Haskell.
In dependent type theory:

(x :: D) >T (px) ->T (q x)

51

The user writes a generator of random D-elements. QuickCheck uses this to
check the conditional property for 100 cases, where only cases which pass p are
counted. If a counterexample is found, QuickCheck stops and reports it.

52

Testing binary search

binSearch :: BT -> Nat -> Bool

is a Haskell version of binary search (now forgetting about bounds).

The correctness criterion written in QuickCheck’s specification language is
1isBST t ==> binSearch t key == member t key
and in dependent type theory:

(t :: BT) -> (key :: Nat) -> T (isBST t)
-> T (binSearch t key == member t key)

Write a random generator for binary search trees!

53

Combining QuickCheck
and dependent type theory

Methodology:

e Debug the goal by running QuickCheck. (The specification may as often be
wrong as the program!)

o |f successful refine the goal, until you get some subgoal that seems hard to
prove. Run QuickCheck on this. And so on.

Hayashi used testing when doing proofs in his PX system already in the 1980-ies.

Other benefit of combining QuickCheck and dependent type theory:

54

e Prove surjectivity (“coverage”) properties of generators of random elements.

55

4. Generic programming and universal algebra

56

Generic equality

Recall that we said that we would like a function
eq :: (a :: EgSet) -> a -> a -> Bool
q q

inside our language, which derives an equality for each set in EqSet - a universe
of “equality sets” (like ML's equality types).

We could even derive the equality with properties:

eq :: (a :: EgSet)
-> ((==) :: a -> a -> Bool,
ref :: (x :: a)
> T (x == x),

57

a)
> T (x == y)

o (x,y &

sym

> T (y == x),

a)
ST e) > T (g == 2

: (x,y,z &
-> T (x == z)

tra

58

Generic map

Another motivating example of generic programming.
map :: (a -> b) -> [a] -> [b]

is one of the most basic functions for list programming. But we have an analogous
function for binary trees:

mapBT :: (a -> b) -> BT a -> BT b
In general we can define a generic map
map :: (a ->b) ->Da->Db
where

59

D :: Set -> Set

is a unary datatype constructor. However, we cannot define map for an arbitrary
such D, but only ones which are drawn from a suitable universe of “regular”
datatypes.

60

Regular datatypes in PolyP

PolyP (Jansson and Jeuring, 1996 -) as in “polytypic” (= generic)
programming, is an extension of Haskell.

Polytypic functions are defined by induction on a universe of codes for “regular
datastructures”. These are unary type constructors of the form

DX = uY.FXY

where F' is a “pattern functor” built up from variables and constants by sum,
product, and composition. Eg the type of lists of X's is a regular datastructure

defined by
[X] = uY.() + (X, V)

61

The functionality of PolyP can be simulated in dependent type theory.

62

Generic programming
and universal algebra

We consider term algebras 7%, for one-sorted signatures >..
A signature is just a list of arities:

Sig = [Nat]

and

T :: Sig -> Set

takes a signature and returns its term algebra.

Some signatures and their term algebras:

63

[]

[0,0]
[0,1]
[0,1,1]
[0, 2]

Empty
Bool
Nat
[Booll]
BT ()

64

How to program
size :: (Sigma ::

by induction on Sig?

A generic size function

Sig) -> T Sigma -> Nat

65

Generic formation, introduction, elimination, and equality
rules

Use the well-know initial algebra diagram:

Introy
FyTxy Ts
F’Z(itergd) itersd
FyC ¥ C

Sig -> Set

Intro :: (Sigma :: Sig)

-> F Sigma (T Sigma) -> T Sigma
iter :: (Sigma :: Sig) -> (C :: Set)

-> (F Sigma C -> C) -> T Sigma -> C

iter Sigma d (Intro Sigma x)
= d (F’ Sigma (T Sigma) C (iter Sigma d) x)

67

The pattern functor

Object and arrow parts

F:: Sig —-> Set -> Set
F> :: (Sigma :: Sig) -> (X,Y :: Set)
-> (X > Y)

-> F Sigma X -> F Sigma Y

are defined by

F[n1,...,nm]X = an + ...
F,[nl,...,nm}XY‘f = fnl + ..

+ X
+ from

68

Remark. It is possible to modify the elimination rule to account for generic
primitive recursion rather than just iteration.

69

Generic dependent type theory

It is possible to encode a large class of inductive types (including the T%)

using well-orderings, but to derive the rules we need extensional type theory (see
Dybjer 1997).

A generic formulation of dependent type theory with inductive-recursive
definitions was given by Dybjer and Setzer 1999 and for indexed inductive-
recursive definitions by Dybjer and Setzer 2001.

The rules for initial algebras can be derived in this theory. In fact, the
Dybjer-Setzer axiomatization is obtained by considering a more general universe
of signatures and a modified initial algebra diagram.

70

Generic size

A special case of the initial algebra diagram. Let ¥ = [nq,...,nmy].
Introy
ni Nm
Tol 4 - + Ty Ts:
sizeg' + -+ - + sizeg™ sizey

Nat”! + -.- + Nat"™ Nat

stepy
where

StepZ(Ini(xla SRR 7$nz)) =1l+z+-+ Ln,;

71

can be defined by induction on X..

72

5. Metaprogramming.
Well-typed interpreters
and partial evaluators

73

A well-typed interpreter

Consider a small typed programming language based on combinators. With
dependent types we can formalize this object language as a type-indexed family
of terms.

Ty :: Set

Te :: Ty —-> Set
Some types

NAT :: Ty

(=>) :: Ty => Ty -> Ty

74

Some terms

(@ :: (A,B :: Ty)

-> Te (A =>B) > Te A -> Te B
K :: (A,B :: Ty)

-> Te (A => B => A)
S :: (A,B,C :: Ty)

-> Te ((A => B => (C)
=> (A => B) => A => C)
ZERO :: Te NAT
SUCC :: Te (NAT => NAT)
ITER :: (C :: Ty)
-> Te ((C => C) => C => NAT => C)

We hide type arguments and write eg £ @ c rather than (@) A B f a.

Semantics = interpretation

Interpretation of types:

Eval :: Ty —->

Eval NAT
Eval (A => B)

Set

Nat
Eval A -> Eval B

Interpretation of terms:

eval :: (A ::

eval (f @ c¢)
eval K

Ty) -> Te A -> Eval A

eval f (eval c)
k=\xy ->x

76

eval S =s=\xyz->x2z)yz
eval ZERO = Zero
eval SUCC = Succ
eval ITER = iter

as usual hiding the type argument. iter is the iterator

iter :: (C :: Set) -> (C ->C) -> C -> Nat -> C

7

Partial evaluation

Consider the function

power :: Nat -> Nat -> Nat

iter (mult m) 1 n
mult mn = iter (add m) O n
add m n iter Succ m n

power m n

where we have hidden the first argument Nat of iter.

78

Static and dynamic arguments

In partial evaluation we distinguish between binding-times, that is,

static arguments, which are known, and

dynamic arguments, which are not known

at specialization time. If m is dynamic and n is static in power m n then we can

specialize and simplify the definition. Egn = 3

iter (mult m) 1 3
= mult m (mult m (mult m 1)
= mult m (mult m m)

power m 3

79

The simplified program is called the residual program.

80

2-level lambda calculus

In 2-level lambda calculus types and terms are given binding-time annotations.
Eg the type Nat exists in both a static version Nat and a dynamic version Nat.

The function power with a first dynamic and a second static argument thus

gets the type:
powerDS :: Nat -> Nat -> Nat

powerDS m n = iter (multm) ($1)n

where
$:: Nat -> Nat

transforms a static number into the corresponding dynamic one.

81

Binding-times

There are four different versions of power depending on the binding-times of
the arguments:
powerDS :: Nat -> Nat -> Nat

powerSD :: Nat -> Nat -> Nat

powerDD :: Nat -> Nat -> Nat

powerSS :: Nat -> Nat -> Nat

82

Binding-times again

With dependent types and the correspondences

dynamic object language
static meta language

to get types for “generating extensions” corresponding to the binding time
annotations:

powerDS :: Nat -> Te (NAT => NAT)
powerSD :: Nat -> Te (NAT => NAT)

powerDD :: Te (NAT => NAT => NAT)

83

powerSS :: Nat -> Nat -> Nat

Note the analogy between the binding-time annotated types and the dependent
types, except that powerDS exchanges the order of its arguments, because a
static argument is always given before a dynamic one.

84

Terms-in-context

Combinatory logic is not quite suitable for partial evaluation, and we want to
work in lambda calculus instead. Therefore we need to formalize terms-in-context.
We use a name-free approach with

Te :: [Tyl -> Ty -> Set

so that Te [Al,...,An] A is the set of terms of type A, where the variables (de
Bruijn indices) have the types A1, ... ,An.

Pure typed lambda terms are then generated by the following rules:

(@) :: (As :: [Tyl) -> (A,B :: Ty)
-> Te As (A => B) -> Te As A -> Te As B

85

LAM :: (As :: [Tyl) -> (A,B :: Ty)

-> Te (A:As) B -> Te As (A => B)
VAR :: (As :: [Tyl) -> (A :: Ty)

—> Member A As -> Te As A

We hide context and type arguments.

86

A well-typed interpreter
for typed lambda terms

The interpretation of types is as before, but now we need to interpret contexts
too:

Eval :: [Tyl -> Set

Eval [] = ()
Eval (A:As) = (Eval A, Eval As)

Interpretation of terms:

eval :: (As :: [Tyl) -> (A :: Ty)
-> Eval As -> Eval A

87

eval (f @ c) as = eval f as (eval c as)
eval (LAM e) as \x -> eval e (x,as)
eval (VAR n) as = proj n as

again hiding the context and type arguments.

88

Partially evaluating power again

When we specialize power with a static second argument n we get the term
\x -> iter (mult x) 1 n :: Nat -> Nat
which we want to simplify by using that iter is a static operation.

The corresponding object language term is:

LAM (ITER @ (MULT @ (VAR X0)) @ ($ 1) @ ($ n))
:: Te [1 (NAT => NAT)

where

$:: (As :: [Tyl) -> Nat -> Te As NAT

89

is the injection of a metalanguage natural number into the object language:

$ Zero = ZERO
$ (Succ n) SUCC ($ n)

90

In the term

LAM (ITER @ (MULT @ (VAR
:: Te [] (NAT => NAT)

we use the following instances:

ITER :: Te [NAT]

((NAT => NAT)
MULT :: Te [NAT] (NAT =>
X0 :: Member NAT [NAT]

Some typings

X0)) @ ($ 1) @ ($ n))

=> NAT => NAT => NAT)
NAT => NAT)

91

Executing a static operation

The fact that iter is a static operation here is expressed by the fact that for
alln :: Nat the object language term obtained by executing

iter (\t -> MULT @ (VAR X0) @ t) ($ 1) n

has the same semantics as

ITER @ (MULT @ (VAR X0)) @ ($ 1) @ ($ n)

Forn = 2:

iter (\t -> MULT @ (VAR X0) @ t) ($ 1) 2
= MULT @ (VAR X0) @ (MULT @ (VAR X0) @ ($ 1))

92

This term can be further simplified to the semantically equal term
MULT @ (VAR X0) @ (VAR X0) :: Te [Nat] Nat

This is the residual program (normal form).

93

6. Coping with general recursion

94

Recursion in type theory

Total type theory. Recursion in Martin-Lof type theory is primitive (structural)
recursion. General recursive algorithms are not directly typable in total type
theory. This is one of the main obstacles to making total type theory a
programming language.

Partial type theory. There is a version of Martin-Lof type theory with general
recursion (Martin-Lof's domain interpretation of type theory 1983, Palmgren
1991). Cayenne can be said to be an implementation of partial type theory.
Partial type theory allows non-terminating computations and does not support
the Curry-Howard correspondence.

We want both logic and general recursion. How? There are many suggestions.

95

We shall look at a method for generating special purpose accessibility predicates
for general recursive definitions (Bove 1999 and Bove and Capretta 2001).

96

Quicksort in Haskell

gSort :: [Nat] -> [Nat]

qSort [] = []
gSort (x : xs)

= gSort (filter (< x) xs)
++ x : gSort (filter (>= x) xs)

(A more efficient version which partitions xs in one pass can easily be written.)

97

Quicksort in total type theory

We can define a termination predicate for quicksort:

D :: [Nat] -> Set

CO :: D []

Cl :: (x :: Nat) -> (xs :: [Nat])
-> D (filter (< x) xs)
-> D (filter (>= x) x8)
-> D (x : xs8)

Quicksort can then be represented as a function of two arguments: a list and a
proof that quicksort terminates for this list.

98

gSort :: (xs :: [Nat]) -> D xs -> [Nat]

qSort [] CO = []
gSort (x : xs) (Cl x xs p q)
= gSort (filter (< x) xs) p
++ x : gSort (filter (>= x) xs) q

99

Termination of quicksort

Quicksort terminates for all lists:
gSortTerm :: (xs :: [Nat]) -> D xs
Hence

\xs -> gSort xs (qSortTerm xs)
[Nat] -> [Nat]

100

Treesort

treeSort = buildBST . preorder

buildBST :: [Nat] -> BST
preorder :: BST -> [Nat]

This is essentially the same algorithm as functional quicksort, but it is
structurally recursive!

(C. McBride)

The idea of strong functional programming!
(D. Turner)

101

McCarthy’s 91-function in Haskell

The Bove-Capretta method is applicable to nested recursion as well.
Haskell code for McCarthy's 91-function:

f91 :: Nat -> Nat

f91 n = if n > 100 then n - 10
else f91 (f91 (n + 11))

102

McCarthy’s 91-function
in total type theory

We get a simultaneous inductive-recursive definition of the termination
predicate and the structural recursive version of £91:

D :: Nat —-> Set
f91 :: (n :: Nat) -> D n -> Nat

CO :: (n :: Nat) > T (n > 100) -> D n
Cl :: (n :: Nat) > T (n <= 100)

> (p :: D (n+ 11))

-> D (f91 (n + 11) p)

-> D n

103

f91 n (COnr) =n - 10
f91 n (Cl1 nr p q)
= £f91 (f91 (n + 11) p) q

104

Summary

e Dependent types for ML /Haskell style programming:

— classes, modules
— arrays, sized types, simple datatype invariants
— generic programming
— metaprogramming

e Correctness in the short term:
— modest use of dependent types (eg a la DML)
— combining testing and dependent types

e General recursion and dependent types.

105

