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1 Introduction

Peter Aczel [1] and Gerard Huet [8] have implemented the category of sets in LEGO and
Coq respectively. Here we show an implementation of the category of sets in ALF [2], a
proof assistant based on Martin-Léf’s logical framework (or theory of logical types) [10].

We used WINDOW ALF. This system allows one to manipulate the proof term in
order to refine it until it is complete. Some facilities are provided which show the term in
a readable way (special symbols for constants, infix use of symbols, hiding of arguments,
etc). What is presented below is, unfortunately, not what is shown on the screen, but
the source code for the type checker and the window interface. Thus, for instance, no
arguments are hidden and lambda is used instead of A. We refer to the introduction to
the ALF chapter of the library for further information.

We have essentially followed Peter Aczel’s development. But we have also introduced
some modifications which seemed natural with respect to ALF’s formalism. The most
significant differences concern the question of level (or size) which is discussed in the last
section.

Like Aczel’s, our notion of category has an explicit equivalence relation on each hom-
set as part of the structure, and also an explicit proof that composition preserves this
equivalence relation. Similarly, our notion of setoid (small setoids will be the objects of
our category) carries an explicit equivalence relation with it, and our notion of map (arrow
of the category of small setoids) carries a proof that it preserves this equivalence relation.
The term setoid' is used to distinguish this notion of set from the basic notion of set
in Martin-Lof’s type theory (and reserved word in ALF!). So a setoid is a set with an
equivalence relation on it.

Aczel uses LEGO’s universe hierarchy T'ype; and universe polymorphism (but not the
impredicative type of propositions). His setoids (which he calls sets) are triples (T, R, pr)
where T is an object in T'ype, R is a relation and pr is a proof that R is an equivalence
relation. He then defines the setoid of maps between two setoids. Moreover, his notion of
a category has a type of objects and for each pair of objects a hom-setoid. The level of a
category depends on the level of the type of objects and the level of the hom-setoid.
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In contrast, ALF has no preimplemented universe hierarchy. There is the notion of
type and the basic type of sets available. In addition it provides a facility for defining
contexts, and also for defining substitutions.

A context | is a list

[21 Q15 52, @)

of pairs of variables and types.
A substitution v is a list of assignments

{1 :=ay;...;2, = ap}

of objects to the variables. We write
~v:T

to express that the substitution v fits the context ', that is, that that the variables coincide
and the assigned objects have the appropriate types: a1 : vy, ...,a, @ oy

Contexts are suitable for representing algebraic notions [3, 5, 11, 6]. For instance, the
notion of a group can be represented by a context specifying the types of its components,
and then a particular group can be represented by a substitution fitting this context.

Contexts can implement arbitrary first order theories, generalized algebraic theories
[4], etc.

2 Implementation of the notion of a category

We define the notion of a category as a context CATEGORY:

CATEGORY is [0Ob:Set;
Hom: (Ob) (Ob)Set;
comp: (A,B,C:0b) (g:Hom(B,C)) (f:Hom(A,B))Hom(A,C) ;
id: (A:0b)Hom(A,A);

EqHom: (A,B:0b) (Hom(A,B) ) (Hom(A,B))Set;

eq_hom_is_equiv: (A,B:0b)Equivalence(Hom(A,B) ,EqHom(A,B)) ;

eq_hom_is_congr: (A,B,C:0b)Congruence(Hom(B,C) ,Hom(A,B) ,Hom(A,C),
EqHom(B,C) ,EqHom(A,B) ,EqHom(A,C),
comp(A,B,C));

assoc:(A4,B,C,D:0b) (h:Hom(C,D)) (g:Hom(B,C)) (f :Hom(A,B))
EqHom(4,D,
comp(A,C,D,h,comp(4,B,C,g,f)),
comp(A,B,D,comp(B,C,D,h,g),f));
left_id_law:(A,B:0b) (f:Hom(A,B))
EqHom(A,B,comp(A,B,B,id(B),f),f);
right_id_law:(A,B:0b) (f:Hom(A,B))
EqHom(A,B,comp(A,A,B,f,id(A)),£)]

We have separated the context into three parts. The first part declares the signature.
Both objects and hom-sets are required to form sets in the sense of Martin-Lof’s type



theory. The second part declares an explicit relation on the hom-sets which is required to
be an equivalence preserved by composition. The third part declares the category axioms
We have used two auxiliary definitions. Firstly

Equivalence : (A:Set;R:(A;A)Set)Set 0 C
equivalence : (A:Set;R:(A;A)Set;
refl: (x:A)R(x,x);
symm: (x:4;y:4;R(x,y))R(y,x);
trans: (x:A;y:A;z:A;R(x,y);R(y,2))R(x,2))
Equivalence(A,R) ] C

This is an inductive definition: equivalence is a constructor accepting three arguments
in addition to the parameters A and R (alternatively we could have used an explicit defi-
nition refering to the predefined set of tuples). This defines the set of proofs that R is an
equivalence relation. Similarly

Congruence : (A,B,C:Set)
(R1:(A) (A)Set)
(R2:(B) (B)Set)
(R3:(C) (C)Set)
(op:(A)(B)C)
Set [] C

congruence : (A,B,C:Set)
(R1:(A) (A)Set)
(R2:(B) (B)Set)
(R3:(C) (C)Set)
(op: (A)(B)C)
(cong:(a,a’:A)(b,b’:B)(R1(a,a’)) (R2(b,b’))
R3(op(a,b),opla’,b’)))

Congruence(A,B,C,R1,R2,R3,0p) [] C

3 The category of natural numbers

As a simple example we implement the category which has the natural numbers as objects
and where there is a single arrow between m and n provided m < n. In type theory, we
express this by taking the arrows between m and n to be the proofs of m < n, and stating
that all proofs of m < n are equal.

NATURALNUMBERS
is {0b := N;
Hom := Leq;
comp := Leq_trans;

id := Leq_ref;

EqHom := SingleArrows;
eq_hom_is_equiv := sa_is_equiv;
eq_hom_is_congr := preservation;



assoc := trans_is_assoc;
left_id_law := left_law_leq_ref;
right_id_law := right_law_leq_ref}

: CATEGORY []

This substitution was built from proofs in the library of ALF about the natural numbers
and the ordering relation. The equivalence relation SingleArrows equates all proofs of
inequality between two numbers:

SingleArrows = [n,m,f1,f2]N1 : (n:N;m:N;f1:Leq(n,m);f2:Leq(n,m))Set []

4 The category of setoids

We now give the substitution that implements the category of small setoids. When defining
the different components we use the following constants from the ALFE library: U, the
universe whose elements are codes for small sets; T, the function decoding elements of
U into sets; Function, the set of functions between two sets and its dependent version
Pi; lambda and Lambda, ordinary and dependent function abstraction; apply and Apply,
ordinary and dependent function application.

SETOID
is {0b := Setoid;
Hom := Map;
comp := 0;

id := id_map;

EqHom := Ext;

eq_hom_is_equiv := ext_is_equiv;
eq_hom_is_congr := ext_is_congr;
assoc := o_is_assoc;

left_id_law := id_map_is_left_id;
right_id_law := id_map_is_right_id}

: CATEGORY []

The set of objects is that of small setoids. Its elements are triples: a small set, a small
binary relation and a proof that this relation is an equivalence.

Setoid : Set N C
setoid : (el:U;
eq:(T(el);T(el))U;
pr:Small_Equivalence(el,eq))
Setoid (] C

It has projections:



el : (Setoid)U ] I
el(setoid(ell,eq,prl)) = ell

eq : (A:Setoid;T(el(A));T(el(A)))U 0 I
eq(setoid(ell,eql,prl),h,hl) = eqi(h,hl)

prf : (A:Setoid)Small_Equivalence(el(A),eq(4)) | I
prf(setoid(ell,eql,prl)) = pril

Note that Small Equivalence only applies to small relations and can be defined using
Equivalence above.

Arrows are functions on the underlying sets of setoids which preserve the equivalence
relation on these setoids:

Map : (A:Setoid;B:Setoid)Set | C
map : (A:Setoid;B:Setoid;
f:Function(T(el(A)),T(el(B)));
pres: (x:T(el(A));
y:T(el(A));
T(eq(A,x,y)))

T(eq(B,
apply(T(el(A)),T(el(B)),f,x),
apply(T(el(A)),T(el(B)),f,y))))

Map(A,B) (] c

We have the projections:

fun : (A:Setoid;B:Setoid;
Map(A,B))
Function(T(el(4)),T(el(B))) (] I
fun(A,B,map(_,_,f,pres)) = £

pres : (A:Setoid;B:Setoid;

f:Map(A,B);

x:T(el(A));

y:T(el(h));

T(eq(A,x,y)))

T(eq(B,
apply(T(el(A)),T(el(B)),fun(A,B,f),x),
apply(T(el(A)),T(el(B)),fun(4,B,£),y))) (] I

pres(A,B,map(_,_,f1,presl),x,y,h) = presi(x,y,h)

Composition of maps is composition of the underlying functions:

o =
[A,B,C,g,flmap(A,C,
lambda(T(el(A)),T(el(C)),
[h]apply(T(el(B)),T(el(C)),
fun(B,C,g),



apply (T(el(A)),T(el(B)),
fun(A,B,f),
h))),
[x,y,h]pres(B,C,
g,
apply(T(el(A)),T(el(B)),fun(A,B,f),x),
apply(T(el(A)),T(el(B)),fun(A,B,f),y),
pres(A,B,f,x,y,h)))

(A:Setoid;B:Setoid;C:Setoid;g:Map(B,C) ;f:Map(A,B))Map(4,C) ]
The identity map:

id_map =
[Almap(A,A,lambda(T(el(A)),T(el(A)), [h]h), [x,y,h]lh)

(A:Setoid)Map(A,A) (]
Equality of arrows is extensional equality of maps:

Ext =
[A,B,f,g]Pi(T(el(4)),
[(h]1T(eq(B,
apply(T(el(A)),T(el(B)),fun(A,B,f),h),
apply(T(el(A)),T(el(B)),fun(A,B,g),h))))

(A:Setoid;B:Setoid;f:Map(A,B);g:Map(A,B))Set [



The proof that this is an equivalence relation:

ext_is_equiv =
[A,Blequivalence(Map(A,B),
Ext(A,B),
[x]Lambda(T(el(A)),

[h]1T(eq(B,
apply(T(el(A)),T(el(B)),fun(4,B,x),h),
apply(T(el(A)),T(el(B)),fun(4,B,x),h))),

[x’]pr_refl(el(B),

eq(B),

prf(B),

apply(T(el(A)),T(el(B)),fun(A,B,x),x’))),
[x,y,h]Lambda(T(el(4)),

[h’]1T(eq(B,
apply(T(el(A)),T(el(B)),fun(A,B,y),h’),
apply(T(el(A)),T(el(B)),fun(A,B,x),h’))),

[x’]pr_symm(el(B),

eq(B),
prf(B),
apply(T(el(A)),T(el(B)),fun(A,B,x),x’),
apply(T(el(A)),T(el(B)),fun(A,B,y),x’),
Apply(T(el(A)),
[h’]T(eq(B,
apply(T(el(4)),T(el(B)),
fun(4,B,x),h’),
apply(T(el(A)),T(el(B)),
fun(4,B,y),h’))),
h,
x’))),
[x,y,z,h,h1]Lambda(T(el(A)),
[h’]1T(eq(B,
apply(T(el(4)),T(el(B)),
fun(A,B,x),h’),
apply(T(el(4)),T(el(B)),
fun(A,B,z),h’))),
[x’]pr_trans(el(B),
eq(B),
prf(B),
apply(T(el(4)),T(el(B)),
fun(A,B,x),x’),
apply(T(el(4)),T(el(B)),
fun(A,B,y),x’),
apply(T(el(A)),T(el(B)),
fun(A,B,z),x’),
Apply(T(el(r)),
[h’]T(eq(B,



apply(T(el(4)),

T(el(B)),
fun(4,B,x),
h’),
apply(T(el(4)),
T(el(B)),
fun(A,B,y),
h’))),
h,
x’),
Apply(T(el(A)),
[h’1T(eq(B,
apply(T(el(Aa)),
T(el(B)),
fun(A,B,y),
h’),
apply(T(el(4)),
T(el(B)),
fun(A,B,z),
h’))),
ht,
x’))))
(A:Setoid;B:Setoid)Equivalence(Map(A,B) ,Ext(4,B)) ]



The proof that composition preserves extensional equality:

ext_is_congr =
[A,B,Clcongruence(Map(B,C),
Map(A,B),
Map(4,C),
Ext(B,C),
Ext(A,B),
Ext(4,C),
o(A,B,C),
lg,g’,f,f’,geqg’ ,feqf’]
Lambda(T(el(4)),
[h]1T(eq(C,
apply(T(el(A)),T(el(C)),
fun(A,C,0(A,B,C,g,f)),h),
apply(T(el(4)),T(el(C)),
fun(4,C,0(4,B,C,g’,£?)),h))),
[x]pr_trans(el(C),
eq(C),
prf(C),
apply(T(el(4)),T(el(C)),
fun(A,C,o(4,B,C,g,£)),x),
apply(T(el(B)),T(el(C)),
fun(B,C,g),
apply(T(el(4)),T(el(B)),
fun(4,B,£’),x)),
apply(T(el(A)),T(el(C)),
fun(A,C,0(A,B,C,g’,£7)),x),
pres(B,C,
g,
apply(T(el(A)),T(el(B)),
fun(4,B,f),x),
apply(T(el(4)),T(el(B)),
fun(A,B,f’),x),
Apply(T(el(4)),
[(h]1T(eq(B,
apply(T(el(A)),T(el(B)),
fun(A,B,f),h),
apply(T(el(A)),T(el(B)),
fun(4,B,£’),h))),
feqf’,
x)),
Apply(T(el(B)),
[h]1T(eq(C,
apply(T(el(B)),T(el(C)),
fun(B,C,g) ,h),
apply(T(el(B)),T(el(C)),



fun(B,C,g’),h))),
geqg’,
apply(T(el(A)),T(el(B)),
fun(A,B,f’),x)))))

(A,B,C:Setoid)Congruence(Map(B,C),
Map(4,B),
Map(A,C),
Ext(B,C),
Ext(A,B),
Ext(A,C),
o(4,B,C)) [

The proof that composition is associative:

o_is_assoc =
[4,B,C,D,h,g,f]Lambda(T(el(A)),
[h’1T(eq(D,
apply(T(el(4)),T(el(D)),
fun(A,D,o0(4,C,D,h,0(4,B,C,g,f))),
h’),
apply(T(el(A)),T(el(D)),
fun(A,D,o0(4,B,D,0(B,C,D,h,g),£)),
h’))),
[x]pr_refl(el(D),
eq(D),
prf(D),
apply(T(el(A)),T(el(D)),
fun(A,D,o0(4,C,D,h,0(4,B,C,g,£))),
x)))

(A:Setoid;B:Setoid;C:Setoid;D:Setoid;

h:Map(C,D) ;g:Map(B,C) ;f:Map(A,B))
Ext(A,D,o(A,C,D,h,0(4,B,C,g,f)),0(4,B,D,0(B,C,D,h,g),£)) (]
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The proofs that the identity map satisfies the identity laws with respect to composition:

id_map_is_left_id =
[A,B,f]Lambda(T(el(4)),
[(h]1T(eq(B,
apply(T(el(4)),T(el(B)),
fun(A,B,o0(A,B,B,id_map(B),f)),
h),
apply(T(el(A)),T(el(B)),fun(4,B,f),h))),
[x]pr_refl(el(B),
eq(B),
prf(B),
apply(T(el(4)),T(el(B)),
fun(A,B,o0(A,B,B,id_map(B),f)),
x)))

(A:Setoid;B:Setoid;f:Map(A,B))Ext(A,B,0(A,B,B,id_map(B),f),f)

id_map_is_right_id =
[A,B,f]Lambda(T(el(4)),
[(h]1T(eq(B,
apply(T(el(A)),T(el(B)),
fun(A,B,o(A,A,B,f,id_map(4))),
h),
apply(T(el(A)),T(el(B)),fun(4,B,£),h))),
[x]pr_refl(el(B),
eq(B),
prf(B),
apply(T(el(4)),T(el(B)),
fun(A,B,o(A,A,B,f,id_map(4))),
x)))

(A:Setoid;B:Setoid;f:Map(A,B))Ext(A,B,0(A,A,B,f,id_map(4)),f)

5 Discussion

Our notion of category is the “largest” we can define as a context, with objects and hom-
sets forming sets. This is analogous to MacLane [9], who requires these components to be
sets in the classical sense. If we call this notion large category, we can also define a notion
of small category with a small set of objects and small hom-sets:

SMALL_CATEGORY is

[0b:U;
Hom: (T(0Ob) ) (T(0Ob))U;
-]
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To form the category of small categories we have to define the set of small categories as a
set of tuples:

Small_category : Set

small_category : (Ob:U;
Hom: (T(0Ob) ) (T(0Ob))U;
)
Setoid

Then we can define the set of functors between small categories, and the other components
needed to form a category.

Alternatively, we could also define a notion of category which has a type of objects
(but hom-sets). In this way we could speak of the category of all (basic) sets or all setoids,
not just the small ones. But in the present ALF-formalism it is not possible to express
this notion as a context. (What we can do however is to prove a sequence of propositions
corresponding to constructing the category of all set(oid)s.)

This can be compared to the classical definition of a category as having classes of
objects and arrows, which is used in some texts as an alternative to MacLane’s definition.
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