
LFMTP 2007

Towards Formalizing Categorical Models
of Type Theory in Type Theory

Alexandre Buisse1

Department of Computer Science and Engineering
Chalmers University of Technology
Rännvägen 6, S-41296 Göteborg

Peter Dybjer2

Department of Computer Science and Engineering
Chalmers University of Technology
Rännvägen 6, S-41296 Göteborg

Abstract

This note is about work in progress on the topic of “internal type theory” where we investigate the internal
formalization of the categorical metatheory of constructive type theory in (an extension of) itself. The
basic notion is that of a category with families, a categorical notion of model of dependent type theory. We
discuss how to formalize the notion of category with families inside type theory and how to build initial
categories with families. Initial categories with families will be term models which play the role of canonical
syntax for dependent type theory. We also discuss the formalization of the result that categories with finite
limits give rise to categories with families. This yields a type-theoretic perspective on Curien’s work on
“substitution up to isomorphism”. Our formalization is being carried out in the proof assistant Agda 2
developed at Chalmers.

1 Introduction

Most work on the metatheory of constructive type theory use standard informal
mathematical metalanguage. Although such metatheory often have an intuitive
constructive character it is striking that most authors rely on classical set-theoretic
notions when explaining concepts rigorously. For example, when building models of
constructive type theory it is common to first build a partial interpretation function
mapping raw terms to their meaning, and only afterwards show that the meaning
of well-typed terms is defined. The constructive meaning of this is not obvious, at
least if we use constructive type theory itself as the metalanguage. The functions
in this theory are all total, so partial functions need to be encoded as total func-
tions, and this will have formal repercussions. Another example is the treatment

1 Email: buisse@cs.chalmers.se
2 Email: peterd@cs.chalmers.se

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:buisse@cs.chalmers.se
mailto:peterd@cs.chalmers.se

Buisse and Dybjer

of the inductive-recursive definitions which are needed in certain model construc-
tions and normalization proofs. Although such definitions are constructively valid
[12,13,14,15] most authors rely on their interpretation in set theory [23,3,1,2] and
this also has formal repercussions.

In this project we plan to show that it is possible to rely entirely on constructive
notions on the metalevel. The idea of doing such constructive model theory goes
back to Martin-Löf [19]. However, Martin-Löf relied on an informal constructive
metalanguage, while we here are more specific and work with suitable versions of
Martin-Löf type theory as formal metalanguages. We are checking our proofs in
the proof assistant Agda 2 which is currently under development by Ulf Norell at
Chalmers. In this way we are turning constructive metamathematics into metapro-
gramming. A proof of an abstract result such as “any category with finite limits
is a category with families” turns into a “compiler” which maps any input data
structure representing a category with finite limits into an output data structure
representing a category with families. The type-system will ensure that this com-
piler is correct. When we program this compiler in the Agda system we can actually
run it on concrete examples.

It is worth-while pointing out that Martin-Löf type theory is intended to be a
full-scale language for constructive mathematics just as Zermelo-Fraenkel set theory
is a full-scale language for classical mathematics. Just as it might be necessary to
postulate the existence of certain additional large cardinals in order to discuss the
metatheory of set theory inside set theory, we will here need to add certain analogues
of large cardinals to constructive type theory.

Previous work on constructive model theory which use a formal constructive
metalanguage includes Pollack’s work on Lego in Lego [22] and Barras’ work on
Coq in Coq [4]. Both authors deal with the usual lambda calculus based syntax of
constructive type theory. Here we will instead base our work on a categorical notion
of model of type theory. The formal system of type theory will be represented
abstractly as an initial category with families (with extra structure). A category
with families (cwfs) [11] is a notion of model of (the most basic rules of) dependent
type theory, and the initial such is the “term model”. There are several reasons
for choosing a categorical approach. One of them is to achieve more “canonical”
results. Syntactic approaches tend to depend on a number of detailed choices.
Should we choose ordinary named variables or de Bruijn’s nameless ones, or should
we use de Bruijn levels? Is the rule of substitution a primitive or derived rule?
Etc. Categorical notions tend to be more stable and canonical, although it must be
admitted that certain representation issues remain. Other arguments for basing our
approach on category theory are well-known from categorical type theory: we get
a clear notion of model, access to many powerful results in category theory, and a
mathematically elegant approach which hopefully also leads to a more economical
formalization.

Our work builds on the second author’s paper “Internal Type Theory” [11].
In that paper the notion of a category with families was introduced as a notion
of model of dependent type theory with a particularly straightforward connection
to syntax. The formalization of cwfs inside type theory is also discussed. Such a
formalization is called an ”internal type theory” since it is analogous to the notion

2

Buisse and Dybjer

of internal category. In any category with suitable extra structure (finite limits) we
can define what it means to be an internal category object. Similarly, in any cwf
with extra structure (modelling Π-types, Σ-types and universes) we can define a
notion of internal cwf.

Our work will rely on previous experience of formalization of category theory
inside constructive type theory, see for example the development of elementary
category theory in Huet and Saibi’s book on Constructive Category Theory [18].

Plan of the note.
In Section 2 we present the notion of a cwf in classical metalanguage. In Section

3 we explain some of the features of the proof assistant Agda 2 which we use for
our formalization. In Section 4 we present the usual approach to the formalization
of categories inside type theory, continue with the formalization of the category
of families of sets, and then arrive at the notion of category with families inside
type theory. In Section 5 we sketch how to formalize the result that categories
with finite limits give rise to cwfs. We discuss the close relationship to Curien’s
paper “Substitution up to Isomorphism” [7] and contrast it to a similar result by
Hofmann [16] formulated using classical categorical notions. In Section 6 we discuss
the construction of initial categories with families.

2 Categories with families

Categories with families (cwfs) [11,17] are variants of Cartmell’s categories with
attributes [16,21]. The point of the reformulation is to get a more direct link to the
syntax of dependent types. In particular we avoid reference to pullbacks, which give
rise to a conditional equation when formalized in a straightforward way. Cwfs can
therefore be formalized as a generalized algebraic theory in Cartmell’s sense with
clear similiarities to Martin-Löf’s substitution calculus for type theory [20].

Let Fam be the category of families of sets, where an object is a family of sets
(B(x))x∈A and a morphism with source (B(x))x∈A and target (B′(x′))x′∈A′ is a pair
consisting of a function f : A → A′ and a family of functions g(x) : B(x) → B′(f(x))
indexed by x ∈ A.

The components of a cwf are named after the corresponding syntactic notions.

Definition 2.1 A category with families consists of the following four parts:

• A base category C. Its objects are called contexts and its morphisms are called
substitutions.

• A functor T : Cop → Fam. We write T (Γ) = (Γ ` A)A∈Type(Γ), where Γ is
an object of C, and call it the family of terms indexed by types in context Γ.
Moreover, if γ is a morphism of C then the two components of T (γ) interpret
substitution in types and terms respectively. We write A[γ] for the application
of the first component to a type A and a[γ] for the application of the second
component to a term a.

• A terminal object [] of C called the empty context.
• A context comprehension operation which to an object Γ of C and a type A ∈

3

Buisse and Dybjer

Type(Γ) associates an object Γ;A of C; a morphism pΓ,A : Γ;A → Γ of C (the
first projection); and a term qΓ,A ∈ Γ;A ` A[pΓ,A] (the second projection). The
following universal property holds: for each object ∆ in C, morphism γ : ∆ → Γ,
and term a ∈ ∆ ` A[γ], there is a unique morphism θ = 〈γ, a〉 : ∆ → Γ;A, such
that p ◦ θ = γ and q[θ] = a.

A basic example of a cwf is obtained by letting C = Set, the category of small
sets, Type(Γ) be the set of Γ-indexed small sets, and

Γ ` A =
∏
x∈Γ

A(x)

A[δ](x) = A(δ(x))
a[δ](x) = a(δ(x))

[] = 1

Γ;A =
∑
x∈Γ

A(x)

Definition 2.2 Let (C, T) denote a cwf with base category C and functor T . A
morphism of cwfs with source (C, T) and target (C ′, T ′) is a pair (F, σ), where
F : C → C ′ is a functor and σ : T → T ′F is a natural transformation, such that
terminal object and context comprehension are preserved on the nose.

Small cwfs and morphisms of cwfs form a category Cwf .
As already mentioned the notion of a category with families can be formalized

as a generalized algebraic theory in the sense of Cartmell [6]. It is instructive to look
at the rules of this theory, but we do not have room in this short note to display
them, and refer the reader to Dybjer [11].

3 The proof assistant Agda 2

We will work in Martin-Löf’s constructive type theory and use the proof assistant
Agda 2 for our formalization. Agda 2 is an implementation of Martin-Löf’s logical
framework with support for adding new inductively defined sets and recursively de-
fined functions using pattern matching. It is thus suitable for implementing various
fragments of Martin-Löf type theory. It can also be viewed as a dependently typed
programming language. Its syntax is quite close to Haskell. The main difference to
Haskell (and other standard functional languages such as OCAML) is that it has
dependent types. It is important to point out that Agda does not itself force the
user to define only well-founded data types and terminating functions, although at
a later stage such termination and well-foundedness checkers will be available. Cur-
rently it is up to the user to make sure that a specific logical discipline is followed
and to explain and justify this discipline.

If we remove Agda’s dependent types, we get a language rather close to Haskell.
However, Agda doesn’t have the implicit Hindley-Milner polymorphism of Haskell.
In Haskell we have for example the polymorphic identity function

id :: a -> a

stating that for any type a we have an identity funciton on it. In Agda we have to

4

Buisse and Dybjer

explicitly quantify over the type Set of small types. We write

id : (A : Set) → A → A

which means that for any small type A we have an identity function idA : A → A.
(In general Agda uses the notation (x : α) → β for the type of functions which map
an object x of type α into a result in β, where the result type β may depend on x.)
This is why one says that Agda is an implementation of Martin-Löf’s monomorphic
type theory: id has a unique type.

However, it is cumbersome to work in monomorphic type theory since one has
to manipulate large expressions. Therefore Agda allows you to suppress certain
arguments when they can be inferred from the context. We call such arguments
implicit. For example, whenever the function id gets a second argument a, Agda
tries to infer the first argument A, which is the type of a. The user can inform Agda
that the first argument of id is such an implicit argument by enclosing it in braces:

id : {A : Set} → A → A

Thus, during type-checking of an expression id a the system will know that a is the
second argument and try to infer the first argument.

Sometimes a user may want to give an implicit argument explicitly, for example,
in situations where the system cannot infer it. Such explicit implicit arguments are
enclosed in braces. For example, in

id {Bool} : Bool → Bool

the user has made the first argument Bool explicit.
Agda 2 has a notion of record, that is a type of tuples with named components

(field). To instantiate it, one needs to instantiate all the fields. A record is really a
module, and thus the field A of a record r of type R can be accessed with the syntax
R.A r: declaring the record type R automatically creates a module with the same
name and one projection function for each field, which take as their first argument
a structure of type R.

Here is an example. A record for equivalence relations on a given set A consists
of four fields: a binary relation on A together with proofs of reflexivity, symmetry,
and transitivity. Formally:

record Equivalence (A : Set) : Set1 where
== : A → A → Set

refl : {x : A} → x == x

sym : {x y : A} → x == y → y == x

trans : {x y z : A} → x == y → y == z → x == z

Note that the record is a large type, that is, a member of the universe Set1.
The central notion of a setoid, that is, a set with an equivalence relation, will

be used extensively:

record Setoid : Set1 where
car : Set

rel : Equivalence car

5

Buisse and Dybjer

To get a nicer notation, we’ll define a function to access directly to the carrier
of a setoid:

| | : (S : Setoid) → Set

|S|= Setoid.carS

4 Categories with families in type theory

We will follow the recipe for formalizing categories with families in type theory
(internal cwfs) described in Dybjer [11]. It is well-known how to formalize basic
categorical notions such as category, functor, natural transformation, etc [18] in
type theory. It is also well-known how to formalize the type-theoretic analogue Set
of the category of sets in type theory. The objects of this category are setoids (or
E-sets) that is sets with equivalence relations. The arrows are functions respecting
equivalence relations.

The crucial issue for the formalization of cwfs is the formalization of the category
Fam, and we follow the approach in the paper Internal Type Theory [11]. (We will
however also investigate an alternative proof-irrelevant definition of setoid-indexed
families used in a recent implementation of the category of setoids in Agda 2 by
Thierry Coquand and Ulf Norell.)

Once we have defined the category Fam it is straightforward to formalize the
rest of the cwf-structure in type theory. Note that if a cwf is formally represented as
a quadruple consisting of the base category, the family valued functor, the terminal
object, and context comprehension, where each of these components itself is a tuple,
we can “flatten” this structure into a tuple where each component corresponds to
a rule in a substitution calculus for type theory. This calculus is closely related to
the calculus of explicit substitutions used by Curien [7]. Like this calculus there is
an explicit construction for the type conversion rule [11]. We can thus see how the
type-theoretic perspective gives a rational reconstruction of Curien’s calculus.

4.1 Categories

A category in type theory consists of a set of objects, hom-setoids for each pair of
objects, an identity arrow for each object, composition respecting equivalence of the
arrows in the hom-setoids, and proofs of the identity and associativity laws. (Note
that we have explicit proof objects for each law.)

open Setoid

record Cat : Set2 where
Obj : Set1

−→ : Obj → Obj → Setoid

id : {A : Obj} → |A −→ A|
◦ : {A B C : Obj} → |B −→ C| → |A −→ B| →

|A −→ C|
. . .

6

Buisse and Dybjer

idL : {A B : Obj} {f : A −→ B} → == (rel(A −→ B))
(id ◦ f) f

. . .

We have chosen to formalize a notion of locally small category where hom-setoids
must be “small” (the carrier is a set), but an object can be “large” (a member of
the universe Set1 of large sets). Examples of such locally small categories is the
category Set of setoids and the category Fam of setoid-indexed families of setoids.
Note also the type of locally small categories is “very large” (a member of a second
universe Set2 of very large sets).

4.2 The category Fam

To define the category Fam, we need the notions of setoid-indexed family of setoids,
and of morphism between such (the respecitve objects and arrows of Fam). We have
seen in section 3 how to define a setoid as a record. The next step is to define a
morphism between setoid as a function between the carriers together with a proof
that it maps equivalent elements to equivalent elements:

record ⇒ (S1 S2 : Setoid) : Set where
map : |S1| → |S2|
stab : {x y : |S1|} → x == 3 y → (map x) == (map y)

Identity and composition of setoid morphisms are easy to add. For instance,

id : {S : Setoid} → S ⇒ S

id = record {map = \x → x ; stab = \p → p}

We also add an extensional equality ==⇒:

==⇒ : {S1 S2 : Setoid} → S1 ⇒ S2 → S1 ⇒ S2 → Set

F1 ==⇒ F2 = (forall x → (map F1 x) ==⇒ (map F2 x)) → True

We are now ready to define the notion of a family of setoids indexed by a given
setoid S: a fibre map that indexes setoids by elements of the carrier of the indexing
setoid, a reindexing function ι that maps the equivalence relation of the indexing
setoid into the indexed setoids and proofs that this reindexing function is coherent
with the fact that the relation is an equivalence.

record SetoidFam (S : Setoid) : Set1 where
fibre : |S| → Setoid

ι : {x x′ : |S|} → x == x′ → (fibre x′) ⇒ (fibre x)
idcoh : {x : |S|} → ι (refl (rel S) {x}) ==⇒ id {fibre x}

symcohL : {x y : |S|} → (p : x == y) →
ι (sym (rel S) {x} {y} p) ◦ (ι p) ==⇒ id

3 Here we redefined == with the type {S : Setoid} → Equivalence. == (rel S)

7

Buisse and Dybjer

symcohR : . . .

transcoh : {x y z : |S|} → (p : x == y) → (p′ : x == z) →
ι (trans (rel S) {x} {y} {z} p p′) ==⇒ (ι p) ◦ (ι p′)

The last step is to define what a morphism between objects of type SetoidFam

is. There is one map for each component: a map indexmap between the index
setoids, a map fibremap between the fibres, and a proof ιmap that reindexing
commutes with the map between fibres (see the upper part of the figure below):

record =⇒ {S1 S2 : Setoid}
(F1 : SetoidFam S1) (F2 : SetoidFam S2) : Set1 where

indexmap : S1 ⇒ S2

fibremap : (x : |S1|) → (fibre F1 x) ⇒ (fibre F2 ((map indexmap x))
ιmap : {x x′ : |S1|} → (p : x == x′) → ((fibremap x) ◦ (ι F1 p))

==⇒ (ι F2 (stab indexmap p)) ◦ (fibremap x′)

The figure 1 illustrates the structure of a morphism in Fam.

The rest of the properties needed for Fam to be a category are then straight-
forward, though particularily tedious.

x x′

p

ι p

indexmap

fibre x′

fibremap(fibre x)
fibremap(fibre x′)

fibre x

Fig. 1. Representation of F1 =⇒ F2

8

Buisse and Dybjer

4.3 Cwfs

Just as in the classical definition of a cwf in Section 2, a cwf inside type theory is a
quadruple consisting of a base category C, a functor T : Cop → Fam, a terminal ob-
ject of C, and a context comprehension. Above we have outlined the type theoretic
definition of a category and of the category Fam. The type-theoretic definition
of a functor is well-known [18]. Furthermore, it is clear what a terminal object
is type-theoretically, and we can express the structure of context comprehension
type-theoretically. All this leads to the definition of cwf inside type theory (i.e. the
notion of internal cwf), although we do not have room to display the details.

We remark that our formalization of locally small cwfs in type theory has only
used a logical framework with Π-types, records (we could equivalently use Σ-types),
and the universes Set, Set1, and Set2. (We don’t need Set2 if we only want to
formalize small cwfs.)

4.4 Cwfs with extra structure

The notion of cwf just models the most basic structure of dependent types: context
and variable formation and substitution in types and terms. Therefore we usually
want to work with cwfs with extra structure corresponding to adding type formers
(Π, Σ, universes, natural numbers, etc) to dependent type theory. This does not
give rise to any further formalization problems. See the Internal Type Theory paper
[11] for further explanation.

5 Categories with finite limits are cwfs

Here we outline the proof inside type theory that categories with finite limits are
cwfs. This proof will help us understand how cwfs relate to standard ideas in
categorical type theory: why types can be modelled as projection arrows, why
terms can be modelled as sections of these projections, and why substitution in
types can be modelled by pullbacks. We will discuss the type-theoretic perspective
on the problem of “substitution-up-to-isomorphism” and show the similarity with
Curien’s approach [7]. We will also contrast it to Hofmann [16], who used standard
categorical notions assuming set-theoretic metalanguage.

5.1 Categories with finite limits in type theory

Categories with finite limits can be formalized as categories with terminal objects
and pullback. (A category with terminal objects and pullbacks has all finite limits.)
As a type-theoretic structure a pullback is a function that given three objects and
two arrows constructs an object, two arrows, proofs of commutativity of the square,
and a proof of the universal property. Here is the formalization in Agda.

record IsPull {A B C D : Obj}(f : A −→ B)(g : A −→ C)(f ′ : C −→ D)
(g′ : B −→ D)(square : g′ ◦ f == f ′ ◦ g) : Set1 where

h : (A′ : Obj)(h1 : A′ −→ C)(h2 : A′ −→ B)(tr : f ′ ◦ h1 == g′ ◦ h2)
→ ∃ ! \(h : A′ −→ A) → (g ◦ h == h1) ∧ (f ◦ h == h2)

9

Buisse and Dybjer

record Pullback {B C D : Obj}(g′ : B −→ D)(f ′ : C −→ D) : Set1 where
A : Obj

f : A −→ B

g : A −→ C

square : g′ ◦ f == f ′ ◦ g

pull : isPull f g f ′ g′ square

record PullCat : Set2 where
pullprop : {B C D : Obj}(g′ : B −→ D)(f ′ : C −→ D) → pullback g′ f ′

5.2 Slice categories

We shall recover the structure of cwfs by modelling types by objects in slice cate-
gories, and by modelling substitution in types by (the object part of) the pullback
functor between slice categories.

Given any category C and an object Γ of that category we can construct the
slice category C/Γ. The objects are pairs of objects A in C and arrows f : A −→ C.
The proof that C/Γ is a category is quite easily derived from the fact that C is also
a category.

5.3 Cwfs from categories with finite limits

We get the cwf structure from a category with finite limits in the following way:

• The base categories are the same.
• The set of types in a context Γ is the set of objects of the slice category C/Γ.

Equality of types is isomorphism in the slice category.
• The set of terms of a given type A in context Γ is the set of sections of the arrow

in C with target Γ which models A. Equality of terms is inherited from equality
of arrows in the base category. (Proofs that these arrows are sections are not
relevant to the equality.)

• Substitution in types is obtained by the pullback construction.
• Substitution in terms is also extracted from the pullback.
• Etc.

We here show part of the Agda formalization of how substitution in types is modelled
by the pullback construction (types are omitted when not important).

An object of the slice category C/Γ is an arrow, but in order to typecheck, we
need to also specify the codomain of this arrow:

record SlObj (Γ : Obj) : Set1 where
dom : Obj

arr : dom −→ Γ

A section of an arrow f : ∆ → Γ is

10

Buisse and Dybjer

record Section (Γ : Obj) (A : SlObj Γ) : Set where
sect : Γ −→ (dom A)
idL : (arr A) ◦ sect == id

We are now ready to proceed:

Context = Obj

Subst Γ ∆ = Γ −→ ∆
Type Γ = SlObj Γ
Term Γ A = Section Γ A

subst : {Γ ∆ : Context} → Type Γ → Subst ∆ Γ → Type ∆
subst {Γ} {∆} T g = let p = pullprop (arr Γ T) g in

record {dom = pullback.A p; arr = pullback.g p}

We can compare our interpretation to the approach taken in the paper “Sub-
stitution up to Isomorphism” by Curien [7]. Like us, Curien interprets equality of
types as isomorphism in the slice category. Another similarity is that he uses an
explicit substitution calculus for dependent type theory not unlike our initial cwf
which has an explicit constructor for applications of the rule of type equality.

This approach can be contrasted to Hofmann’s work on interpreting type theory
in locally cartesian closed categories [16]. In this work he shows how to construct
a category with attributes from a category with finite limits using a technique due
to Bénabou [5]. Since categories with attributes are equivalent to categories with
families this ought to be highly relevant to our work. However, Hofmann uses
standard category theory relying on set-theoretic metalanguage, and his notion of
category with attributes is a “strict” one, just as our set-theoretic notion of cwf in
Section 2. To show that in this classical setting categories with finite limits form
cwfs, we cannot just interpret substitution as “chosen” pullbacks, unless this choice
satisfies the laws of substitution in types up to equality. Hofmann states that it is an
open problem to find such a choice. When working in type-theoretic metalanguage
on the other hand we have the freedom to interpret equality of types as isomorphism
of objects, and thus there is no need for Bénabou’s construction.

However, what we gain when avoiding Bénabou’s construction we have to pay
back when constructing cwfs (with extra structure) from syntax and proving their
initiality. This work is similar to the coherence problem discussed by Curien.

6 Initial cwfs (with extra structure)

If we work in set-theoretic metalanguage initial cwfs exist. This is a corollary of a
theorem of Cartmell [6] who showed that any generalized algebraic theory has an
initial model in an appropriate categorical sense.

We shall discuss two ways of constructing initial cwfs with extra structure inside
type theory. Without the extra structure the initial cwf is trivial; it is nothing
but the category with one object and one arrow, where the family valued functor
returns the empty family of sets. To get interesting extra structure we postulate the

11

Buisse and Dybjer

existence of Π and Σ and a universe of small types. We call this an LF-cwf, since
it is the categorical analogue of Martin-Löf’s logical framework. We remark that
the discussion below is not very dependent on the exact choice of extra structure,
except that some properties will rely on normalization.

6.1 Strongly typed version

This version is obtained by taking the definition of an LF-cwf as a record and turn it
into an inductive definition. The notion of LF-cwf specifies seven different families
of sets, one corresponding to each of the seven forms of judgement. Each of these
will turn into a formation rule for seven inductively defined sets of “derivations”
of judgements. The notion of LF-cwf furthermore specifies a number of different
operations each corresponding to a rule of inference. Each of these operations will
become a constructor in the inductive definition of the initial cwf.

For instance, contexts are defined by the grammar Γ ::= [] | Γ � A where A is a
type. Correspondingly there will be two constructors for contexts in the initial cwf,
with the following types formalized in Agda:

mutual
data Ctxt : Set where

[] : Ctxt

� : (Γ : Ctxt) → Type Γ → Ctxt

data Type : Ctxt → Set where
. . .

However, it is important to remark that this inductive definition falls outside the
standard schema of mutual inductive definitions in constructive type theory [10].
Nevertheless, we believe that it is a constructively meaningful definition. As part of
our investigation we plan to generalize the schema in [10,15] to cover that schema,
and also to provide set-theoretic semantics by extending [9].

6.2 The category of cwfs in type theory.

Although the above seems like a reasonable candidate for a strongly typed notion
of term model of type theory, we would like to prove formally in type theory that
we have an initial LF-cwf, that is, that it forms an initial object in the category of
LF-cwfs. In Section 2 we defined a notion of cwf morphism which preserves chosen
structure “on the nose”. However,the type-theoretic definition of a category does
not equip objects with a notion of equality. The natural notion of equality of objects
is isomorphism, and hence we would like to use a notion of cwf morphism which
preserves the cwf structure up to isomorphism. To spell out the definition of the
category of cwfs and construct an initial object (together with the unique arrow to
another object) is another part of our project. Given such a definition it should
be straightforward to see that the above strongly typed version is initial since it
means that each construction is interpreted as the corresponding notion in a given
cwf. In a sense the elimination principle is the unique arrow from the initial cwf to
an arbitrary cwf, at least roughly speaking, cf e g the proof of the correspondence
between initiality and elimination principles in [14].

12

Buisse and Dybjer

6.3 Raw term version

An alternative definition of the initial cwf can be obtained by first defining raw
contexts, raw types, etc.

mutual
data RawCtxt : Set where

[] : RawCtxt

� : RawCtxt → RawType → RawCtxt

data RawType : Set where
. . .

As a second step we define a predicate “valid context” on RawCtxt, a binary relation
“valid type” between RawCtxt and RawType, etc. In this way we give a mutual
inductive definition of all the seven forms of judgement viewed as predicates on raw
notions.

Finally, we would like to show that this also yields an initial cwf by defining a
cwf-structure-preserving map into an arbitary cwf, and to show the uniqueness of
this map.

7 Conclusion and future work

As already mentioned this is work in progress. An auxiliary aim is to test the
suitability of the new proof assistant Agda 2 for the purpose of formalizing category
theory. Agda 2.0.0 was just released (June 2007) and still lacks many features of a
more mature system such as Coq or even its predecessors AgdaLight, Agda 1 and
Alfa. For example, there is still no support for equational reasoning and automatic
proof construction. The implicit argument feature of Agda 2 is used heavily in this
work, but we have encountered some performance problems.

After completing the formalizations described in this paper, we would like to add
more structure to categories with families. In particular we would like to formalize
the full Seely-Curien [24,7] interpretation of Martin-Löf type theory (understood as
categories with families with extra structure modelling Π- and Σ-types and exten-
sional equality types) in locally cartesian closed categories.

Another direction of future research would be to formalize key metatheoretical
results of Martin-Löf type theory such as decidability of equality and type-checking
based on categories with families [1,2]. This is related to the work by Danielsson [8]
who presented such a formalization of a normalization by evaluation result in the
system AgdaLight, a precursor of the Agda 2 system. Danielsson did however not
base his work on a categorical presentation of dependent type theory.

References

[1] A. Abel, K. Aehlig, and P. Dybjer. Normalization by evaluation for Martin-Löf type theory with one
universe. In ”23rd Conference on the Mathematical Foundations of Programming Semantics, MFPS
XXIII, Electronic Notes in Theoretical Computer Science, pages 17–40. Elsevier, 2007.

[2] A. Abel, T. Coquand, and P. Dybjer. Normalization by evaluation for Martin-Lf type theory with
equality judgements. In Proceedings of the 6th Annual IEEE Symposium on Logic in Computer Science,
July 2007. To appear.

13

Buisse and Dybjer

[3] P. Aczel. Frege Structures and the Notions of Proposition, Truth, and Set, pages 31–59. North-Holland,
1980.

[4] B. Barras. Auto-validation d’un système de preuves avec familles inductives. Thèse de doctorat,
Université Paris 7, Nov. 1999.

[5] J. Benabou. Fibered categories and the foundations of naive category theory. J. Symb. Log, 50(1):10–
37, 1985.

[6] J. Cartmell. Generalized algebraic theories and contextual categories. Annals of Pure and Applied
Logic, 32:209–243, 1986.

[7] P.-L. Curien. Substitution up to isomorphism. Fundamenta Informaticae, 19(1,2):51–86, 1993.

[8] N. A. Danielsson. A formalisation of a dependently typed language as an inductive-recursive family.
In Proceedings of the TYPES meeting 2006. Springer-Verlag, 2007.

[9] P. Dybjer. Inductive sets and families in Martin-Löf’s type theory and their set-theoretic semantics.
In G. Huet and G. Plotkin, editors, Logical Frameworks, pages 280–306. Cambridge University Press,
1991.

[10] P. Dybjer. Inductive families. Formal Aspects of Computing, 6:440–465, 1994.

[11] P. Dybjer. Internal type theory. In TYPES ’95, Types for Proofs and Programs, number 1158 in
Lecture Notes in Computer Science, pages 120–134. Springer, 1996.

[12] P. Dybjer. A general formulation of simultaneous inductive-recursive definitions in type theory. Journal
of Symbolic Logic, 65(2):525–549, June 2000.

[13] P. Dybjer and A. Setzer. A finite axiomatization of inductive-recursive definitions. In J.-Y. Girard,
editor, Typed Lambda Calculi and Applications, volume 1581 of Lecture Notes in Computer Science,
pages 129–146. Springer, April 1999.

[14] P. Dybjer and A. Setzer. Induction-recursion and initial algebras. Annals of Pure and Applied Logic,
124:1–47, 2003.

[15] P. Dybjer and A. Setzer. Indexed induction-recursion. Journal of Logic and Algebraic Programming,
2006.

[16] M. Hofmann. On the interpretation of type theory in locally cartesian closed categories. In L. Pacholski
and J. Tiuryn, editors, CSL, volume 933 of Lecture Notes in Computer Science. Springer, 1994.

[17] M. Hofmann. Syntax and semantics of dependent types. In A. Pitts and P. Dybjer, editors, Semantics
and Logics of Computation. Cambridge University Press, 1996. To appear.

[18] G. Huet and A. Saibi. Constructive category theory. In Proceedings of the Joint CLICS-TYPES
Workshop on Categories and Type Theory, Göteborg, January 1995.

[19] P. Martin-Löf. About models for intuitionistic type theories and the notion of definitional equality. In
S. Kanger, editor, Proceedings of the 3rd Scandinavian Logic Symposium, pages 81–109, 1975.

[20] P. Martin-Löf. Substitution calculus. Notes from a lecture given in Göteborg, November 1992.

[21] A. M. Pitts. Categorical logic. In Handbook of Logic in Computer Science. Oxford University Press,
1997. Draft version of article to appear.

[22] R. Pollack. The Theory of Lego A Proof Checker for the Extended Calculus of Constructions. PhD
thesis, University of Edinburgh, 1994.

[23] D. S. Scott. Combinators and classes. In C. Böhm, editor, Lambda-Calculus and Computer Science
Theory, volume 37, pages 1–26, 1975.

[24] R. A. G. Seely. Locally cartesian closed categories and type theory. Proceedings of the Cambridge
Philosophical Society, 95:33–48, 1984.

14

	Introduction
	Categories with families
	The proof assistant Agda 2
	Categories with families in type theory
	Categories
	The category Fam
	Cwfs
	Cwfs with extra structure

	Categories with finite limits are cwfs
	Categories with finite limits in type theory
	Slice categories
	Cwfs from categories with finite limits

	Initial cwfs (with extra structure)
	Strongly typed version
	The category of cwfs in type theory.
	Raw term version

	Conclusion and future work
	References

