
An Introduction
to Programming and Proving

in Agda
(incomplete draft)

Peter Dybjer

January 29, 2018

1 A first Agda module
Your first Agda-file is called BoolModule.agda. Its contents are

module BoolModule where

data Bool : Set where
true : Bool
false : Bool

not : Bool -> Bool
not true = false
not false = true

It declares a module BoolModule which contains
• the definition of the data type Bool with the two constructors true and false

• the definition of the function not by case analysis (or pattern matching) on the
constructors for Bool.

Note the following:
• Each Agda file file.agda is a module with the same name file. It is never-

theless compulsory to explicitly declare it by writing

module file where

• The data type Bool is an element of the type Set. We call Set a ”large” type
(since it is a type of types) and its elements ”small” types.

• We must first declare the type of the function not before writing the pattern
matching equations.

1

Standard Library. Agda has a standard library where many common types and func-
tions are defined (including booleans and negation).

1.1 Comparison to Haskell
We can write analogous definitions of Bool and not in Haskell, where Bool is part of
the standard library for Haskell. If it were a user defined data type its definition would
be

data Bool = True | False

where the Haskell convention is that constructor names begin with capital letters. The
definition of not in Haskell is

not True = False
not False = True

Note that we do not need to declare its type because Haskell infers it.
Haskell’s module system is also different from Agda’s, but we will not discuss this

here.

2 The Agda mode of Emacs
2.1 Parsing and type-checking an Agda-file
Usually, Agda-files are written using the agda-mode of the Emacs editor. In this mode
you have access to a number of commands. First and foremost, the command ”load”
parses and type-checks your file. You execute by either typing ^C^L or by choosing it
under the Agda-menu in Emacs. If successful, a coloured version of your Agda file is
then displayed.

For example, the file BoolModule.agda type-checks correctly and is displayed
as follows:

module BoolModule where

data Bool ∶ Set where
true ∶ Bool
false ∶ Bool

not ∶ Bool −> Bool
not true = false
not false = true

The keywordsmodule,where, and data have become brown, themodule nameBoolModule
purple, the types Bool and Set and the defined function not blue, and the constructors
true and false green. The colon (:) and the function arrow (->) have remained black.

2

2.2 Running an Agda-program
An Agda-program is a well-typed expression. To run an Agda-program means to eval-
uate such an expression to a value (normal form). You can do this by executing the
command ^C^N (”normalize”) and then write the expression you want to evaluate in
the lower window (after Expression∶). For example, if you write the expression

not true

the system will return

false

in the same window.
Remark. Agda’s evaluator is more general than Haskell’s, because it also evaluates

under binders. More about this later.

2.3 Unicode
We can use unicode in Agda, and for example write → instead of -> for the function
arrow. To enter this we write the latex code for the unicode symbol, e g, \to for →.
Similarly, we can write the latex code \neg if we want to use the negation symbol ¬
for not.

2.4 Writing Agda-programs by gradual refinement of partial ex-
pressions

Type-checking is a complex matter in dependently typed programming. It is therefore
very useful to write ones programs by gradual refinement of ”partial expressions”, that
is, expressions with ”holes” denoted by ”?”. Examples of well-typed partial expressions
with respect to the module BoolModule.agda are

? : Bool
b : Bool
true : Bool
not ? : Bool
not (not ?) : Bool
not (not b) : Bool
? : Set
? -> ? : Set
Bool -> ? : Set
Bool : Set

Note that partial expressions can also contain variables, provided they have been de-
clared, such as b : Bool above.

We can write an Agda program by gradually refining a well-typed partial expression
into an ordinary well-typed total expression. For example, we can write the function

3

¬¬ ∶ Bool → Bool
¬¬ b = not (not b)

by gradually refining the right hand side of the equation. (Note that ¬¬ is a single
identifier. Consult the Agda wiki for more information.) First write

¬¬ b = ?

indicating that the right hand side is completely undefined. If we load the file ^C^L we
can check that we have a well-typed partial expression and indeed ”?” is a well-typed
partial expression of type Bool. Moreover, the Agda system replaces our ”?”-mark
with a ”hole”:

¬¬ b = { }0

The idea is that you should now fill the hole by writing an expression (or partial expres-
sion) in it.

2.4.1 Complete refinement (”give”)
If you are ready to fill the hole with the complete expression you first type it inside the
hole

¬¬ b = {not (not b)}0

and then you execute the command ^C^SPC (”give”) while keeping the cursor inside
the hole. Agda will now replace the hole by the complete expression and type-check it.

2.4.2 Partial refinement (”refine”)
You can also partially refine the expression in the hole. For example, if you have only
decided that the top most function symbol is not, but want to leave the argument un-
defined, you first write

¬¬ b = {not ?}0

and then do the command ”refine” ^C^R while keeping the cursor inside the hole. You
will get

¬¬ b = not { }1

Again, you can choose either complete or partial instantiation of the new hole. Say that
this time we choose to again partially instantiate it with the top most function symbol
not:

¬¬ b = not ({not ?}1)

After doing ”refine” you will get

4

¬¬ b = not (not { }2)

Finally you fill the hole by the variable b:

¬¬ b = not (not {b }2)

and execute either ”give” or ”refine”, to finish the definition.
In the important special case when the partial expression is a function symbol fol-

lowed by one or more ?-marks it suffices to write the function symbol in the hole. For
example, writing

¬¬ b = {not}0

is equivalent to writing

¬¬ b = {not ?}0

2.5 Mixfix operations
You can declare function symbols with mixfix syntax using underscores to mark the ar-
gument positions. An example is the following definition of the conditional (the special
case where the return type is Bool):

if_then_else_ ∶ Bool → Bool → Bool → Bool
if true then y else z = y
if false then y else z = z

Note that in the declaration line there are no spaces around the underscores, but when
applied there must be spaces around the arguments.

Infix syntax is a special case of mixfix. For example, here is a definition of ”and”
for booleans:

&& ∶ Bool → Bool → Bool
b && true = b
b && false = false

2.6 Precedences
You can declare the precedence of an operation and also the associativity of infix oper-
ations. For example,

infixl 50 _&&_

means that _&&_ is a left associative operation with precedence 50.

5

2.7 Generating patterns
It is common to define functions by pattern matching on the constructors of a data type.
When defining such a function by gradual refinement, Agda has a special command
^C^C (”case split”) for generating the clauses for pattern matching.

Let us consider the gradual refinement of the definition of && and above. We begin
by writing

&& : Bool → Bool → Bool
b && c = ?

After type-checking (loading) the definition line becomes

b && c = { }0

We now want to case split on the variable c : Bool. To do this we write c in the
hole and then write ^C^C which instructs Agda to do case analysis on c. We get two
pattern matching equations, one for each of the constructors for Bool:

b && true = { }1
b && false = { }2

We can now fill the two holes by b and false respectively.

Exercise: Define the operation not by gradual refinement and pattern matching!

Exercise: Define logical or, logical implication, and logical equivalence

|| : Bool → Bool → Bool
=> : Bool → Bool → Bool
<=> : Bool → Bool → Bool

by gradual refinement and pattern matching using ^C^C, ^C^R, and ^C^SPC.

2.8 Comments
Comments are either lines which beginwith ”–” or text...which is enclosed by braces
and dashes as follows: ”{- ... -}”:

3 Natural numbers
Most programming languages provide a type of positive and negative integers and the
basic arithmetic operations on them. For example, Java has the type int of 32-bit
signed 2-complement integers (and also the types short of 16-bit and long of 64-bit
versions). Haskell provides the type Int of fixed precision integers and Integer of
arbitrary precision integers.

6

3.1 Unary natural numbers
In Agda, neither integers nor natural numbers are primitive concepts; they have to be
defined. From the point of view of logic the most basic form of natural numbers are the
unary natural numbers, that is, the numbers generated by the two constructors zero for
the number 0 and succ for the successor function which adds 1 to a number. In Agda:

data Nat ∶ Set where
zero ∶ Nat
succ ∶ Nat → Nat

All natural numbers can now be generated by applying succ a finite number of times
to zero:

one = succ zero
two = succ one

etc. Note that in this case Agda lets us skip the type declarations although they are
usually compulsory.

3.2 Arithmetic operations
Similarly, the arithmetic operations are not primitive in Agda, but are defined by the
user in terms of pattern matching and recursion:

+ ∶ Nat → Nat → Nat
m + zero = m
m + succ n = succ (m + n)

∗ ∶ Nat → Nat → Nat
m ∗ zero = zero
m ∗ succ n = m + (m ∗ n)

These are example of a particularly simple and important kind of recursive definition,
called primitive recursion, where the recursive call defines the value of a function f
on succ n in terms of the value of f on n. One also says that such a definition is by
induction on n: there is a base case for zero and a step case for succ n. Functions
defined by primitive recursion always terminate.

We can declare both + and ∗ to be left associative infix operations such that ∗ binds
harder than +:

infixl 60 _+_

7

infixl 70 _*_

Thus x + y + z parses as (x + y) + z in the definition below:

f ∶ Nat → Nat → Nat → Nat
f x y z = x + y + z

3.3 Decimal notation and machine arithmetic
It is inconvenient to write unary natural numbers and inefficient to compute the arith-
metic operations using their primitive recursive definitions as simplification rules. There-
fore, Agda has a ”pragma”

{−# BUILTIN NATURAL Nat #−}

which tells Agda that the type Nat can be compiled as the built-in machine integers.
Moreover, it tells Agda that decimal notation can be used instead of unary, so that you
for example can write 1 for succzero.

Moreover, if you write

{−# BUILTIN NATPLUS _+_ #−}
{−# BUILTIN NATTIMES _∗_ #−}

the Agda compiler (see Agda wiki) will use binary machine arithmetic for computing
+ and *.

There are many other built in types: integers, floats, strings, and characters. See the
Agda wiki for more information.

Exercise: Define cut-off subtraction:

- : Nat → Nat → Nat

This is defined like ordinary subtraction on integers when the result is non-negative, but
returns zero when ordinary subtraction would have returned a negative integer.

Exercise: Define the less than function:

< : Nat → Nat → Bool

Remark. Wemightwant tomake a specialmodule for natural numbers calledNatModule.
If we want to access definitions from BoolModule we need to explicitly import and
open it:

8

module NatModule where

open import BoolModule

See the AgdaWiki for more information.
Exercise: Define a version of the conditional which returns natural numbers (rather

than booleans as in section 1):

ifn_then_else_ : Bool → Nat → Nat → Nat

Exercise. Define the power function

power : Nat → Nat → Nat

Exercise. Define the factorial function

factorial : Nat → Nat

Compute the result of factorial for some arguments by normalizing with ^C^N. How
large factorials can Agda compute?

Exercise. Define the Ackerman function. (See wikipedia.)
Exercise. Define a data type of binary numbers in Agda and then define addition of

binary numbers. Note that there are several issues: should you avoid leading zeros, for
example? Can you define translation maps back and forth to the unary numbers? Note
that if you do not allow leading zeros, it may be easier to translate back and forth to
strictly positive unary numbers.

Exercise. How would you define integers as a data type in Agda? How would you
define addition of integers? Subtraction?

3.4 Termination checking
In Agda you are only allowed to define total functions, that is, functions which terminate
and return a value when applied to an arbitrary well-typed argument. For example,
division is a partial function on natural numbers, since the result of dividing by 0 is
undefined, so it should not be accepted.

Agda has a termination checker that will check that your functions terminate. All the
functions defined so far are defined by primitive recursion and are easily recognized as
terminating by Agda. On the other hand, if you define division by repeated subtraction
as follows

÷ : Nat → Nat → Nat
m ÷ n = ifn m < n then zero else succ ((m - n) ÷ n)

then Agda will report that the termination checking failed:

Termination checking failed for the following functions:
÷

Problematic calls:
(m - n) ÷ n

9

The termination checker analyses the recursive calls of a function and tries to establish
that these calls are on ”smaller” arguments. In the case of the division it checks whether
the arguments in the recursive call (m - n) ÷ n are smaller than the respective ar-
guments of the calling instance m ÷ n. It notices that it is not clear that (m - n) is
strictly smaller than m. Indeed, if n is zero the division function will call itself with the
same arguments and fail to terminate.

So how do we define division in Agda? We have to turn it into a total function. This
can be done in several ways, either by returning an error value when dividing by 0, or
by making sure that the input domain of the denominator does not include zero. We
will show later how this can be done.

Assume now for simplicity that we use zero as the error value.

÷ : Nat → Nat → Nat
m ÷ n = ifn (iszero n || m < n) then zero else succ ((m - n) ÷ n)

Now, we have defined division as a total function. However, Agda’s termination checker
will still return the same error message. The reason is that it fails to recognize that we
have ruled out the problematic case when n is zero in the recursive call. This requires
more advanced reasoing than the termination checker is capable of. This example shows
that the termination checker is not complete. There are terminating functions which are
not accepted by it.

Exercise. It is of course unsatisfactory to use zero as an error value. Define a mod-
ified type of natural numbers with a special error value error. Then try to redefine
division by repeated subtraction so that

m ÷ 0 = error

and note that the termination checker will not accept this definition.
It is possible to turn off the termination checker by including either of the following

two pragmas in your file

{-# TERMINATING #-}
{-# NON-TERMINATING #-}

In the first case you declare a function to be terminating although it has not been checked
by the termination checker. In the second case you allow the possibility of writing non-
terminating functions, and in this way Agda can be used for writing general partial
recursive functions in much the same way as Haskell. However, note that using non-
terminating functions in types may break type-checking.

Note. In Martin-Löf type theory, the logical language which Agda grew out of, the
only recursion which is allowed is primitive recursion (and analogous notions of struc-
tural recursion on other data types than natural numbers). Agda’s termination checker
has relaxed this condition and accepts a more general class of terminating recursive def-
initions. For example, it accepts the following definition of equality of natural numbers

== ∶ Nat → Nat → Bool
zero == zero = true

10

zero == succ n = false
succ m == zero = false
succ m == succ n = m == n

This is not a primitive recursive definition, since it does induction in both arguments
simultaneously. Primitive recursion requires that induction is in one argument at a time.

Exercise. Define equality of natural numbers using only official primitive recursion.
(See wikipedia for a precise definition.) Hint. Use cut-off subtraction.

3.5 Records
Discuss simply typed version of records: including examples of counters and finite sets.
Polymorphism and axioms will be discussed later.

4 Dependent Types
So far all our Agda-programs have been written in the simply typed subset of Agda.
We are now ready to move to the key feature: dependent types. An example is the type
Vect A n of vectors of length (dimension) n where the elements have type A. We
say that the type Vect A n called a dependent type, since Vect A n depends on
A : Set and n : Nat. We have the following typing:

Vect : Set → Nat → Set

We will however, postpone the definition of Vect for a bit, and instead show how to
use of dependent types for defining polymorphic types and functions.

4.1 The logical framework
The core of Agda is a typed lambda calculus with dependent types, often called the
”Logical Framework” (”LF”). We already saw that it has a type Set and you can
declare data types to be members of this type. So Set is a type of data types. (The
types in Set are also called small types). We do not have

Set : Set

because this would result in a logical paradox, similar to Russell’s paradox for naive set
theory.

If A : Set, then A is a type, that is, it can stand to the right of the ”:”-sign.
Moreover, we do not only have ordinary function types A→ B, but also ”dependent

function types” (x : A) → B, where the type B may depend on the variable x : A. For
example, the functionwhichmaps a numbern : Nat to the vector[0, ..., n-1]
has type (n : Nat) → Vect Nat n.

11

4.2 Polymorphism
We shall now see how dependent function types can be used to express the types of
polymorphic functions. A very simple example is the identity function (or ”combina-
tor”):

id ∶ (X ∶ Set) → X → X
id X x = x

Informally, this says ”for any type X, we have an identity function id X : X → X”.
Note that this is different from polymorphism in Haskell where we have a function id
of type X → X, for a type variable X, and that X does not appear as an argument of id.
Note also that the type expression

(X : Set) → X → X

is well-formed and that X → X is a type which ”depends” on the variable X : Set.
Remark: we can use λ-notation in Agda and instead write

id′ ∶ (X ∶ Set) → X → X
id′ = X x → x

4.3 Implicit arguments
It would be tedious to always have to write out all type-variable arguments. For this pur-
poseAgda has facility for declaring arguments to be ”implicit” by using the ”implicit de-
pendent function type”{x : A} → B. The typing rule is that ifb : {x : A} → B,
and a : A, then b : B[x := a], that is, that b is a term of type B where the term
a has been substituted for the variable x. In this way we can recover Haskell’s notation
for polymorphism, e g, the type of the identity function with implicit polymorphism is

id−implicit ∶ {X ∶ Set} → X → X
id−implicit x = x

Exercise: write id−implicit using λ-notation!
We can define many polymorphic combinators with implicit arguments. For exam-

ple, the infix composition combinator can be defined by

∘ ∶ {X Y Z ∶ Set} → (Y → Z) → (X → Y) → X → Z
(g ∘ f) x = g (f x)

12

Exercise: Define the K and S-combinators! (See wikipedia if you don’t know their
definitions.)

In combinatory logic one shows that the two combinators K and S suffice for defin-
ing all other combinators. In particular one can show that the identity combinator can
be defined as I = S KK. Check what happens if you let Agda normalize S K K! Explain.

4.4 Polymorphic lists
Data types can be polymorphic too. For example, in Haskell we have the type [a] of
lists where the elements belong to the type a for an arbitrary type a. In Agda we declare
the polymorphic data type of lists as follows:

data List (A ∶ Set) ∶ Set where
[] ∶ List A
∶∶ ∶ A → List A → List A

This declaration states that the type of List is Set → Set, that is, if A : Set
then List A : Set. Moreover, the types of the constructors have an implicit argu-
ment, which is not written out in the declaration above. Their proper types are:

[] : {A : Set} → List A
:: : {A : Set} → A → List A → List A

Let us now define some list functions, for example map is defined as follows:

map ∶ {A B ∶ Set} → (A → B) → List A → List B
map f [] = []
map f (a ∶∶ as) = f a ∶∶ map f as

What about head? Let us try to define
head : {A : Set} → List A → A
head [] = ?
head (a :: as) = a

In Haskell we can simply define head as a partial function, which is not defined for [].
This is not possible in Agda, where all functions are total. The way out would be to
define head [] as an explicit error element, for example ”Nothing” in Haskell’s Maybe
type defined by

data Maybe a = Just a | Nothing

Exercise: Define the Maybe type in Agda and the function
head : {A : Set} → List A → Maybe A

Note that we can make tail total without using Maybe by conventionally defining tail []
= [].

13

4.5 Cartesian products
4.5.1 Cartesian product as a polymorphic data type
The Cartesian product of two types (the type of pairs, cf Pierce, figure 11-5 p 126) is a
polymorphic data type with one constructor:

data _×_ (A B ∶ Set) ∶ Set where
<_, _> ∶ A → B → A × B

Exercise: write out the full types of _×_ and <_,_>. Hint: look at the definition of
the data type List. Pierce uses {_,_}.

We can now define the first and the second projection:

fst ∶ {A B ∶ Set} → A × B → A
fst < a , b > = a

snd ∶ {A B ∶ Set} → A × B → B
snd < a , b > = b

4.5.2 Cartesian product as polymorphic record
Alternatively, we can define the cartesian product as a polymorphic record as follows:

record _×′_ (A B ∶ Set) ∶ Set where
field
l1 ∶ A
l2 ∶ B

This is like A × B but with labels l1 and l2 for the two components. Then we can
write _×’_.l1 _×’_.l2 for the projections (cf fst and snd):

fst′ ∶ {A B ∶ Set} −> A ×′ B −> A
fst′ = _×′_.l1

snd′ ∶ {A B ∶ Set} −> A ×′ B −> B
snd′ = _×′_.l2

We can now define pairing of elements as a record

14

<_, _>′ ∶ {A B ∶ Set} −> A −> B −> A ×′ B
< a , b >′ = record { l2 = b
; l1 = a
}

Since we often want to have access to the constructor of a record, Agda allows us
to declare it directly in the record definition

record _×″_ (A B ∶ Set) ∶ Set where
constructor <_, _>″

field
l1 ∶ A
l2 ∶ B

Remark. Pierce uses t.1 for fst t, the ”first projection” and t.2 for snd t, the ”second
projection”.

Pierce’s evaluation rules are for ”strict” pairs, evaluating the first component to a
value, then the second component. When projections are computed we first compute
both components of the pair, then throw one away

In general we can define types of n-tuples for arbitrary n (pairs, triples, quadruples,
...). The type of 0-tuples is the unit type defined as follows:

data Unit ∶ Set where
<> ∶ Unit

Alternatively it can be defined as a record with no fields:

record Unit′ ∶ Set where
constructor <>′

Remark. An important difference between products defined as data types and prod-
ucts defined as record, is that the latter enjoys the property of ”surjective pairing”. For
the unit type this states that x = <> for any x : Unit’. This is not the case for the
data typex : Unit. For binary products it states thatx = < fst’ x, snd’ x >
for any x : A ×’ B.

5 Inductive families
We are now ready to define the vectors as a dependent data type (inductive family):

15

data Vect (A ∶ Set) ∶ Nat → Set where
[] ∶ Vect A zero
∶∶ ∶ {n ∶ Nat} → A → Vect A n → Vect A (succ n)

Note that this difference is similar to the definition of List above. The difference
is that Vect A : Nat → Set is a family of types for each A, whereas List A is
one type. Moreover, the constructors of Vect contain size information: [] is a vector
of dimension zero, whereas the dimension of the vector a :: as is one greater than
the dimension of as.

Given the size information we can now make head a total function by expressing
that its argument of must be a vector of length strictly greater than zero:

head ∶ {A ∶ Set} → {n ∶ Nat} → Vect A (succ n) → A
head (a ∶∶ as) = a

6 Proving in Agda
We have now come to the point where we that Agda is not only a programming language
but also a proof assistant, that is, a systemwhere you can write machine-checked proofs.
In traditional logic, a proof is a sequence of formulas, such that each formula is either
an axiom or follows from a number of previous formulas by a rule of inference. (In
computer science it’s actually more natural to see such a proof of a theorem as a tree,
where the root is the theorem, the leaves are the axioms, and the inner nodes follow from
their parents by a rule of inference.) In Agda and other systems based on the Curry-
Howard correspondence there is another notion of proof, where proofs are programs,
formulas are types, and a proof is a correct proof of a certain theorem provided the
corresponding program has the type of the corresponding formula. Proofs in this sense
are often called proof objects, to emphasize the difference with proofs in the usual sense
of logic.

This might all be somewhat mysterious to begin with, so let us start with something
simple and again use our Booleans and try to prove some properties about Boolean
operations. We shall prove that the type Bool with the operations not, _&&_ and ||
form a Boolean algebra. (See wikipedia.)

6.1 The identity type
Say that we want to prove the following law of Boolean algebra, the law of double
negation:

not (not b) = b

16

for an arbitrary b : Bool. We can do this by proving the law for b = true and b =
false:

not (not true) = true
not (not false) = false

Both those equations follow by equational reasoning from the two defining equations
for not:

not (not true) = not false = true
not (not false) = not true = false

How can we express this reasoning in Agda? Since we shall identify formulas (proposi-
tions) and types, the first question is: what type corresponds to the propositionnot (not b) = b?
To this endwe use the identity typeId A a a’, which contains proofs thata, a’ : A
are identical. Thus the law of double negation for Bool can be written as the Agda-type:

(b : Bool) → Id Bool (not (not b)) b

that is, we need to write a function which for any b : Bool returns an element (proof
object) of Id Bool (not (not b)) b. The idea behind the identity type is that
there is only one way to construct a proof of an identity: a and a’ must be identical (after
simplification). Hence we define it as a data type with one constructor:

data Id (A ∶ Set) (a ∶ A) ∶ A → Set where
refl ∶ Id A a a

This constructor is called refl for ”reflexivity of identity”, that is, the law that any ele-
ment a : A is identical to itself.

We get a more familiar looking notation if we use the infix sign ≡ and make the type
A implicit:

data _≡_ {A ∶ Set} (a ∶ A) ∶ A → Set where
refl ∶ a ≡ a

Note that there is an important difference between a ≡ a’, which is a type, and
a = a’ which is not - it’s a relation between terms. The latter expresses that a and a’
are equal by definition (definitionally equal).

We can now for example prove that 1 + 1 is equal to 2:

oneplusoneistwo ∶ 1 + 1 ≡ 2
oneplusoneistwo = refl

17

Agda accepts that refl : 1+1 ≡ 2 because it first simplifies (normalizes) 1 + 1 (using the
defining equations for +) and returns 2. Hence it looks at the type of refl and realizes
that we need to instantiate A by Nat and a by 2.

When we case-split (C-c C-c) a proof c : I A a a’, Agda replaces c by the only
possible constructor refl, and unifies a and a’.

Let’s return to the proof of the law of double negation.

doublenegation ∶ (b ∶ Bool) → not (not b) ≡ b
doublenegation true = refl
doublenegation false = refl

Note that the types of the right hand sides of two respective equations are

not (not true) ≡ true

not (not false) ≡ false

After simplification (normalization) they become

true ≡ true

false ≡ false

and hence they are instances of the type of refl.
Since doublenegation always returns refl it is tempting to try to skip the

case analysis and simply write

doublenegation b = refl

However, this does not work (try it!) sincerefl does not have the typenot (not b) ≡
b. We cannot simplify not (not b) when b is a variable.

Exercise. Prove some other laws of Boolean algebra. (See wikipedia for the defini-
tion.)

6.2 Pattern matching on the proof of an identity
We can also prove that propositional identity is a symmetric relation:

sym ∶ {A ∶ Set} → (a a′ ∶ A) → a ≡ a′ → a′ ≡ a
sym a .a refl = refl

Here the proof is a bit more sophisticated, because now we pattern match on a proof
object for identity. As usual we begin with putting a ? on the right hand side:

sym a a’ p = ?

18

Nowwe pattern match on p. The only constructor for ≡ is refl and Agda tries to unify
its type with the type of the goal. This forces a and a’ to be identical (definitionally).
We get

sym a .a refl = { }0

This is because when we pattern match on the proof that a ≡ a’ we force them to
be equal. The dot in front of the second a indicates that it is forced to be a by the
unification. The type of the hole is now a≡ a so we can fill it withrefl.

Exercise: prove transitivity by doing pattern matching in both arguments:

trans ∶ {A ∶ Set} → {a1 a2 a3 ∶ A} → a1 ≡ a2 → a2 ≡ a3 → a1 ≡ a3
trans refl refl = refl

We can also prove the general rule of identity elimination, the rule that states that
we can substitute identical elements for each other. If a property is true for a�, then it’s
also true for any a� equal to a�

subst ∶ {A ∶ Set} → {P ∶ A → Set} → {a1 a2 ∶ A} → a1 ≡ a2 → P a2 → P a1
subst refl q = q

A special case of this is that functions map equal inputs to equal outputs

cong ∶ {A B ∶ Set} → {a1 a2 ∶ A} → (f ∶ A → B) → a1 ≡ a2 → f a1 ≡ f a2
cong f refl = refl

Exercise: prove symmetry and transitivity using subst but without using pattern
matching! Similarly, construct cong without pattern matching but using subst.

7 Proof by induction
We shall now show how to prove a property (associativity of addition) of natural num-
bers by induction. We first show how to write the proof by pattern matching:

associativity−plus ∶ (m n p ∶ Nat) → ((m + n) + p) ≡ (m + (n + p))
associativity−plus m n zero = refl
associativity−plus m n (succ p) = cong succ (associativity−plus m n p)

Using propositions as types we can prove the general principle of mathematical
induction:

19

natind ∶ {P ∶ Nat → Set}
→ P zero
→ ((m ∶ Nat) → P m → P (succ m))
→ (n ∶ Nat) → P n
natind base step zero = base
natind base step (succ n) = step n (natind base step n)

We can use this principle to prove associativity of addition without pattern match-
ing:

associativity−plus−ind ∶ (m n p ∶ Nat) → (m + n) + p ≡ m + (n + p)
associativity−plus−ind m n p
= natind { p → ((m + n) + p) ≡ (m + (n + p))}
refl
((p r → cong succ r))
p

Note that the two proofs are essentially the same - they are just two different ways of
expressing the same idea. Pattern matching provides ”syntactic sugar” for definitions by
primitive recursion, but it also opens the possibility for more general recursion schemes
than primitive recursion.

Exercise. Prove that

postulate 0−neutral−right ∶ (m ∶ Nat) → m + 0 ≡ m
postulate 0−neutral−left ∶ (n ∶ Nat) → 0 + n ≡ n
postulate succ−+−right ∶ (m n ∶ Nat) → m + succ n ≡ succ (m + n)
postulate succ−+−left ∶ (m n ∶ Nat) → succ m + n ≡ succ (m + n)

Exercise. Prove commutativity of addition:

postulate commutativity−plus ∶ (m n ∶ Nat) → m + n ≡ n + m

8 Propositional logic
We shall now show the correspondence between propositions and sets for propositional
logic. This correspondence was discovered by Curry, who noticed that there is a corre-
spondence between some basic combinators in the lambda calculus and some axioms
for implication.

20

For example, the type of the identity combinator

I ∶ {A ∶ Set} → A → A
I x = x

corresponds to the axiom A ⊃ A, where ⊃ is implication. The type of the composition
combinator

B ∶ {A B C ∶ Set} → (B → C) → (A → B) → A → C
B g f x = g (f x)

corresponds to the axiom (B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C . Similarly the type of the
constant combinator

K ∶ {A B ∶ Set} → A → B → A
K x y = x

corresponds to the axiom A ⊃ B ⊃ A. And finally, the type of

S ∶ {A B C ∶ Set} → (A → B → C) → (A → B) → A → C
S g f x = g x (f x)

corresponds to the axiom (A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C .
Finally modus ponens (the rule that says that from A ⊃ B and A deduce B) cor-

responds to the typing rule for application (from f : A ⊃ B and a : A deduce f a :
B).

The intuitive idea is that a (constructive) proof f of an implication A ⊃ B is a
function which maps proofs ofA to proofs ofB . In constructive mathematics functions
are computable, that is, they are ”programs”.

Furthermore, conjunction corresponds to Cartesian product. The type of the con-
structor corresponds to the ”introduction rule” for conjunction:

data _&_ (A B ∶ Set) ∶ Set where
<_, _> ∶ A → B → A & B

Moreover, the projections correspond to ”elimination rules”

fst−& ∶ {A B ∶ Set} → A & B → A

21

fst−& < x , y > = x

snd−& ∶ {A B ∶ Set} → A & B → B
snd−& < x , y > = y

Similarly disjoint union (sum) corresponds to disjunction and the types of the con-
structors correspond to introduction rules for disjunction:

data _∨_ (A B ∶ Set) ∶ Set where
inl ∶ A → A ∨ B
inr ∶ B → A ∨ B

Moreover, definition by cases corresponds to proof by cases (the disjunction elimination
rule):

case ∶ {A B C ∶ Set} → (A → C) → (B → C) → A ∨ B → C
case f g (inl x) = f x
case f g (inr y) = g y

Let us now construct a simple proof, the proof of commutativity of conjunction:

comm−∨ ∶ (A B ∶ Set) → A ∨ B → B ∨ A
comm−∨ A B (inl a) = inr a
comm−∨ A B (inr b) = inl b

Exercise: Prove commutativity of conjunction!
Finally, we point out that the the unit set corresponds to a trivially true proposition

with a single proof object:

data ⊤ ∶ Set where
<> ∶ ⊤

Similarly, the empty set is defined as the set with no constructors and corresponds
to a trivially false proposition. We write

data ⊥ ∶ Set where

22

The elimination rule for ⊥ corresponds to the rule of proof by no case; ⊥ implies any
proposition. If we pattern match on the constructors for ⊥ we get no cases. However,
rather than simply not writing out any cases at all, Agda writes one line

nocase ∶ {C ∶ Set} → ⊥ → C
nocase ()

where () indicates the argument which cannot be instantiated in a type-correct way.
Note that there is a general pattern for all the logical connectives, except ⊃, stating

that the types of the constructors correspond to the introduction rules. If we want to
have this pattern for ⊃ as well, we can alternatively define it as follows:

data _⊃_ (A B ∶ Set) ∶ Set where
⊃−intro ∶ (A → B) → A ⊃ B

Modus ponens is now defined as follows

mp ∶ {A B ∶ Set} → A ⊃ B → A → B
mp (⊃−intro g) a = g a

Negation is defined as implying the absurd:

¬ ∶ Set → Set
¬ A = A → ⊥

With this definition neither the law of double negation

(A : Set) → ¬ (¬ A) → A

nor the law of excluded middle

(A: Set) → A∨ ¬ A

are valid.
However, the inverse of double negation is valid:

inverse−dn ∶ (A ∶ Set) → A → ¬ (¬ A)
inverse−dn A a = f → f a

23

This is called the BHK (Brouwer-Heyting-Kolmogorov) interpretation of logic or
the Curry-Howard correspondence between propositions as types (sets). Howard showed
how to generalize this to predicate logic by introducing dependent types.

Exercise: Prove the following three laws.
(a) the law of triple negation:

(A: Set) → ¬(¬(¬A)) → ¬A

(b) excluded middle implies double negation:

(A : Set) → (A ∨ ¬A) → ¬(¬A) → A

(c) double negation implies excluded middle:

((X : Set) → ¬(¬X) → X) → (A : Set) → (A ∨ ¬A)

Note the strengthening of the assumption in (c): to prove excluded middle for A it does
not suffice to know double negation forA itself, but youmust know it for any proposition
X .

9 Predicate logic
Howard introduced dependent types and could thus extend Curry’s correspondence be-
tween propositions as types (sets) to the quantifiers.

Since a proposition corresponds to a set, a predicate P over a set A, corresponds
to a ”propositional function” P ∶ A → Set. The universally quantified proposition
∀x ∶ A.Px corresponds to the set (x ∶ A) → Px . Intuitively, a proof of ∀x ∶ A.Px is
a function which maps an arbitrary element a ∶ A to a proof of Pa .

To emphasize the correspondence between dependent function spaces and univer-
sally quantified propositions, Agda allows the notation ∀(x ∶ A) → Px as an alternative
to (x ∶ A) → Px .

You can think of universal quantification (over an infinite set) as infinite conjunction
and existential quantification as infinite disjunction.

A proof of an existentially quantified proposition ∃x ∶ A.Px is a pair <a , p> con-
sisting of an element a : A and a proof p : Pa . We can define it as a data type with one
constructor:

data ∃ (A ∶ Set) (P ∶ A → Set) ∶ Set where
<_, _> ∶ (a ∶ A) → P a → ∃ A P

The first projection gives access to the ”witness” a: A.

witness ∶ {A ∶ Set} {P ∶ A → Set} → ∃ A P → A
witness < a , p > = a

24

The second projection gives access to the proof that P holds for the witness a (that is,
p : Pa).

proof ∶ {A ∶ Set} → {P ∶ A → Set} → (c ∶ ∃ A P) → P (witness c)
proof < a , p > = p

The rule of existence elimination is as follows:

∃−elim ∶ {A ∶ Set} → {P ∶ A → Set} → {Q ∶ Set} → ((a ∶ A) → P a → Q) → ∃ A P → Q
∃−elim f < a , p > = f a p

Exercise: Define uncurrying!
uncurry : A B C : Set → (A → B → C) → A × B → C

and note the similarity with ∃-elim!
Just as there was an alternative version of implication, there is a universal quantifier

which is defined as a datatype with a single constructor:

data ∀‘ (A ∶ Set) (P ∶ A → Set) ∶ Set where
∀′−intro ∶ ((x ∶ A) → P x) → ∀‘ A P

Note that this gives variable free-notation ∀‘ AP= ∀‘ A(λ x→ Px) for ∀ x : A. Px .
We can also define the rule of universal elimination:

∀′−elim ∶ {A ∶ Set} {P ∶ A → Set} → ∀‘ A P → (a ∶ A) → P a
∀′−elim (∀′−intro f) a = f a

10 Arithmetic
10.1 Peano’s axioms
The induction axiom is one of Peano’s axioms for arithmetic (see wikipedia). Another
is the following:

peano−4 ∶ (n ∶ Nat) → zero ≡ succ n → ⊥
peano−4 n ()

We can in fact prove all Peano’s axioms (see wikipedia) from our definition of Nat. Do
this as an exercise!

25

