ATV 2011: Technology Trends in Computer Engineering

Professor Per Larsson-Edefors

ATV 2011, L1, Per Larsson-Edefors

Page 1

CHALMERS

Solid-State Devices

www.cse.chalmers.se/~perla/ugrad/ SemTech/Lectures_2000.pdf

ATV 2011, L1, Per Larsson-Edefors

Semiconductors

 E_g for Si is 1.12 eV E_g for SiO₂ is 8.9 eV! $1 \text{ eV} = 1.6 \cdot 10^{-19} \text{ J}$

ATV 2011, L1, Per Larsson-Edefors

Page 3

CHALMERS

Carriers and Temperature

- Semiconductor with no impurities is intrinsic.
 Electrons in valence band may be excited to conduction band, jumping the band gap (#electrons in CB = #holes in VB).
- Si at *T* = 300 K: 10¹⁰ free carriers/cm³. With 2 10²³ valence electrons/cm³, less than one bond in 10¹³ is broken.
- #free carriers is an important parameter for semiconductor performance!

ATV 2011, L1, Per Larsson-Edefors

Semiconductor Doping

Silicon (with four electrons in VB) crystal lattice has covalent bonds.

Picture source: Dept. of Physics, Univ Warwick

ATV 2011, L1, Per Larsson-Edefors

Page 5

CHALMERS

Free Carriers

- Intrinsic silicon at *T*=300K: 10¹⁰ free carriers/cm³.
- Using doping (extrinsic semiconductors), carrier concentrations of 10¹⁵-10¹⁸/cm³ are possible.
 - Above 10¹⁸/cm³, degeneration happens as E_c - E_d < 3kT. ΔE_q can be as much as 10% of E_q for 10¹⁹/cm³.
- Beside T, voltage and light can excite VB electrons.

ATV 2011, L1, Per Larsson-Edefors

MOSFETs and Carriers

 Definition of threshold voltage, V_T:

The gate voltage that "inverts" the channel material into one with as many free carriers (electrons/holes) as the doping generated (holes/electrons).

Picture source: USC

ATV 2011, L1, Per Larsson-Edefors

Page 7

CHALMERS

Band Gaps for LEDs

- E_g => Planck's constant * frequency of photon (hv).
- Via material innovations, increase band gap to get lower wavelength light.
- First there were red LEDs; then came green, and now blue/white are common.

ATV 2011, L1, Per Larsson-Edefors

Band Gaps – Solid-State Physics

- Direct band gaps allow electrons to cross band gap with no change of momentum (k).
- · Si, Ge, SiC are indirect.
- GaAs is direct; and a very common constituent of LEDs.

ATV 2011, L1, Per Larsson-Edefors

Page 9

CHALMERS

Compound Semiconductors

III/V materials, e.g. GaAs (Gallium Arsenide)

ATV 2011, L1, Per Larsson-Edefors

Solid-State Device History

- 1874: Lead-sulfide rectifier by K. F. Braun.
- 1925: MOSFET patent by Lilienfeld.

WW2/RADAR development:

- 1937-39: Dopants studied; pn junction (R. Ohl @ Bell).
- 1944: Doping patent (J. R. Woodyard @ Sperry).

Post-WW2 efforts:

"Bipolar transistor" discovered 1947, Shockley et al.

ATV 2011, L1, Per Larsson-Edefors

Page 11

CHALMERS

Forward-Biased Diode

Diffusion:
 V_A regulates #free carriers that diffuse.

$$J_{t,x} = -J_0 \left(e^{\frac{qV_A}{kT}} - 1 \right)$$

ATV 2011, L1, Per Larsson-Edefors

Dec 16, 1947

Picture source: TaylorEdge

Picture source: Wired.com

ATV 2011, L1, Per Larsson-Edefors

Page 13

CHALMERS

Minority-Carrier Injection

ATV 2011, L1, Per Larsson-Edefors

Solid-State Device History, cont.

Further integration (post Sputnik & transistor radio):

- 1958: Hoerni's planar process (Si/SiO₂).
- 1959: Noyce's integrated circuit.
- 1960: Si MOSFET (Kahng and Atalla @ Bell).
- 1966: 1-T DRAM cell (Dennard @ IBM).

ATV 2011, L1, Per Larsson-Edefors

Page 15

CHALMERS

MOSFET Modes

ATV 2011, L1, Per Larsson-Edefors

MOSFET Memories

- 1970: Intel 1103, the first DRAM chip (1 kbit, PMOS-based).
- 1972: 1103 becomes the best selling semiconductor memory chip.
- Magnetic core memories are slowly becoming obsolete.
 But in 1976, still 95% of computer memory was magnetic core.

Picture source: Inte

ATV 2011, L1, Per Larsson-Edefors

Page 17

CHALMERS

Intel 1103

Picture source: Memory Systems, Elsevier

ATV 2011, L1, Per Larsson-Edefors

Multitude of Devices

- MOSFETs (IGFETs)
- JFET/MESFET non-planar techs, e.g. GaAs
- Bipolar
- HBT high speed analog, InP, SiGe
- HEMT high speed analog, GaAs/AlGaAs
- "Strained silicon"
- BiCMOS mixing CMOS and bipolar/HBT

ATV 2011, L1, Per Larsson-Edefors

Page 19

CHALMERS

IC Manufacturing

ATV 2011, L1, Per Larsson-Edefors

Scaling

- Technology nodes: referring to lateral dimensions.
 - DRAM (or NAND Flash) m1 half pitch.
- Traditionally lithography-driven scaling.
- Economical limit to lithography-driven scaling (11-15 nm).
- · Technology must scale in other "dimensions".
 - Vertical dimension (3D, ILD).
 - New devices.
 - New materials.
 (E-field => VDD: >14 V (PMOS 1103), 12 V (4004))

ATV 2011, L1, Per Larsson-Edefors

Page 21

CHALMERS

Intel 4004 – 10 μ m

ATV 2011, L1, Per Larsson-Edefors

Intel Core i7 980X - 32 nm

ATV 2011, L1, Per Larsson-Edefors

Page 23

CHALMERS

Wafer Production

ATV 2011, L1, Per Larsson-Edefors

age 24

12

Crystal Orientation Matter

ATV 2011, L1, Per Larsson-Edefors

Page 25

CHALMERS

Lithography for IC

ATV 2011, L1, Per Larsson-Edefors

Lithography Challenge

- Speed! Exposure via mask reticle; stepper defines dies.
- Argon fluoride excimer laser at 193-nm wavelength.
 - Absorption edge of air is at 185 nm.
- Optical proximity correction (for increasing #mask layers).
- Numerical apertures exceeding 1.0 possible via immersion in water.
- · Double patterning.
- Future: EUV litho? Light sources? Mirrors? Vacuum? Keep an eye on Intel Fab 42, Chandler, AZ.

ATV 2011, L1, Per Larsson-Edefors

Page 27

CHALMERS

Double Patterning

- Line density is an issue.
- · Line width is not.
- Double patterning using space walls.

ATV 2011, L1, Per Larsson-Edefors

Scaled MOSFETs

- High-k gate dielectric allows electric oxide thickness (EOT) scaling; avoids tunneling. (C = k A/T, where $k = \varepsilon$).
- Metal gates to avoid gate polydepletion.
 - Work function regulation / V_T tuning difficult.
- Strained (Ge) silicon for mobility enhancement.
 What will happen in multi-gate FETs?
- But ... still the MOSFET channel is poorly controlled, leading to substantial subthreshold leakage (and SCE)

ATV 2011, L1, Per Larsson-Edefors

Page 29

CHALMERS

Small-Channel Effects (SCEs)

ATV 2011, L1, Per Larsson-Edefors

Interconnects

- Performance bottleneck via long RC constants.
 - Lateral dimensions shrink => stack of 10 layers progressively sized.
 - Vertical dimensions cannot shrink as R increases too fast.
- Low-k dielectric for metal stack; starting to enter pre-metal layer too.
- All copper layers in processors. Copper bottom layer, with aluminum layers on top in e.g. DRAMs.
- In view of performance and yield, 3D makes sense...

ATV 2011, L1, Per Larsson-Edefors

Page 31

CHALMERS

ATV 2011

ATV 2011, L1, Per Larsson-Edefors

Organization

- September October 2011.
- 5 cu.
- Several topics:
 - Self study.
 - · Initial paper/book.
 - Seminar.

ATV 2011, L1, Per Larsson-Edefors

Page 33

CHALMERS

Next Meeting

- Friday Sep 16; 13.30 ?
 - Topic defined (1 page).
 - Expect some help from instructor (away Mon-Wed).
 - · No significant topic overlaps allowed.
 - Bring calendar; more meetings scheduled.
- www.cse.chalmers.se/~perla/grad/ATV/
- You have to make yourself known; email me name and "personnummer".

ATV 2011, L1, Per Larsson-Edefors

Topics – Study + Seminar

- Alen 3D chip integration
- Angelos Volatile 3D memory technologies
- Dmitry Non-volatile memory technologies
- Kasyab Memristor technology
- Erik On-chip optical interconnects
- Tung FinFETs
- Anurag 14 nm fabrication

ATV 2011, L1, Per Larsson-Edefors