MUSTE, Appendix A: Resarch Program Peter Ljunglof, 711031-2910

MUSTE, Appendix A: Resarch Program

1 Purpose and aims

In the last years several different modes of human computer interaction have emerged and are used by
millions of people all around the world. The traditional way of using a physical keyboard and a mouse
for writing and editing text has been challenged by new interfaces such as speech recognition, touch
screens, eye tracking and even brain computer interfaces. New mobile devices have made it easier for
people to interact with their computers, the internet, and people around the world.

Until around 10 years ago, the only way for people to enter text on a computer was by using a
typewriter keyboard, and this mode of interaction has fostered a view of text authoring as an incremental
left-to-right process. Over the last years, touch-screen phones and tables have become increasingly
common, and other modalities such as speech, eye tracking or even brain computer interfaces have
emerged. Still this incremental view of text authoring has by and large continued. The amount of text
interactions has increase enormously over the years — e.g., over 50 billion text messages are sent every
day, only counting SMS and chat clients [27]. But still the full potential of the new modalities remains
largely unexploited.

There are several problems with the incremental left-to-right view, especially when it comes to new
modalities such as touch screens:

e Avirtual touch-screen keyboard is cognitively demanding, since the user cannot get haptic feed-
back but instead have to constantly look at the virtual keys. This is worsened if the screen is small,
making it more difficult to find the correct key to touch.

o Letter-by-letter text authoring is by itself demanding for cognitively disabled users, since it re-
quires so many interactions with the device. By cognitively disabled, we do not only mean people
with communicative or physical disabilities, but also normal-developed people doing something
cognitively difficult such as driving a car.

¢ The incremental view focuses on how to enter new text, and does not give much help when it
comes to editing existing text. This is standardly done by first positioning a cursor at the correct
location, and then use the keyboard again to delete the existing text and add new. This has the
effect that it is even more cognitively demanding to modify existing words than it is to enter new
words.

Most solutions to these problems rely on using a built-in lexicon to do automatic spelling correction and
predictive suggestions, but the available techniques still rely on the same conceptual idea that text is
written incrementally left-to-right, using a typewriter keyboard.

1.1 Purpose of the project

The overall research problem that we want to solve in this project is to reduce the cognitive load when
authoring and editing text on devices with non-traditional input modalities. We do this by changing the
conceptual view of how text is authored. The traditional view is that a text is built by adding new words
at the end until it is complete. Our view is instead that a text is authored by starting with an existing
text and modifying it until it is satisfactory. The user can choose to modify any word or phrase in the
text, not just at the end. In this sense, text authoring can be viewed as a two-dimensional process as
opposed to the one-dimensional adding of words.

Our interpretation is therefore that text editing is a dialogue between the user and the system. The
user selects a word or a phrase that she wants to modify, and the system suggests alternative formu-
lations, by inflecting, replacing or deleting existing words, or by adding new words. The user selects an
alternative formulation, the text gets modified, and the dialogue can continue with another step. The
more specific research problem that we need to solve is then how to suggest good alternative formula-
tions which help the user accomplish her task.

MUSTE, Appendix A: Resarch Program Peter Ljunglof, 711031-2910

a cute c%% sleeps a cute ,r—mom“*e—r.sleeps all cute cats sleep
Eat%:@
youhy/cat @
The user selects a word The system presents some After editing the text remains
semantically similar suggestions grammatical

Figure 1: A simple example of multimodal semantic text editing

1.2 Multimodal semantic text editing

Our idea of text editing is exemplified in figure 1. In this example, the user selects a word (“cat”) that she
wants to edit, after which the system presents a pop-up menu of possible choices. The user now selects
one of the alternatives (“cats”, in plural), and the sentence is changed. One of our important goals is to
reduce the cognitive load on the user by reducing the number of interactions with the system. Therefore
the system must be helpful and give plausible suggestions. This is the reason why the system should use
grammatical knowledge to inflect the words in the rest of the sentence so that it stays grammatical. In
the example, the word “sleeps” is inflected, and the word “a” is replaced by “all”, to keep the sentence
grammatical.

Note that we do not prohibit other modalities for text authoring. The editing process must start
with an initial text somehow, which could be something returned by a speech recognizer, a prototypical
utterance that is designed to be edited, or even a text that is entered using a keyboard.

More specifically, our aims in this project are as follows.

A computational theory for semantic suggestions When the user has selected a word or a phrase,
the system needs to come up with plausible alternatives. The main problem here is to reduce the num-
ber of alternatives so that it can be presented to the user. For this we need a theory for calculating
grammatically and semantically similar words and phrases.

A Grammar library for semantic text editing To be able to give grammatical and semantical sugges-
tions, the system needs a notion of grammaticality. This will be done by developing a grammar library
that can be used when creating applications for semantic text editing. The library will be based on an
existing multilingual phrase-structure grammar [18].

Aninterpretation of editing gestures The text needs to be stored internally as some kind of semantical
term, from which the system can calcluate new suggestions. This means that the we need to be able to
interpret gestures by the user into editing operations on the unerlying semantic term.

Functioning prototypes that can be evaluated We will develop two prototypes for text editing appli-
cations. The prototypes will function as proof-of-concept that our theory is feasible, but we will also use
them for evaluating the feasibility of our approach on users.

2 Survey of the field

The conceptual idea described in section 1.2, to edit an underlying abstract term by operating on the
surface words, has not been described before in the literature. There has been lot of research on text
authoring in different modalities, but most of it is focused on left-to-right text input, and there is not
much work done on editing existing text. There has been some research on using a grammar for cen-
ceptual authoring, but either the user have to edit the abstract term directly, or it has been focused on
left-to-right authoring.

Text input on mobile devices There are still mobile phones which do not use a touch screen, and
instead use the numeric keypad for entering text. Usually they use predictive input which is based on
a built-in lexicon and/or morphological rules [12]. For touch screen mobile devices, the standard way
of editing text is to use a virtual keyboard, usually with a typical QWERTY layout. Since the keys are so

MUSTE, Appendix A: Resarch Program Peter Ljunglof, 711031-2910

small, the devices incorporate intelligent prediction and tries to remedy when you happen to touch a
neighbouring key.

There have been lot of research on different alternatives to inputting letters, from swiping over the
keyboard so that you don’t have to lift your finger [7, 26], to using different layouts for the fingers [1, 4,

]. Some devices have support for handwriting recognition, either via a stylus or directly by your finger

[3], and there are also research that incorporates haptic or auditory feedback so that you don’t have to
look at the screen [25]

Almost all research are focused on incremental left-to-right authoring of letters, possibly augmented
with prediction and error correction. The usual way of editing text is to move the cursor and selecting
existing words by means of arrow keys or different kinds of touch screen gestures [5].

Alternative and augmentative communication (AAC) Communication tools that are designed for peo-
ple with communicative disabilities, such as Autism Spectrum Disorder (ASD) or Cerebral Palsy (CP), usu-
ally have words or symbols as the basic entity, instead of letters. The reasons for this is to decrease the
number of interactions with the device, and to reduce the cognitive load for people with communicative
or cognitive disabilities.

The most common AAC communication tool is a grid with different words and/or symbols, which
the user can select in sequence to author a text. Selection can be done using pointing, or by switch
access scanning [22], or even eye-tracking [13]. Some devices have prediction for suggesting the next
word and/or error correction for changing the order between the words, and in some cases grammatical
information is included so that the device can inflect the words by grammatical function such as number
or gender [14, 15], and there has been recent work on allowing the user to input the words/symbols in
a non-grammatical order, and the system automatically selects the most probable sequence [28].

Syntax-based text editing The idea of using grammars to guide text editing is not new [2, 17], but
it has not been considered much in the scope of mobile devices or AAC tools. There have been some
attemps at multilingual authoring on mobile devices [6, 21], but the work that has been done has either
required the user to edit the abstract grammar term directly or it has focused on left-to-right authoring.

We have developed the basic theory of syntax editing that was described in section 1.2 [10, 11].
Currently there is a working online prototype which uses a simple non-heuristic search strategy to find
new replacement suggestions.! The current theory depends on the grammar formalism GF [20], which
has its roots in type theory. In [9] we also showed that type theory can be used as the basis of a theory
of human-computer dialogue, which could prove useful since in this project we view the process of text
editing as a dialogue between the user and the computer. To be able to find similar suggestions, we
need a notion of similarity between grammatical trees [24].

3 Project description

In section 3.1 we give a detailed description of the current status of our editing theory [11]. Sections
3.2, 3.3 and 3.5 explains how the theory can be used and evaluated in different applications, and section
3.4 describes the work plan of the project.

3.1 A theory of semantic text editing

The system consists of three implementation layers. At the bottom is the grammar layer, in which the
domain grammar is defined. The only requirements on the grammar formalism are that 1) it is able
to distinguish grammatical and ungrammatical semantic trees, 2) it should have a way of transforming
trees into sequences of surface words, and 3) each word should have a backpointer saying which node
in the tree is responsible for introducing that word.

Any grammar formalism with these properties should be usable in our approach. We use the Gram-
matical Framework [19, 20], which in addition has good support for multilingual grammars and comes
with a useful resource grammar APl for more than 20 different languages [18]. In GF, the semantic trees

1Online prototype: http://www.grammaticalframework.org/~peter/grasp/

http://www.grammaticalframework.org/~peter/grasp/

MUSTE, Appendix A: Resarch Program Peter Ljunglof, 711031-2910

cat : N cat’ = {sg: “cat’; pl: “catd’}
mouse : N mouse® = {sg: “mousé’; pl: “micé’}
young : N — N young®(x) = {sg: Yound + z!sg; pl: Yound + x!pl}
cute : N—N cute®(x) = {sg: “cuté’ 4+ x!sg; pl: Ccuté + x!pl}
a : N—NP a’(z) = {s:@+x!sg;num:sg}
all : N — NP all(z) = {s:@l'4+x!pl; num: pl}
sleep : VP sleep® = {sg: ‘sleepd’; pl : “sleey’}
chase : NP — VP chase®(z) = {sg: chases’+ x!s; pl: “chasé¢’+ x!s}
sentence : NP, VP — S sentence®(xz,y) = {s:z!s+y!(z!num)}
Figure 2: Example GF grammar Figure 3: Concrete syntax for the grammar

are called the abstract syntax and the surface words are called the concrete syntax. The translation from
abstract syntax trees to concrete syntax words is called linearisation.

The middle layer consists of an API for modifying abstract syntax trees by specifying constraints on
the tree and on its linearisation. The operations in the API tries to transform the given tree to obey the
constraints, still keeping the new tree as semantically similar as possible. An example of a constraint can
be that the linearisation of a given tree node must be different from the current linearisation.

The final layer is the graphical user interface, which communicates with the API to decide what al-
terantive suggestions should be displayed to the user. Internally, the text is not stored as the sequence
of words that the user sees, but instead as semantic trees. The linearisation algorithm is used for dis-
playing the sentences to the user, and everything that the user tries to do with a word is translated into
a corresponding operation on the underlying tree.

3.1.1 Grammatical Framework

We start with some background on GF before we dwell into the the underlying editing theory on a more
formal level.

GF abstract syntax The abstract syntax of a GF grammar consists of a finite number of typed func-
tions, f : A;... A, — A (where n can be 0). Given a function f we can create a tree f(¢; ...t,) of
type A whenever tq,...,t, are terms of types A1, ..., A,, respectively. This makes the abstract syntax
equivalent to a context-free grammar without terminal symbols, where the nonterminals correspond to
GF types, and where the grammar rules have names. A simple example grammar is shown in Figure 2,
and an example tree of type S licensed by this grammar is sentence(a(cute(cat)), sleep).

GF concrete syntax The concrete syntax of a GF grammar is a compositional mapping from semantic
trees to concrete terms, called the linearisation. The concrete terms can be quite complex and consist
of strings, finite parameters, recursive records and inflection tables. However, we do not describe the
concrete syntax in more detail, since it is not important for the later discussion. For more detailed infor-
mation about the concrete syntax, we refer to the literature [19, 20] or to the GF online documentation.?

What is necessary to understand for the discussion in this section is that each word in a linearisation
is introduced by exactly one node in the semantic tree. This makes it possible to translate an editing
operation on a specific word into an editing operation on the corresponding node of the underlying
tree. Note that GF does not make any distinction between leaf nodes and internal nodes, which means
that any node in the tree can be responsible for a word.

Let’s write t° for the linearisation of . Compositionality can then be formulated as f(t1...t,)° =
fe(ty...ty), where f°isthe n-ary linearisation function corresponding to the n-ary abstract function f.

2Grammatical Framework: http://www.grammaticalframework.org/

http://www.grammaticalframework.org/

MUSTE, Appendix A: Resarch Program Peter Ljunglof, 711031-2910

The linearisation does not have to be a single string, but its result type can be different depending on the
context. As an example, the linearisation of catis an inflection table, which says that the corresponding
strings should be “cat” in a singular context and “cats” in a plural context. The context is determined by
the determiner, so the linearisation of a is a string that selects the singular value of its child, whereas
some specifies a plural child.

The concrete syntax of our example grammar is shown in Figure 3, and here are the linearisations of
the example tree and a similar tree where the determiner a is replaced by all:

sentence(a(cute(cat)), sleep)® = “a cute cat sleepd’

sentence(all(cute(cat)), sleep)® = “all cute cats sleey’

Note that the number of the determiner determines the inflection of both the noun and the verb, and
that this inflection dependency is independent of the distance between the determiner and the verb.
That the grammar formalism can handle long-distance dependencies is crucial if we want to write gram-
mars for languages such as Swedish, German or Finnish.

3.1.2 Trees and tree editing

The tree edit distance is a distance measure between trees [24], which is a modification of the well-
known Levenshtein string edit distance, where the distance between two trees is the number of editing
operations required to transform one into the other. The allowed operations are 1) to insert a new node
as a child of an existing node, 2) to delete a node, and 3) to replace an existing node with a new.

In our theory we use a variant of tree edit distance where nodes are ordered by semantic similar-
ity, which is a notion that will be defined by the grammar. One possibility is to use Wordnet [16] for
calculating the semantic similarity between two concepts.

Constrained linearisation In GF, not all strings in a linearisation of a subtree node have to be used in
the linearisation of the full tree. In the example grammar, cat® contains two strings (“cat” and “cats”),
but only one of them is used in t, = sentence(a(cute(cat)), sleep)®. We need to be able to talk about
only the parts of a linearisation that are used, and for this purpose we define the constrained lineari-
sation [v]; of a subtree node v in a tree ¢t. The intuition is that [v]; consists of the strings in v° that
are actually used when calculating t°. For the example tree t, we get the constrained linearisations
[cat]:, = “cat’ and [sleep]s, = “Sleepsd’.

Constraints for tree editing Each GF grammarrule f : A;... A, — A can be seen as a constraint on
f-labeled nodes and its children. Checking that a tree is licensed by a grammar, which in GF is the same
as checking that the tree is type-correct, can then be implemented as a constraint satisfaction problem
[23]. Furthermore, when we formulate the grammar as constraints on trees, we can add additional
constraints for specifying in more detail how our intended tree should look like.

By using tree constraints and a suitable semantic edit distance, we can describe a system for interac-
tive tree editing. The system starts with a grammatical tree, and the user specifies additional constraints
on the tree. The system then searches for the closest grammatical tree (in terms of semantic distance)
that meets the constraints. This continues until the user is satisfied.

This approach lifts the level of tree editing from procedural to declarative: the user does not have
to think about how to modify the tree, but instead she specifies what the tree should look like. We use
two kinds of constraints:

e Structural constraints on the tree: We can specify whether a node should be or not be in the tree:
v e Vandv ¢V, respectively.

¢ Linearisation constraints: We can specify whether the (constrained) linearisation of a node shoule
be or not be a given string: [v] = s and [v] # s, respectively. There is also a linear precedence
constraint: [[v]] < [v'], which means that [v] comes before [v'] and that they are adjacent.

MUSTE, Appendix A: Resarch Program Peter Ljunglof, 711031-2910

Example: Modifying a phrase The context-menu example shown in Figure 1, can be explained like
this. Assume that we start with the following tree t,:

ta = sentence(a(cute(cat)), sleep) ty = “a cute cat sleepd’

This tree has the nodes sentence, a, cute, cat and sleep. Now we want to say that the third word
(whose corresponding node is cat) should be in plural form. This can be specified by the constraint
[cat] = “cats’. The system can then apply the tree editing operations to search for the most similar
type-correct tree ¢, meeting the constraint. In this case it suffices to replace the determiner a by all:

t, = sentence(all(cute(cat)), sleep) t'° = “all cute cats sleey’

Semantic distance When the grammar is large, there might be several possible syntax trees that are
equally close to the original tree (in terms of number of tree editing operations), making it difficult to
decide which one would be a good alternative to suggest to the user. Our solution is to use a more
fine-grained distance measure, where the cost of the editing operations depend on the specific values
of the nodes that are involved .

If the example grammar contains the plural determiner some in addition to all, there will be two
possible solutions to the example problem. This is why we have to augment the grammar with a semantic
distance measure between different abstract functions. In this case the grammar might state that some
is semantically more similar to a than allis, which therefore will suggest that the most similar resulting
tree would be be sentence(some(cute(cat)), sleep).

In a much the same way we can introduce similarity costs for deleting and inserting nodes; so that
some functions prefer some other functions as parents, or siblings. This could be used for deciding which
tree node a new phrase should attach to.

3.1.3 Syntactic editing of the surface string

Now we are ready to hide the semantic trees from the user altogether, and introduce semantic editing
operations directly on the surface string. Our final goal is to implement a text editor where the user
does not need any knowledge of formal grammars or semantic trees. Instead the text is presented to
the user as a sequence of words, and in this section we define two intuitive editing operations on the
text.

To implement these operations, we only make use of one GUI “gesture”, to select an object (other
names are to click or point). The user can either select a word or the empty space between two words.
This makes it possible to implement the operations in a very limited interface, such as switch access
scanning [22].

Since the user only modifies the surface string, we need a way of translating surface editing opera-
tions onto the underying semantic tree. We use the fact that in GF, each surface word belongs to one
and only one node in the tree. So, when the user makes a gesture on a word w € [v], we interpret it
as a gesture on the underlying node v.

Modifying or deleting a phrase When the user selects a word w € [v], the system first highlights
the whole phrase s = [v] (which can contain more words than w), and then displays an editing menu
for that phrase. To calculate the menu, we search for similar trees ¢’ satisfying the constraint [v] # s,
i.e., so that v is linearised differently from the current linearisation. For each of these trees, we create a
menu item consisting of the constrained linearisation [v]. A special case is when the node v is deleted
from the tree, which we handle in the same way as the empty linearisation [v]y = e.

If there are no matching similar trees, we increase the selection by moving up to the parent node v'.
Then we try again to find similar trees satisfying the constraint [v'] # s, and so on.

When the user selects a menu item, the current tree t is replaced by the new tree . The selected
node v remains highlighted. The example in Figure 1 shows what happens when the user selects the
menu item “catd’ for the selected word “cat’.

MUSTE, Appendix A: Resarch Program Peter Ljunglof, 711031-2910

Inserting a phrase If the user selects the space between two words w € [v1]; and wy € [va]y, thisis
interpreted as the user wants to insert a phrase between the two nodes. We search for similar trees ¢’
satisfying the constraints [v1] < [v'] < [vz], where v is the inserted node. Note that v can be part of
the original tree ¢, but does not have to. For each matching tree ¢/, we create a menu item [v'],. When
the user selects a menu item, the tree t is replaced by ¢'.

3.2 Use cases

The following are two example use cases where multimodal text editing can prove useful. We plan to
implement prototypes for both of them in the project. Some other possible use cases are discussed in
section 3.5.

Mobile phrasebook translationaid The grammar formalism that we are using is multilingual, meaning
that the underlying abstract syntax term is language-independent and can be linearized into several
different languages, depending on the grammar that is used. Multilinguality can be incorporated into
our text editing system, e.g., by showing linearisations of the abstract term in two different languages —
the user’s native language, and the language of the country that the user is visiting. The user can edit
the sentence in her own language and all the time the sentence in the other language keeps updated.
When the user is satisfied with the sentence, she can get the device to speak it out loud it in the other
language and thus have a mobile communication tool between two languages. This communication tool
will be more advanced than a traditional phrasebook, but it will still produce more correct translations
than statistical machine translation (such as Google Translate).

AAC communication tool People with communicative disabilities, such as Autism Spectrum Disorder
(ASD) or Cerebral Palsy (CP), often communicate via Augmentative and Alternative Communication (AAC)
tools. Standardly these tools consist of a grid of input symbols which the user can select by pointing with
afinger, or by using a switch or via eye gaze. The input symbols can be letters, or words, or even graphical
symbols such as Blissymbolics, PCS or ARASAAC.

Most existing AAC communication tools are based on inputting words or symbols incrementally left-
to-right, and it is often very cumbersome to edit something in the middle of an utterance, a task that
our proposed editing system could make much easier. In addition, since the suggestions made by the
system can be ordered by syntactic or semantic similarity, they will make more sense to the user and
thus be a good alternative for people with cognitive disabilities. The multilingual grammar is also very
useful in this case —the user can edit the text using graphical symbols, and the system will automatically
edit an equivalent text in Swedish or English or whatever target language.

3.3 Evaluation

As we mentioned in the introduction, one of our main reasons for introducing the new approach to
text editing is to be able to reduce cognitive load when authoring and editing text messages. When
the prototypes are implemented we will perform rigorous evaluations, where we will investigate the
efficiency and cognitive load when performing editing tasks, and compare with other editing interfaces.

These evaluations will be performed in collaboration with researchers experienced in evaluating
cognitive load for dialogue systems, and with researchers experienced in evaluation of AAC tools (see
section 6 for information about these collaborations).

3.4 Work plan

The project is budgeted for 5 years, with Peter Ljunglof (PI) contributing 30% of his time, and there will
be one PhD student that will work 80% during the whole project. A more detailed time plan follows
here.

Year1l Duringthe first year we will further develop the algorithm for suggesting similar semantic trees
so that it can work efficiently on large-sized grammars. We will also start developing a first prototype

MUSTE, Appendix A: Resarch Program Peter Ljunglof, 711031-2910

for the AAC communication tool described in section 3.2, together with an associated grammar that can
translate between AAC symbols and Swedish.

Year 2 In the second year, a first version the AAC prototype will be finished and we will perform an
initial evaluation on users. The evaluation will guide us on how the editing interface and the AAC gram-
mar should be developed further. At the same time we will extend the grammar into more languages,
such as the Scandinavian languages, Finnish, English, German, Spanish and others.

Year 3 We will integrate the AAC tool with other input methods, such as different ways of authoring
the initial text that can be edited afterwards. This could be speech recognition or non-linear selection
of AAC symbols from a grid of images [28].

We will improve upon the semantic similarity measure so that it can be learned automatically from
existing lexica and corpora. At the same time we will start developing our second proof-of-concept, a
multilingual phrasebook grammar that can be used by anyone by anyone with a mobile phone travelling
abroad.

Year 4-5 Apart from refining the methods, interfaces and algorithms, we have time in the final years
for an extensive evaluation of the multilingual phrasebook, and in particular for determining the ef-
ficiency and cognitive load, compared to alternative text authoring methods. Furthermore we will
strenghten our collaboration with other research groups working on AAC communication, mobile trans-
lation or language learning.

3.5 Possible future use cases

In this project we only have the time to develop two proof-of-concept prototypes, one AAC tool and
a mobile phrasebook translation app. Our methods have more potential uses, and here are two more
possible useful tools which we won’t pursue in this project.

Quick text messaging Most mobile phones have a possibility for sending quick text messages which
you can use when you don’t have the time to answer, or if you’re busy with something else. These
normally consists of a number of pre-stored messages that you cannot edit at all. By using keyboard-
less text editing, you can quickly personalize the message by just a few screen interactions, thus closing
the gap between canned text and writing full text messages from scratch.

The editing system does not have to be controlled by pointing, instead we could use a voice-controlled
menu system such as the VoiceCursor [8]. Then the user would not have to look at a screen at all, which
makes it useful in cognitively disabled situations such as when driving a car.

Foreign language learning Multilingual text editing can also be used for implementing a tool for learn-
ing a foreign language. The idea is that it will work as an interactive textbook, where the user can read
different texts and also experiment with and modify the texts. The system will be divided into modules
dealing with different linguistic features, e.g., inflection, simple phrases and more advanced construc-
tions. The system would also be able to generate quizzes, e.g., by generating two slightly different
sentences in the source and target languages, and let the user modify the target sentence so that it
becomes a correct translation of the source sentence.

4 Significance

The ideas that we want to pursue in this project suggest a completely new way of thinking about text edit-
ing, as a two-dimensional process where any word can be edited any time, instead of a one-dimensional
process of adding new words at the end of a text. This is ground-breaking and has the potential to make a
difference in the everyday life of anyone who wants to communicate efficiently using multimodal input,
be it a mobile phone or an AAC communication tool.

Compared to a touch-screen with a virtual keyboard of =30 characters taking up half of the screen,
our proposed method will allow more room for displaying the text, and the touchable areas will be larger.
This will make it easier for users to select the intended word, which in turn will reduce the congnitive

MUSTE, Appendix A: Resarch Program Peter Ljunglof, 711031-2910

load. Furthermore, the conceptual simplicity of the interaction will make it possible to use different
input modalities, such as eye tracking or switch access scanning.

5 Preliminary results

GRASP (“Grammatikbaserad sprakinlarning”) was a small project financed by Sunnerdahls Handikapp-
fond in 2010 where we developed the basic theory of syntax editing that was described in section 1.2
[10, 11]. There is a working online prototype which uses a simple non-heuristic search strategy to find
new replacement suggestion.®> We are currently fine-tuning the prototype and will demonstrate it on
Vetenskapsfestivalen here in Gothenburg 8 May 2014.

6 Collaboration

CLT (Centre for Language Technology) is an organization for collaboration between language technology
researchers at the at the University of Gothenburg and Chalmers University of Technology. We will work
in close collaboration with the developers of Grammatical Framework (Aarne Ranta, Thomas Hallgren
and other people in the Grammar Technology Lab at CLT) when we develop the grammars and algorithms
for the project, by building upon existing grammars and algorithms.

The VR project REMU? is a project for reliable multilingual communication, which also builds upon GF
technology. Our project is independent from and has a different purpose than REMU, where we focus
on the interaction and cognitive load of text editing, while REMU focuses on making grammars more
reliable by using formal methods and logical reasoning. There are possible synergy effects between the
projects, which we of course will make use.

The Dialogue Technology Lab at CLT has long experience on developing and evaluating dialogue sys-
tems (Staffan Larsson, Simon Dobnik and others), and in particular they have experience on how to
reduce and evaluate cognitive load. The user evaluations will be conducted in collaboration with them.

DART (Centre for Augmentative and Alternative Communication and Assistive Technology, Sahlgren-
ska University Hospital, Gothenburg) is the leading centre for alternative and augmentative communica-
tion in Western Sweden, and has long experience of working with people with communication difficul-
ties, as well as conducting research on AAC and accessive technologies. Peter Ljunglof has collaborated
with DART in several projects about using language technology in AAC tools (Katarina Heimann Miihlen-
bock, Mats Lundalv and others). We will collaborate with DART in the design and evaluation of the AAC
prototype tool.

7 Ethical considerations

There are always ethical considerations when conducting user evaluations. Ethics is even more impor-
tant when it comes to people with disabilities, since they are relatively few and in a vulnerable position.
Therefore it is customary in Sweden that all research on disabled people should be approved by an in-
dependent ethics committee. Our collaborators DART has long experience in designing user evaluations
and writing ethics applications, which we of course will take advantage of.

8 References

[1] Shiri Azenkot, Jacob O. Wobbrock, Sanjana Prasain, and Richard E. Ladner. Input finger detection for nonvisual touch
screen text entry in Perkinput. In Proceedings of GI’12: 38th Graphics Interface Conference, Toronto, Canada, 2012.

[2] Marc Dymetman, Veronica Lux, and Aarne Ranta. XML and multilingual document authoring: Convergent trends. In
COLING’00, 18th International Conference on Computational Linguistics, pages 243—-249, Saarbriicken, Germany, 2000.

[3] Michael D. Fleetwood, Michael D. Byrne, Peter Centgraf, Karin Q. Dudziak, Brian Lin, and Dmitryi Mogilev. An evaluation
of text-entry in Palm OS — Graffiti and the virtual keyboard. In Proceedings of the HFES 46th Annual Meeting, Santa
Monica, California, 2002.

30Online prototype: http://www.grammaticalframework.org/~peter/grasp/
“REMU (Reliable Multilingual Digital Communication: Methods and Applications), Project within VR “Rambidrag: Det digi-
taliserade samhallet - igar, idag, imorgon”, 2013-2017.

http://www.grammaticalframework.org/~peter/grasp/

MUSTE, Appendix A: Resarch Program Peter Ljunglof, 711031-2910

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

[17]

(18]

[19]

[20]
(21]

(22]

[23]

(24]

[25]

[26]

[27]
(28]

Brian Frey, Caleb Southern, and Mario Romero. BrailleTouch: mobile texting for the visually impaired. In Proceedings of
UAHCI’11: 6th International Conference on Universal Access in Human-Computer Interaction: Context Diversity, volume
Il, pages 19-25, Orlando, Florida, 2011.

Vittorio Fuccella, Poika Isokoski, and Benoit Martin. Gestures and widgets: Performance in text editing on multi-touch
capable mobile devices. In Proceedings of CHI 2013: The ACM SIGCHI Conference on Human Factors in Computing
Systems, Paris, France, 2013.

Janna Khegai, Bengt Nordstrom, and Aarne Ranta. Multilingual syntax editing in GF. In A. Gelbukh, editor, CICLing—2003:
Intelligent Text Processing and Computational Linguistics, LNCS 2588, pages 453—464. Springer-Verlag, 2003.

Per Ola Kristensson and Shumin Zhai. Command strokes with and without preview: Using pen gestures on keyboard for
command selection. In Proceedings of CHI 2007: The ACM SIGCHI Conference on Human Factors in Computing Systems,
San Jose, California, 2007.

Staffan Larsson, Alexander Berman, and Jessica Villing. Multimodal menu-based dialogue with speech cursor in DICO
Il+. In Proceedings of ACL-HLT’11: 49th Annual Meeting of the Association for Computational Linguistics, Systems
Demonstrations, Portland, Oregon, 2011.

Peter Ljunglof. Dialogue management as interactive tree building. In DiaHolmia’09, 13th Workshop on the Semantics
and Pragmatics of Dialogue, Stockholm, Sweden, 2009.

Peter Ljunglof. GRASP: Grammar-based language learning. In SLTC’10, 3rd Swedish Language Technology Conference,
Linkdping, Sweden, 2010.

Peter Ljunglof. Editing syntax trees on the surface. In Nodalida’11: 18th Nordic Conference of Computational
Linguistics, Riga, Latvia, 2011.

I. Scott MacKenzie and R. William Soukoreff. Text entry for mobile computing: Models and methods, theory and
practice. Human-Computer Interaction, 17(2-3):147-198, 2002.

Paivi Majaranta and Mick Donegan. Introduction to gaze interaction. In Paivi Majaranta, Hirotaka Aoki, Mick Donegan,
Dan Witzner Hansen, John Paulin Hansen, Aulikki Hyrskykari, and Kari-Jouko Ré&iha, editors, Gaze Interaction and
Applications of Eye Tracking: Advances in Assistive Technologies. G| Global, 2012.

Kathleen F. McCoy. Simple NLP techniques for expanding telegraphic sentences. In Proceedings of the EACL’97
Workshop on Natural Language Processing for Communication Aids, Madrid, Spain, 1997.

Kathleen F. McCoy, Christopher A. Pennington, and Arlene Luberoff Badman. Compansion: From research prototype to
practical integration. Natural Language Engineering, 4(1):73-95, 1998.

George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and Katherine J. Miller. Introduction to WordNet:
an on-line lexical database. International Journal of Lexicography, 3(4):235-244, 1990.

R. Power and D. Scott. Multilingual authoring using feedback texts. In Proceedings of COLING-ACL’98: 17th
International Conference on Computational Linguistics and 36th Annual Meeting of the Association for Computational
Linguistics, 1998.

Aarne Ranta. The GF resource grammar library. Linguistic Issues in Language Technology, 2(2), 2009.

Aarne Ranta. Grammatical Framework: A multilingual grammar formalism. Language and Linguistics Compass,
3(5):1242-1265, 2009.

Aarne Ranta. Grammatical Framework: Programming with Multilingual Grammars. CSLI Publications, Stanford, 2011.

Aarne Ranta, Ramona Enache, and Grégoire Détrez. Controlled language for everyday use: the MOLTO phrasebook. In
Proceedings of CNL’10: 2nd Workshop on Controlled Natural Language, Marettimo Island, Italy, 2010.

Brian Roark, Jacques de Villiers, Christopher Gibbons, and Melanie Fried-Oken. Scanning methods and language
modeling for binary switch typing. In Proceedings of SLPAT’10: 1st Workshop on Speech and Language Processing for
Assistive Technologies, Los Angeles, California, 2010.

Martin Sulzmann and Peter J. Stuckey. HM(X) type inference is CLP(X) solving. Journal of Functional Programming,
18(2):251-283, 2008.

Kuo-Chung Tai. The tree-to-tree correction problem. JACM, Journal of the Association for Computing Machinery,
26:422-433, 1979.

Hussain Tinwala and I. Scott MacKenzie. Eyes-free text entry on a touchscreen phone. In Proceedings of TIC-STH:
Science and Technology for Humanity, Toronto, Canada, 2009.

David J. Ward, Alan F. Blackwell, and David J. C. MacKay. Dasher: A gesture-driven data entry interface for mobile
computing. Human-Computer Interaction, 17(2—-3):199-228, 2002.

Karl Whitfield. Mobile messaging markets: January 2014. Technical report, Portio Research Ltd, 2014.

Karl Wiegand and Rupal Patel. SymbolPath: a continuous motion overlay module for icon-based assistive
communication. In Proceedings of the ASSETS’12: 14th international ACM SIGACCESS Conference on Computers and
Accessibility, New York, USA, 2012.

10

