
Kansliets noteringar
Kod

Dnr

2011-2993-88525-26

2011
Project Research GrantArea of science

Natural and Engineering Sciences
Announced grants

Project research grant NT 13 April 2011
Total amount for which applied (kSEK)

2012 2013 2014 2015 2016

1046 1081 1114 1152

Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

APPLICANT
Name(Last name, First name) Date of birth Gender

Jansson, Patrik 720311-7515 Male
Email address Academic title Position

patrikj@chalmers.se Associate professor Docenttjänst
Phone Doctoral degree awarded (yyyy-mm-dd)

031-7725415 2000-06-09

WORKING ADDRESS
University/corresponding, Department, Section/Unit, Address, etc.

Chalmers tekniska högskola
Department of Computer Science and Engineering
Programvaruteknik
Rännvägen 6b
41296 Göteborg, Sweden

ADMINISTERING ORGANISATION
Administering Organisation

Chalmers tekniska högskola

DESCRIPTIVE DATA
Project title, Swedish (max 200 char)

Starkt typade bibliotek för program och bevis

Project title, English (max 200 char)

Strongly Typed Libraries for Programs and Proofs

Abstract (max 1500 char)

Our long-term goal is to create systems (theories, programming languages, libraries and tools) which make it easy to develop
reusable software components with matching specifications. In this research project, the main focus is on libraries. Strongly-typed
programming languages allow to express functional specifications as types. Checking the types of a program then means checking it
against its specification. Within such powerful programming languages, libraries are not only building blocks of programs, but also of
proofs. We believe that such libraries will eventually become the main means of developing programs, and because they come with
strong types, the programs built using the library will come with strong properties that will make the whole easy to prove correct. The
production of such libraries will also inform the design of future strongly-typed programming languages.  In the recent years,
strongly-typed programming languages have started to become usable, but remain confined to a small niche. Our libraries will make
them a viable solution for a broader range of applications, bringing higher guarantees of correctness to a wider user base. To check
the applicability of our libraries, we will apply them to classical problems of computer programming, such as certain
divide-and-conquer algorithms or optimisation problems, as well as to the construction of tools supporting dependently-typed
programming themselves.



Kod

2011-2993-88525-26
Name of Applicant

Jansson, Patrik

Date of birth

720311-7515

Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Abstract language

English
Keywords

Software Technology, Functional Programming, Dependent Types, Program Verification, Generic Programming
Research areas

Computer Science
Review panel

NT-S, NT-R
Classification codes (SCB) in order of priority

10201, 10205, 10103
Aspects

Continuation grant

Application concerns: New grant
Registration Number: 
Application is also submitted to

similar to: identical to:

ANIMAL STUDIES
Animal studies

No animal experiments

OTHER CO-WORKER 
Name(Last name, First name) University/corresponding, Department, Section/Unit, Addressetc.

, 

Date of birth Gender

Academic title Doctoral degree awarded (yyyy-mm-dd)

Name(Last name, First name) University/corresponding, Department, Section/Unit, Addressetc.

, 

Date of birth Gender

Academic title Doctoral degree awarded (yyyy-mm-dd)

Name(Last name, First name) University/corresponding, Department, Section/Unit, Addressetc.

, 

Date of birth Gender

Academic title Doctoral degree awarded (yyyy-mm-dd)

Name(Last name, First name) University/corresponding, Department, Section/Unit, Addressetc.

, 

Date of birth Gender

Academic title Doctoral degree awarded (yyyy-mm-dd)



Kod

2011-2993-88525-26
Name of Applicant

Jansson, Patrik

Date of birth

720311-7515

Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

ENCLOSED APPENDICES
A, B, C, S

APPLIED FUNDING: THIS APPLICATION 
Funding period (planned start and end date)

2012-01-01 -- 2015-12-31
Staff/ salaries (kSEK)

Main applicant % of full time in the project 2012 2013 2014 2015 2016

Patrik Jansson 20 268 277 286 296

Other staff

Jean-Philippe Bernardy (PostDoc) 65 646 668 690 714

Total, salaries (kSEK): 914 945 976 1010

2012 2013 2014 2015 2016

Travel, offices, IT 132 136 138 142

Total, other costs (kSEK): 132 136 138 142

Total amount for which applied (kSEK)

2012 2013 2014 2015 2016

1046 1081 1114 1152

ALL FUNDING
Other VR-projects (granted and applied) by the applicant and co-workers, if applic. (kSEK)

Funded  2011 Funded  2012 Applied  2012Proj.no.(M) or reg.nr.

2009-4303 1857 1857
Project title Applicant

Software Design and Verification
using Domain Specific Languages:
Putting Functional Programming to
Work

John Hughes

Funds received by the applicant from other funding sources, incl ALF-grant (kSEK)

Total Proj.period Applied  2012Funding source

EU, FP7 11700 2010-2012
Project title Applicant

Global System Dynamics and Policy Carlo Jaeger



Kod

2011-2993-88525-26
Name of Applicant

Jansson, Patrik

Date of birth

720311-7515

Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

POPULAR SCIENCE DESCRIPTION
Popularscience heading and description (max 4500 char)

En viktig gren av forskningen inom datavetenskap handlar om att utveckla system (programspråk, verktyg, programbibliotek, teorier)
som gör det enkelt att konstruera korrekt och återanvändbar programvara. Detta projekt siktar på att utnyttja funktionella
programspråk med starka typsystem till att skapa bibliotek av komponenter som kan uttrycka både specifikationer och
implementationer som uppfyller dessa. Vi kommer att utnyttja datorstödd interaktiv programutveckling där automatiska verktyg ger
snabb återkoppling på vilka delar som inte uppfyller specifikationen.

Den teoretiska möjligheten att uttrycka program och bevis i samma programspråk är känd sedan många år, men det är bara nyligen
som teknikutvecklingen har medgett att utveckla större programbibliotek på detta sätt. Detta innebär att det finns många spännande
grundläggande frågor kvar att utforska och vi avser börja med enkla algoritmer för att sedan steg för steg utforska hur långt det går
att komma. Vi arbetar iterativt i tre nivåer för att utveckla komponentbiblioteken. Första nivån är att implementera en lösning på ett
visst problem (sökning, optimering eller liknande), nästa nivå är att abstrahera ut gemensamma mönster till programbibliotek och
slutligen vill vi utvärdera vilka möjliga förändringar av den underliggande språket som skulle kunna förbättra resultaten. Inom projektet
kommer vi att arbeta fram korrekta generiska bibliotek uttryckta i språket Agda. Agda är ett verktyg baserat på typteori och funktionell
programmering som möjliggör utveckling av program och specifikationer i samma språk. Utvecklingen av språket har skett (och
forskrider parallellt med biblioteksprojektet) i ett internationellt samarbete (med Japan, Tyskland och England) lett av Chalmers.

På lång sikt kan bevisbart korrekta programbibliotek användas och återanvändas som byggstenar vid all slags
programvarukonstruktion. Detta ger allmänt sett mer pålitliga program, och färre buggar. Ett spännande applikationsområde är
exekverbara, överblickbara högnivåmodeller för komplexa system. Vi har hittills mest fokuserat på att modellera komplexa system
inom dataområdet (logiska ramverk, lingvistik, programspråk, hårdvara) men i samarbetet med Potsdams Institut för Klimatforskning
(PIK) har vi börjat arbeta med komplexa system i interaktionen mellan klimat, ekonomi och samhälle. PIK har under flera år arbetat
med simuleringar av komplexa system och har under senare år börjat använda funktionell programmering som ett verktyg för att
experimentera med och kommunicera de högnivåmodeller som behövs för att överblicka komplexa system. Dessa högnivåmodeller
översätts senare i flera steg till effektiv programkod som klarar att köra tunga simuleringar inom rimlig tid. (Dessa simuleringar ger
underlag till politiska beslut inom klimatområdet.) PIK tog kontakt med Chalmers för att fördjupa sin kompetens inom
högnivåmodellering med hjälp av moderna programspråk (som Haskell och C++) och vi har under åren som gått haft flera kontakter
där starkt typade bibliotek för program och bevis har utkristalliserats som det forskningsområde där Chalmers bäst kan komplettera
PIK.

På Chalmers leds projektet av Patrik Jansson (inom gruppen Funktionell Programmering). Jansson har forskat om generisk
programmering sedan 1995 i olika konstellationer och det internationella kontaktnätet är mycket starkt. Den lokala forskningsmiljön
inom D&IT-institutionen är världsledande även inom flera närliggande områden - automatisk testning (Hughes, Claessen),
domänspecifika språk (Sheeran, Claessen), typteori (Coquand), språkteknologi (Ranta).



VRAPS/VR-Direct bilaga 2004.Ae                                                                                                     Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Name of applicant

Date of birth

Kod

Title of research programme

Appendix  A
Research programme



Strongly Typed Libraries for Programs and Proofs

Patrik Jansson and Jean-Philippe Bernardy

1 Main objectives

Our long term goal is to create systems (theories, programming languages, libraries and
tools) which make it easy to develop software components and matching speci�cations.
In this research project, we aim to leverage the power of languages with strong types to
create libraries of components which can express functional speci�cations in a natural way,
and, simultaneously, implementations which satisfy those speci�cations. The ideal we aim
for is not merely correct programs, nor even proven correct programs; we want proof done
against a speci�cation that is naturally expressed for a domain expert.

Concretely, we aim to identify common patterns in the speci�cation of programs, and
capture those in libraries. At the same time, the patterns of implementations of these
speci�cations will also be captured in the library, such that the development of software
will go hand-in-hand with proofs of its functional correctness. As case-studies we will work
in three areas: simple divide-and-conquer algorithms, optimisation problems (inspired by
the Algebra of Programming [Bird and de Moor, 1997]), and self-application: applying our
results to parts of the implementation of the programming environment itself.

2 Research area overview

Abstraction. The ability to name and reuse parts of algorithms is one of the cornerstones
of computer science. Abstracting out common patterns enables separation of concerns,
both in the small (variables, functions) and in the large (modules, libraries). Conversely,
lack of abstraction may force the implementation to contain multiple instances of a single
pattern. This process of replication is not only tedious, but error-prone, because the
risk of software error is directly correlated with the size of the program. Hence, one
important trend in the evolution of new programming languages is improved support for
abstraction�making more and more of the language features programmable. Widely used
modern languages such as Java, C++, Scheme and Haskell are actively gaining abstraction
power with Java Generics [Bracha et al., 1998], C++ Templates [Stepanov and Lee, 1995],
Scheme's composable macros [Flatt, 2002] and Haskell meta-programming [Sheard and
Peyton Jones, 2002]. But there is a danger lurking�more complex features can increase
the risk of bugs and unintended behaviour. With new abstraction mechanisms we also
need new computer-aided sanity checks of the program code.

1



Appendix A P. Jansson, 720311�7515, StrongLib

Types. Types are used in many parts of computer science to keep track of di�erent
kinds of values and to keep software from going wrong. In a nutshell, types enable the
programmer to keep track of the structure of data and computation in a way that is
checkable by the computer itself. E�ectively, they act as contracts between the implementor
of a program part and its users. If type-checking is performed statically, when the program
is compiled, it then amounts to proving that properties hold for all executions of the
program, independently of its input.

By the Curry�Howard correspondence, type systems are isomorphic to logics. Rich type
systems, such as those for languages with higher-order abstraction, correspond to higher-
order logics. A well-know example of a system based on this principle is the Coq proof
assistant [The Coq development team, 2010].

Dependently typed programs. Even though type-theory has been used as a logic for
decades, it has recently gained popularity as a medium for programming. The �agship
of dependently-typed programs is perhaps Compcert, a C compiler written and veri�ed
in Coq [Leroy, 2009]. Other applications are however rapidly appearing. Chlipala et al.
[2009] show how to develop and verify imperative programs within Coq. Oury and Swierstra
[2008] describe a library for database access which statically guarantees that queries are
consistent with the schema of the underlying database. Morgenstern and Licata [2010]
show how to do programming language based security in Agda.

Agda. The programming language Agda is a system based on Martin-Löf type-theory
[Martin-Löf, 1984]. Within it, one can express programs, functional speci�cations as types,
and proofs (for example using algebraic reasoning) in a single language (by taking advantage
of the Curry�Howard isomorphism). Agda is currently emerging as a lingua-franca of
programming with dependent types. Its canonical reference, Norell's Thesis [Norell, 2007],
has been cited 50 times per year since its publication indicating strong academic interest.
The focus of this project is on expressing libraries of correct programs and proofs in the
dependently typed functional language of Agda.

Libraries for dependent types. Strongly typed languages, such as Agda and Coq,
come with standard libraries that contain useful building blocks to create programs, spec-
i�cations, and proofs. The Coq library is part of a mature system which has been used in
many projects (sometimes complemented by extensions such as Ssre�ect [Gonthier, 2009]).
However, it is mostly applied to proofs rather than programs, because the Coq system is
mostly intended as a proof assistant rather than a programming language. Even projects
which aim to use Coq as a programming platform, such as [Chlipala et al., 2009, Leroy,
2009] retain this separation. The same observation applies to the libraries of most systems
with dependent types. The Agda standard library (developed mainly by Danielsson), has
evolved from common abstractions needed by Agda programmers. It has been applied
to several domains, in particular parser combinators [Danielsson, 2010] and Algebra of
Programming [Mu et al., 2009].

2



Appendix A P. Jansson, 720311�7515, StrongLib

In the current Agda implementation, the portions of the library dedicated to programming
are essentially decoupled from the portions dedicated to proofs. This can be a drawback:
the structure of a proof often follows the same structure as the program it refers to, therefore
keeping the two separated violates the principle of abstraction described above.

3 Project description

Our project will be organised in multiple iterations, each re�ning the libraries obtained
during the previous one. (The �rst iteration will be based on our current experience with
Agda, and its standard library.) Each iteration will have the following three phases.

1. Development of a proven-correct application in a given domain. We believe
that the best way to develop libraries is by abstracting common patterns found in
various application domains. In this phase, we will assess the viability of our libraries
by applying them to a particular application domain (see below for the chosen case
studies on algebra of programming, optimisation and compilation).

2. Extraction of common pattern into libraries. In this phase, we will identify
common patterns found in the programs and speci�cations produced in the previous
phase, and capture them in libraries. At the same time, we will tie each pattern of
speci�cation to a pattern of implementation. We will then reimplement the applica-
tion previously produced using the software components of the library.

3. Re�nement of the programming language. In this phase we will assess the
strong and weak points of the underlying programming environment we use. We will
inform the group in charge of the development of the tool of the possible shortcomings
we might identify, and participate in their remedy, if suitable.

We work iteratively towards the following milestones (case studies) ranging from classical
problems of computer science to domain-speci�c applications:

AoP Develop libraries of programs and proofs for simple divide-and-conquer algorithms,
like sorting and searching.

Optim Develop speci�cations and libraries for optimisation and dynamical systems (case
study on economical and environmental models). In addition to domain knowledge
(provided by our contacts in Potsdam), this requires speci�cations and proofs for
higher order constructions like monads, functors and natural transformations.

Compile Work with the Agda team on implementation and speci�cation of parts of Agda
in Agda. This will both use the libraries developed in the project and improve the
tool chain to the bene�t of other users.

In the last section we show an example (chosen small enough to �t here) to illustrate how
the three phases outlined above may be realized in practice. Note that it is done in the
current Agda system, and that we expect to be able to improve on it.

3



Appendix A P. Jansson, 720311�7515, StrongLib

4 Preliminary �ndings

We have published results showing relevant related experience in all the suggested iteration
phases and application areas as indicated below.

4.1 The three phases of the iteration

Proven-correct applications: We have worked on correct applications in Haskell [Daniels-
son and Jansson, 2004, Jansson and Jeuring, 2002] and supporting theory [Danielsson et al.,
2006]. We are now ready to move from Haskell to Agda.

Patterns into libraries: We have developed, implemented and compared libraries of
generic functions [Jansson and Jeuring, 1998a,b, Norell and Jansson, 2004b, Rodriguez
et al., 2008]. Most of this has been done in Haskell, but it has become clear that the
natural setting for generic programming is dependent types.

Re�nement of programming languages: We have designed a generic programming
language extension (PolyP [Jansson and Jeuring, 1997]) for Haskell, and we have been
involved in the design of the Agda language [Norell, 2007]. We have also contributed to
the development of the �Concepts� feature of C++ by an extensive comparison to Haskell's
type classes [Bernardy et al., 2010c].

4.2 The three application areas

AoP: We have worked actively on implementing programs and proofs in the Algebra of
Programming tradition [Backhouse et al., 1999, Mu et al., 2008].

Optim: We also have recent experience in domain modelling in Haskell [Lincke et al.,
2009] and optimisation modelling in Agda [Mu et al., 2009]. We are also working with PIK
on Agda implementations of optimisation problems in economy & environment.

Compile: We have implemented a compiler for the language extension PolyP [Jansson,
2004b], experimented with embedding generic programming support in Haskell [Norell and
Jansson, 2004a] and been involved in implementing Agda [Norell et al., 2008].

4.3 Other relevant experience

Parametricity theory and applications. Thanks to the Curry-Howard isomorphism,
the type of each program correspond to a theorem. There is another relationship be-
tween types and propositions: each type-assignment gives rise to another theorem (the

4



Appendix A P. Jansson, 720311�7515, StrongLib

parametricity condition) about the object being typed. Bernardy et al. [2010b] have inves-
tigated how to integrate the above result in dependently typed languages. In that context,
the net e�ect is that for every type given by the programmer, an additional property
becomes available (for free) for showing the correctness of the program. An interesting ap-
plication of parametricity is in property based testing of polymorphic functions [Bernardy
et al., 2010a]. We expect to �nd more uses of parametricity during this project.

Libraries for speci�cations and programs. Dependent type theory is rich enough to
express that a program satis�es a functional speci�cation, but there is no a-priori method
to derive a program once the speci�cation-as-type is written. On the other hand, Bird and
de Moor [1997] give a general methodology to derive Haskell programs from speci�cations,
via algebraic reasoning. Despite the strong emphasis on correctness, their speci�cations
and proofs are not expressed in a formally checkable way. In [Mu et al., 2009] we have
shown how to encode program derivation in the style of Bird and de Moor, in Agda. A
program is coupled with an algebraic derivation from a speci�cation, whose correctness is
guaranteed by the type system. In this project we want to go further in this direction and
develop useful libraries of programs and proofs with corresponding types and theorems.

5 Signi�cance

The production of correct software is a problem which remains unsolved, and is of great
economic signi�cance. By leveraging the potential of dependently-typed languages, this
project aims to reduce the potential for errors by developing the speci�cation of a system
together with its implementation, and keeping them synchronised throughout the lifetime
of the system. A further advantage of this approach is that the skills required to construct
programs are directly applicable to understanding the speci�cations.

Software libraries have long been recognised as vehicles for increased software productivity.
First, they capture domain knowledge in terms of software solutions to the problems a user
wants to solve. Second, they add a layer of abstraction to the underlying computation,
which allows developers to write software in terms closer to their problem domain and
usually results in improved quality and robustness. We aim to go beyond state-of-the-art
when it comes to expressivity of libraries for programming with dependent types, which is a
relatively unexplored niche. By doing so, we hope to improve the software technology �eld
in general, as these libraries should serve as examples of good design for other applications.

The scienti�c contributions to the computer science area will be in the form of software
prototypes (the libraries and other associated code will be available under an open licence),
conference/journal talks/papers (on the techniques used to create the libraries as well as
on the amendments made to the languages with dependent types), and (post-)doctoral
training.

5



Appendix A P. Jansson, 720311�7515, StrongLib

6 International and national collaboration

With this project, we believe we are in an ideal situation for collaboration, as we have
contacts both upstream with the implementors of dependently-typed languages, and down-
stream with end-users of frameworks for formal modeling and implementation. In fact, we
believe that we are in the position to �ll in the niche of producing libraries for dependently-
typed languages, which are in demand from both sides, but currently lacking.

On the upstream side, we are in direct contact with the group currently in charge of
the development of Agda: The main developers, Norell and Danielsson, were Jansson's
students; and Agda Implementors' Meetings are held yearly at Chalmers. These meetings
regularly attract participants from research groups in Nottingham Univ., TU Munich, and
AIST (in Japan), among others. We have also close contacts with the programming-logic
group at Univ. of Gothenburg, which deals with the fundamental aspects of type-theory.

Downstream, we have contacts with domain experts at the Potsdam Institute for Climate
Impact Research (PIK), which are in demand of tools to describe models of various dynam-
ical systems (such as the atmosphere or the economy) in formal ways, as well as e�cient
implementations of these models. Since political decisions may depend on the outcome of
their simulations, matching the implementation with the models is important.

7 Organisation and budget

The project is led by Patrik Jansson in the Functional Programming (FP) group of the
Computer Science and Engineering (CSE) department at Chalmers. The work will be
carried out by Jansson (20%), J-P Bernardy (PostDoc 65%)1, a PhD student (not paid by
the project) and several MSc thesis students (not paid by the project). We apply for 70%
of the total project cost from VR, the rest is covered by Chalmers and other sources. We
will bene�t from work on generic libraries and high-level modelling done at (and funded
by) PIK (Daniel Lincke, Cezar Ionescu).

The �rst year of project is devoted to library support for Algebra of Programming (mile-
stoneAoP), the second and third year focus is onOptim and the last yearCompile. Jans-
son and Bernardy will together supervise the PhD student towards her PhD on �Strongly
Typed Libraries for Programs and Proofs�.

Jansson is partially funded (20%) by J. Hughes' �Software Design and Veri�cation using
Domain Speci�c Languages� (VR, multi-project grant in ICT, 2009�2012). Hughes' project
applies functional programming techniques, especially DSLs embedded in Haskell and Er-
lang, to the design and veri�cation of complex software, taking motivating examples from
the telecom domain. The current project proposal, on the other hand, will provide more
long-term basic research in the software technology of the future.

1J-P Bernardy is currently a PhD student in the FP group but will defend his thesis in June 2011.

6



Appendix A P. Jansson, 720311�7515, StrongLib

8 An example illustrating the iterative process

Assume an ordering relation on values of type A. This may be expressed as follows.

postulate
A : Set
_6_ : Rel A
6�reexive : Reexive _6_
6�transitive : Transitive _6_

Furthermore, using a 6? b, we can decide which of a or b is bigger.

data Comp (a b : A) : Set where
leq : a 6 b ! Comp a b
gt : b 6 a ! Comp a b

postulate
_6?_ : (a b : A)! Comp a b

Using the above, it is possible to implement insertion into a sorted list.

insert : A ! List A ! List A
insert x [ ] = [x ]
insert x (x 0 :: xs) with x 6? x 0

insert x (x 0 :: xs) j leq = x :: x 0 :: xs
insert x (x 0 :: xs) j gt = x 0 :: insert x xs

In phase 1 we might want to prove that it preserves the property OrdAb lo that the list is
Ordered and Above a lower bound lo. The speci�cation of this property and its proof are
as follows:

7



Appendix A P. Jansson, 720311�7515, StrongLib

OrdAb : A ! List A! Set
OrdAb low [ ] = >
OrdAb low (x :: xs) = (low 6 x ) � OrdAb x xs

insert�ordered : 8 f log x xs ! lo 6 x ! OrdAb lo xs ! OrdAb lo (insert x xs)
insert�ordered x [ ] p q = (p; tt)
insert�ordered x (x 0 :: xs) p q with x 6? x 0

insert�ordered x (x 0 :: xs) p q j leq y = (p; (y ; proj2 q))
insert�ordered x (x 0 :: xs) p q j gt y = (proj1 q ; insert�ordered x xs y (proj2 q))

Independently, we might want to check that the insertion contains all the elements of the
input list. We do this by de�ning xs m ys to express that xs is a permutation of ys :

data _m_ : Rel (List A) where
stop : [ ] m [ ]
skip : 8 x fxs xs 0g ! xs m xs 0 ! x :: xs m x :: xs 0

swap : 8 x y xs ! y :: x :: xs m x :: y :: xs
trans : 8 fxs xs 0 xs 00g ! xs m xs 0 ! xs 0 m xs 00 ! xs m xs 00

insert�keeps : 8 x xs ! insert x xs m x :: xs
insert�keeps x [ ] = re
insert�keeps x (x 0 :: xs) with x 6? x 0

insert�keeps x (x 0 :: xs) j leq = re
insert�keeps x (x 0 :: xs) j gt = trans (skip x 0 (insert�keeps x xs)) (swap x x 0 xs)

In phase 2 we recognise that the induction pattern of both proofs about insertion is the
same, and we capture it in a proof-pattern of the following type (we omit the de�nition
for concision):

insert�ind : (P : A ! List A ! List A ! Set) !
(emp : 8 x ! P x [ ] [x ]) !
(les : 8 x x 0 xs ! x 6 x 0 ! P x (x 0 :: xs) (x :: x 0 :: xs)) !
(gre : 8 x x 0 xs res ! x 0 6 x ! P x xs res ! P x (x 0 :: xs) (x 0 :: res)) !
(8 x xs ! P x xs (insert x xs))

The proofs of preservation of ordering and permutation can then be easily constructed by
application of the insert�ind pattern to the speci�c induction hypothesis (the rest of the
arguments can be guessed by Agda's built-in proof search mechanism). For example:

insert�ordered : 8 f log x xs ! lo 6 x ! OrdAb lo xs ! OrdAb lo (insert x xs)
insert�ordered f lo0 g x xs = insert�ind
(� x 0 xs 0 res ! (lo : A)! lo 6 x 0 ! OrdAb lo xs 0 ! OrdAb lo res)
(� x 0 lo x0 x1 ! (x0 ; tt)) {-automatic -}
(� x 0 x0 xs 0 x1 lo x2 x3 ! (x2 ; x1 ; proj2 x3 )) {-automatic -}
(� x 0 x xs 0 res xs rec lo x3 p ! (proj1 p; rec x xs (proj2 p))) x xs lo0 {-automatic -}

8



Appendix A P. Jansson, 720311�7515, StrongLib

In phase 3 we realise that the construction of the induction-pattern for proofs can be
automatically deduced for any total function, and investigate how their generation can be
automated, perhaps via a modi�cation of the Agda system.

References

R. Backhouse, P. Jansson, J. Jeuring, and L. Meertens. Generic programming: An introduction.
In Advanced Functional Programming, volume 1608 of LNCS, pages 28�115. Springer, 1999.

J.-P. Bernardy, P. Jansson, and K. Claessen. Testing polymorphic properties. In A. Gordon,
editor, Proc. of ESOP 2010, volume 6012 of LNCS, pages 125�144. Springer, 2010a.

J.-P. Bernardy, P. Jansson, and R. Paterson. Parametricity and dependent types. In Proc. of

ICFP 2010, pages 345�356. ACM, 2010b.

J.-P. Bernardy, P. Jansson, M. Zalewski, and S. Schupp. Generic programming with C++ concepts
and Haskell type classes�a comparison. J. Funct. Program., FirstView:1�32, 2010c. doi:
10.1017/S095679681000016X.

R. Bird and O. de Moor. Algebra of Programming, volume 100 of International Series in Computer

Science. Prentice-Hall International, 1997.

G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe for the past:
adding genericity to the java programming language. In OOPSLA '98, pages 183�200. ACM,
1998. doi: 10.1145/286936.286957.

A. Chlipala, G. Malecha, G. Morrisett, A. Shinnar, and R. Wisnesky. E�ective interactive proofs
for higher-order imperative programs. In Proc. of the 14th ACM SIGPLAN international con-

ference on Funct. programming, ICFP '09, pages 79�90. ACM, 2009.

N. A. Danielsson. Total parser combinators. In Proc. of the 15th ACM SIGPLAN international

conference on Funct. programming, ICFP '10, pages 285�296. ACM, 2010.

N. A. Danielsson and P. Jansson. Chasing bottoms, a case study in program veri�cation in the
presence of partial and in�nite values. In MPC 2004, volume 3125 of LNCS, pages 85�109.
Springer, July 2004.

N. A. Danielsson, J. Hughes, P. Jansson, and J. Gibbons. Fast and loose reasoning is morally
correct. In POPL'06, pages 206�217. ACM Press, 2006.

M. Flatt. Composable and compilable macros:: you want it when? In ICFP '02, pages 72�83.
ACM, 2002. doi: 10.1145/581478.581486.

G. Gonthier. Ssre�ect: Structured scripting for higher-order theorem proving. In PLMMS'09,
page 1. ACM, 2009.

P. Jansson. The WWW home page for polytypic programming. http://www.cse.chalmers.se/
~patrikj/poly/, 2004a.

P. Jansson. The PolyP 1.6 compiler. Available from the Polytypic prog. page [Jansson, 2004a],
2004b.

P. Jansson and J. Jeuring. PolyP � a polytypic programming language extension. In Proc.

POPL'97: Principles of Programming Languages, pages 470�482. ACM Press, 1997.

9



Appendix A P. Jansson, 720311�7515, StrongLib

P. Jansson and J. Jeuring. PolyLib � a polytypic function library. Workshop on Generic Pro-
gramming, Marstrand, June 1998a. Available from the Polytypic prog. page [Jansson, 2004a].

P. Jansson and J. Jeuring. Functional pearl: Polytypic uni�cation. J. Funct. Program., 8(5):
527�536, 1998b.

P. Jansson and J. Jeuring. Polytypic data conversion programs. Science of Computer Program-

ming, 43(1):35�75, 2002.

X. Leroy. Formal veri�cation of a realistic compiler. Communications of the ACM, 52(7):107�115,
2009.

D. Lincke, P. Jansson, M. Zalewski, and C. Ionescu. Generic libraries in C++ with concepts from
high-level domain descriptions in Haskell: A DSL for computational vulnerability assessment.
In IFIP Working Conf. on Domain Speci�c Languages, volume 5658/2009 of LNCS, pages 236�
261, 2009.

P. Martin-Löf. Intuitionistic type theory. Bibliopolis, 1984.

J. Morgenstern and D. R. Licata. Security-typed programming within dependently typed pro-
gramming. In ICFP '10, pages 169�180. ACM, 2010. doi: 10.1145/1863543.1863569.

S.-C. Mu, H.-S. Ko, and P. Jansson. Algebra of programming using dependent types. In Mathe-

matics of Program Construction, volume 5133/2008 of LNCS, pages 268�283. Springer, 2008.

S.-C. Mu, H.-S. Ko, and P. Jansson. Algebra of programming in Agda: dependent types
for relational program derivation. J. Funct. Program., 19:545�579, 2009. doi: 10.1017/
S0956796809007345.

U. Norell. Towards a practical programming language based on dependent type theory. PhD thesis,
Chalmers Tekniska Högskola, 2007.

U. Norell and P. Jansson. Prototyping generic programming in Template Haskell. In D. Kozen,
editor, Mathematics of Program Construction, volume 3125 of LNCS, pages 314�333. Springer,
2004a.

U. Norell and P. Jansson. Polytypic programming in Haskell. In Implementation of Functional

Languages 2003, volume 3145 of LNCS, pages 168�184. Springer, 2004b.

U. Norell et al. Agda � a dependently typed programming language. Implementation available
from Google Code: http://code.google.com/p/agda/, 2008.

N. Oury and W. Swierstra. The power of Pi. In Proc. of ICFP 2008, pages 39�50. ACM, 2008.

A. Rodriguez, J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov, and B. C. d. S. Oliveira. Comparing
libraries for generic programming in Haskell. In Haskell'08, pages 111�122. ACM, 2008.

T. Sheard and S. Peyton Jones. Template meta-programming for haskell. In Proc. of the 2002

ACM SIGPLAN workshop on Haskell, Haskell '02, pages 1�16. ACM, 2002.

A. A. Stepanov and M. Lee. The standard template library. Technical Report HPL-95-11(R.1),
Hewlett Packard Laboratories, Palo Alto, CA, USA, Nov. 1995.

The Coq development team. The Coq proof assistant, 2010.

10



VRAPS/VR-Direct bilaga 2004.Be                                                                                                      Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Name of applicant

Date of birth

Kod

Title of research programme

Appendix  B
Curriculum vitae



Appendix B P. Jansson, 720311�7515, StrongLib

Curriculum Vitæ:

Patrik Jansson, 1972-03-11

1. Higher education degree:

1995: BSc+MSc degrees in Eng. Physics +
Eng. Mathematics from Chalmers, Sweden.
I graduated almost two years before schedule
as the best student of my year.

2. Doctoral degree:

2000: Ph.D. degree in CS from Chalmers,
Sweden, on Functional Polytypic Program-

ming, Advisor: Johan Jeuring.

3. PostDoc and guest research:

1998, 1998, 2001: Research visits (2 + 2
+ 3 months) to Northeastern University,
Boston, USA; Oxford University Computing
Lab, UK; Dept. of Computer Science, Yale,
USA.

4. Quali�cation as Assoc. Professor:

2004: Docent (Associate Prof.) degree from
Chalmers, Sweden.

5. Current Employment:

2004�now: Assoc. Prof., Chalmers. Re-
search 50% (2011).

6. Prev. Employment and Education:

1991�1992: Military service: Crypto ana-
lyst at the National Defence Radio Estab-
lishment (FRA). Hand picked (as one out of
�ve per year in Sweden) for 15 months of
special education in mathematics, statistics
and cryptanalysis.

2001�2004: Ass. Prof. in CS, Chalmers.

7. Interruptions in research:

Parental leave with Julia (1999) and Erik
(2004) for a total of one full time year.

2002�2005: Director of studies of the CS
dept. On average 35% / year for three years.

2005�2008: Vice head of the CSE dept. On
average 50% of full time / year for four years.

8. Supervision experience:

I was PhD advisor of Ulf Norell (PhD 2007)
and Nils Anders Danielsson (PhD 2007).
With Norell I worked on generic programs
and proofs and with Danielsson I worked on
program correctness through types. Both
Norell and Danielsson were immediately em-
ployed as PostDocs after their PhD (Norell
here at Chalmers and Danielsson in Notting-
ham). I have supervised over 20 MSc and
BSc project students.

I currently supervise the PhD students Jean-
Philippe Bernardy (Lic. 2009, expected PhD
in 2011), Cláudio Amaral (started March
2010) and Jonas Duregård (started August
2010). I also have partial responsibility for
two other PhD students: Ramona Enache (I
am her examiner) and Nick Smallbone (I am
his co-supervisor).

I have been a member of the evaluation com-
mittee of three PhD defenses at Chalmers
(T. Gedell, CSE (2008), M. Zalewski, CSE
(2008), H. Johansson, Physics (2010)).

9. Awards, grants, etc.:

1991: Winner of the Swedish National
Physics Olympiad

1991: Represented Sweden in the Interna-
tional Physics Olympiads.

1991: Represented Sweden in the Interna-
tional Mathematics Olympiad.

1



Appendix B P. Jansson, 720311�7515, StrongLib

1996: Received the John Ericsson medal for
outstanding scholarship, Chalmers

1997�2004: Obtained travel grants (277k
SEK in total) from several private founda-
tions

2003�2005: Co-applicant on Cover � Com-

bining Veri�cation Methods in Software De-

velopment funded with 8M SEK by the
Swedish Foundation for Strategic Research.

2003�2005: Main applicant on the project
Generic Functional Programs and Proofs

funded with 1.8M SEK by VR.

2008�present: Elected member of IFIP (In-
ternational Federation for Information Pro-
cessing) Working Group 2.1 on �Algorithmic
Languages and Calculi�.

2009�present: Elected member of the faculty
senate, Chalmers.

2009�2012: Co-applicant on �Software De-
sign and Veri�cation using Domain Speci�c
Languages� funded with 11M SEK by the
Swedish Science Council (VR, multi-project
grant in strategic ICT).

2010�2012: Co-applicant and work-package
leader in the Coordination Action �Global
Systems Dynamics and Policy� (GSDP)
funded with 1.3M EUR by the EU (ICT-
2009.8.0 FET Open).

I have been reviewer for Journal of Func-
tional Programming, Science of Computer
Programming, Principles of Programming
Languages and several other journals and
conferences.

Leadership experience:

2002�2008: Member of the steering group of
the department.

2002�2005: Director of Studies for the BSc
and MSc education at the CS department

2005�2008: Vice head of the CSE dept. re-
sponsible for the BSc and MSc education.

2008�2010: Deputy project leader of the IM-
PACT project at Chalmers (�Development of
Chalmers' New Master's Programmes�, 30M
SEK).

2009: Head of steering group of Chalmers
eScience Initiative.

2011-: Head of the 5-year education pro-
gramme in Computer Science and Engineer-
ing (Civilingenjör Datateknik, Chalmers).

Future goal:

In the long term I want to lead a strong
academic environment developing theories,
programming languages, libraries and tools
for advanced software technology in general
and generic programming in particular. To
achieve this I have to attract funding for new
PhD students and PostDocs and I have to
continue my close collaboration with the re-
searchers which make up the excellent local
research environment.

2



VRAPS/VR-Direct bilaga 2004.Ce                                                                                                     Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Name of applicant

Date of birth

Kod

Title of research programme

 



Appendix C P. Jansson, 720311�7515, StrongLib

C Publication lists

Selected Publications: Patrik Jansson

Note to non computer scientists Conference articles in computer science are peer
reviewed full articles � not 1�2 page abstracts, and are the normal form of refereed pub-
lication. The top conferences in each sub�eld (like POPL and ICFP below) typically have
the highest impact factor within that �eld, higher even than any journal.

Most cited publications (Google Scholar, 2011-04-07)

Jansson's Hirsch-index is 16, his total citation count is over 1100 and the following papers
are the �ve most cited.

P. Jansson and J. Jeuring. PolyP � a polytypic programming language extension. In Proc.
POPL'97: Principles of Programming Languages, pages 470�482. ACM Press, 1997.
Number of citations: 294.

R. Backhouse, P. Jansson, J. Jeuring, and L. Meertens. Generic programming: An in-
troduction. In Advanced Functional Programming, volume 1608 of LNCS, pages 28�115.
Springer, 1999.
Number of citations: 166.

J. Jeuring and P. Jansson. Polytypic programming. In J. Launchbury et al., editors,
Advanced Functional Programming '96, volume 1129 of LNCS, pages 68�114. Springer-
Verlag, 1996.
Number of citations: 149.

P. Jansson and J. Jeuring. Polytypic data conversion programs. Science of Computer
Programming, 43(1):35�75, 2002.
Number of citations: 57.

M. Benke, P. Dybjer, and P. Jansson. Universes for generic programs and proofs in depen-
dent type theory. Nordic Journal of Computing, 10(4):265�289, 2003. ISSN 1236-6064.
Number of citations: 52.

Journal articles (last 8 years, excluding the above)

J.-P. Bernardy, P. Jansson, M. Zalewski, and S. Schupp. Generic programming with C++
concepts and Haskell type classes � a comparison. J. Funct. Program., 20(3�4):271�302,
2010c. URL http://dx.doi.org/10.1017/S095679681000016X.
Number of citations: 2.

S.-C. Mu, H.-S. Ko, and P. Jansson. Algebra of programming in Agda: dependent types
for relational program derivation. J. Funct. Program., 19:545�579, 2009. doi: 10.1017/
S0956796809007345.
Number of citations: 16.

1



Appendix C P. Jansson, 720311�7515, StrongLib

Articles in refereed collections and conf. proceedings (last 8 years)

J.-P. Bernardy, P. Jansson, and R. Paterson. Parametricity and dependent types. In Proc.
of ICFP 2010, pages 345�356. ACM, 2010b.
Number of citations: 16.

J.-P. Bernardy, P. Jansson, and K. Claessen. Testing polymorphic properties. In A. Gordon,
editor, Proc. of ESOP 2010, volume 6012 of LNCS, pages 125�144. Springer, 2010a.
Number of citations: 7.

D. Lincke, P. Jansson, M. Zalewski, and C. Ionescu. Generic libraries in C++ with concepts
from high-level domain descriptions in Haskell: A DSL for computational vulnerability
assessment. In IFIP Working Conf. on Domain Speci�c Languages, volume 5658/2009 of
LNCS, pages 236�261, 2009.
Number of citations: 12.

A. Rodriguez, J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov, and B. C. d. S. Oliveira.
Comparing libraries for generic programming in Haskell. In Haskell'08, pages 111�122.
ACM, 2008.
Number of citations: 41.

J.-P. Bernardy, P. Jansson, M. Zalewski, S. Schupp, and A. Priesnitz. A comparison of
C++ concepts and Haskell type classes. In Proc. ACM SIGPLAN Workshop on Generic
Programming (WGP), pages 37�48. ACM, 2008.
Number of citations: 22.

S.-C. Mu, H.-S. Ko, and P. Jansson. Algebra of programming using dependent types.
In Mathematics of Program Construction, volume 5133/2008 of LNCS, pages 268�283.
Springer, 2008.
Number of citations: 9.

P. Jansson, J. Jeuring, and students of the Utrecht University Generic Programming class.
Testing properties of generic functions. In Z. Horvath, editor, Proceedings of IFL 2006,
volume 4449 of LNCS, pages 217�234. Springer-Verlag, 2007.
Number of citations: 4.

N. A. Danielsson, J. Hughes, P. Jansson, and J. Gibbons. Fast and loose reasoning is
morally correct. In POPL'06, pages 206�217. ACM Press, 2006.
Number of citations: 41.

N. A. Danielsson and P. Jansson. Chasing bottoms, a case study in program veri�cation
in the presence of partial and in�nite values. In MPC 2004, volume 3125 of LNCS, pages
85�109. Springer, July 2004.
Number of citations: 27.

U. Norell and P. Jansson. Prototyping generic programming in Template Haskell. In
D. Kozen, editor, Mathematics of Program Construction, volume 3125 of LNCS, pages
314�333. Springer, 2004a.
Number of citations: 10.

2



Appendix C P. Jansson, 720311�7515, StrongLib

U. Norell and P. Jansson. Polytypic programming in Haskell. In Implementation of Func-
tional Languages 2003, volume 3145 of LNCS, pages 168�184. Springer, 2004b.
Number of citations: 35.

Publicly available implementations (last 8 years)

I have designed and implemented a compiler for the polytypic language PolyP:

P. Jansson. The PolyP 1.6 compiler. Available from the Polytypic prog. page [Jansson,
2004a], 2004b.

I have also participated in the development of the Agda proof engine,

U. Norell et al. Agda � a dependently typed programming language. Implementation
available from Google Code: http://code.google.com/p/agda/, 2008.

The �rst description of Agda was in the PhD thesis of Ulf Norell (2007) and it has been
cited ’ 50 times / year since then, indicating a quick spread in academia.

3



VRAPS/VR-Direct b                                                                                                                            Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Name of applicant

Date of birth                                                       Reg date

Kod                                                                      Dnr

Project title 

  

DateApplicant

Head of department at host University                                                               Clarifi cation of signature                                                       Telephone

Vetenskapsrådets noteringar
Kod


	AmnesOmrade_S: Computer Science
	Amnesrad_S: NT
	AnsokanKod_A: 2011-2993-88525-26
	AnsokanKod_B: 2011-2993-88525-26
	AnsokanKod_C: 2011-2993-88525-26
	AnsokanKod_S: 2011-2993-88525-26
	appendix: Appendix S
	appendix_C: Appendix C
	Ar_S: 2011 - 
	BeredGrp_S: NT-S, NT-R
	Bidragsform_S: Project Research Grant
	Budget: 
	Ar_S1: 2012
	Ar_S2: 2013
	Ar_S3: 2014
	Ar_S4: 2015
	Ar_S5: 2016

	DetBud: List of publications
	Dnr_S: 
	ForhandText_A: 
	ForhandText_B: 
	ForhandText_C: 
	ForhandText_S: 
	ForvMynd_S: Chalmers tekniska högskola
	hjalptext1: A signature on the application is required not only from the applicant but also from the authorised representative of the host university/institution or equivalent (normally the head of the department or establishment where the research is to be conducted). The signature confirms that the department can accommodate the proposed research, position or equipment; that the costing in the application is approved for the department's part, that any proposed experimentation on human or animal subjects has been reported, and that the applicant has reported any secondary occupations and commercial ties (s)he may have, and nothing inconsistent with good research practice has thereby emerged. The applicant must have discussed these conditions with the representative of the host university/institution or equivalent before the latter approves and signs the application.
	hjalptext6: International Postdoctoral Fellowships are administered by the Swedish Research Council. The only signature required on the application is that of the applicant.
	hjalptext7: 
	hjalptext8: 
	ProjTitelEng_A: Strongly Typed Libraries for Programs and Proofs
	ProjTitelEng_B: Strongly Typed Libraries for Programs and Proofs
	ProjTitelEng_C: Strongly Typed Libraries for Programs and Proofs
	ProjTitelEng_S: Strongly Typed Libraries for Programs and Proofs
	RegDate_S: 2011-04-13 15:17:29
	S: 
	Namn_A: Jansson, Patrik
	Namn_B: Jansson, Patrik
	Namn_C: Jansson, Patrik
	Namn_S: Jansson, Patrik
	PersNr_A: 720311-7515
	PersNr_B: 720311-7515
	PersNr_C: 720311-7515
	PersNr_S: 720311-7515

	sign: Signatures
	SoktBeloppAr_S1: 1046
	SoktBeloppAr_S2: 1081
	SoktBeloppAr_S3: 1114
	SoktBeloppAr_S4: 1152
	SoktBeloppAr_S5: 
	StartSlut_S: 2012-01-01 -- 2015-12-31
	Text2: 2
	Utlysning_S: Project research grant NT 13 April 2011


