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Strongly Typed Libraries for Programs and Proofs

Patrik Jansson and Jean-Philippe Bernardy

1 Main objectives

Our long term goal is to create systems (theories, programming languages, libraries and
tools) which make it easy to develop software components and matching speci�cations.
In this research project, we aim to leverage the power of languages with strong types to
create libraries of components which can express functional speci�cations in a natural way,
and, simultaneously, implementations which satisfy those speci�cations. The ideal we aim
for is not merely correct programs, nor even proven correct programs; we want proof done
against a speci�cation that is naturally expressed for a domain expert.

Concretely, we aim to identify common patterns in the speci�cation of programs, and
capture those in libraries. At the same time, the patterns of implementations of these
speci�cations will also be captured in the library, such that the development of software
will go hand-in-hand with proofs of its functional correctness. As case-studies we will work
in three areas: simple divide-and-conquer algorithms, optimisation problems (inspired by
the Algebra of Programming [Bird and de Moor, 1997]), and self-application: applying our
results to parts of the implementation of the programming environment itself.

2 Research area overview

Abstraction. The ability to name and reuse parts of algorithms is one of the cornerstones
of computer science. Abstracting out common patterns enables separation of concerns,
both in the small (variables, functions) and in the large (modules, libraries). Conversely,
lack of abstraction may force the implementation to contain multiple instances of a single
pattern. This process of replication is not only tedious, but error-prone, because the
risk of software error is directly correlated with the size of the program. Hence, one
important trend in the evolution of new programming languages is improved support for
abstraction�making more and more of the language features programmable. Widely used
modern languages such as Java, C++, Scheme and Haskell are actively gaining abstraction
power with Java Generics [Bracha et al., 1998], C++ Templates [Stepanov and Lee, 1995],
Scheme's composable macros [Flatt, 2002] and Haskell meta-programming [Sheard and
Peyton Jones, 2002]. But there is a danger lurking�more complex features can increase
the risk of bugs and unintended behaviour. With new abstraction mechanisms we also
need new computer-aided sanity checks of the program code.
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Types. Types are used in many parts of computer science to keep track of di�erent
kinds of values and to keep software from going wrong. In a nutshell, types enable the
programmer to keep track of the structure of data and computation in a way that is
checkable by the computer itself. E�ectively, they act as contracts between the implementor
of a program part and its users. If type-checking is performed statically, when the program
is compiled, it then amounts to proving that properties hold for all executions of the
program, independently of its input.

By the Curry�Howard correspondence, type systems are isomorphic to logics. Rich type
systems, such as those for languages with higher-order abstraction, correspond to higher-
order logics. A well-know example of a system based on this principle is the Coq proof
assistant [The Coq development team, 2010].

Dependently typed programs. Even though type-theory has been used as a logic for
decades, it has recently gained popularity as a medium for programming. The �agship
of dependently-typed programs is perhaps Compcert, a C compiler written and veri�ed
in Coq [Leroy, 2009]. Other applications are however rapidly appearing. Chlipala et al.
[2009] show how to develop and verify imperative programs within Coq. Oury and Swierstra
[2008] describe a library for database access which statically guarantees that queries are
consistent with the schema of the underlying database. Morgenstern and Licata [2010]
show how to do programming language based security in Agda.

Agda. The programming language Agda is a system based on Martin-Löf type-theory
[Martin-Löf, 1984]. Within it, one can express programs, functional speci�cations as types,
and proofs (for example using algebraic reasoning) in a single language (by taking advantage
of the Curry�Howard isomorphism). Agda is currently emerging as a lingua-franca of
programming with dependent types. Its canonical reference, Norell's Thesis [Norell, 2007],
has been cited 50 times per year since its publication indicating strong academic interest.
The focus of this project is on expressing libraries of correct programs and proofs in the
dependently typed functional language of Agda.

Libraries for dependent types. Strongly typed languages, such as Agda and Coq,
come with standard libraries that contain useful building blocks to create programs, spec-
i�cations, and proofs. The Coq library is part of a mature system which has been used in
many projects (sometimes complemented by extensions such as Ssre�ect [Gonthier, 2009]).
However, it is mostly applied to proofs rather than programs, because the Coq system is
mostly intended as a proof assistant rather than a programming language. Even projects
which aim to use Coq as a programming platform, such as [Chlipala et al., 2009, Leroy,
2009] retain this separation. The same observation applies to the libraries of most systems
with dependent types. The Agda standard library (developed mainly by Danielsson), has
evolved from common abstractions needed by Agda programmers. It has been applied
to several domains, in particular parser combinators [Danielsson, 2010] and Algebra of
Programming [Mu et al., 2009].

2
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In the current Agda implementation, the portions of the library dedicated to programming
are essentially decoupled from the portions dedicated to proofs. This can be a drawback:
the structure of a proof often follows the same structure as the program it refers to, therefore
keeping the two separated violates the principle of abstraction described above.

3 Project description

Our project will be organised in multiple iterations, each re�ning the libraries obtained
during the previous one. (The �rst iteration will be based on our current experience with
Agda, and its standard library.) Each iteration will have the following three phases.

1. Development of a proven-correct application in a given domain. We believe
that the best way to develop libraries is by abstracting common patterns found in
various application domains. In this phase, we will assess the viability of our libraries
by applying them to a particular application domain (see below for the chosen case
studies on algebra of programming, optimisation and compilation).

2. Extraction of common pattern into libraries. In this phase, we will identify
common patterns found in the programs and speci�cations produced in the previous
phase, and capture them in libraries. At the same time, we will tie each pattern of
speci�cation to a pattern of implementation. We will then reimplement the applica-
tion previously produced using the software components of the library.

3. Re�nement of the programming language. In this phase we will assess the
strong and weak points of the underlying programming environment we use. We will
inform the group in charge of the development of the tool of the possible shortcomings
we might identify, and participate in their remedy, if suitable.

We work iteratively towards the following milestones (case studies) ranging from classical
problems of computer science to domain-speci�c applications:

AoP Develop libraries of programs and proofs for simple divide-and-conquer algorithms,
like sorting and searching.

Optim Develop speci�cations and libraries for optimisation and dynamical systems (case
study on economical and environmental models). In addition to domain knowledge
(provided by our contacts in Potsdam), this requires speci�cations and proofs for
higher order constructions like monads, functors and natural transformations.

Compile Work with the Agda team on implementation and speci�cation of parts of Agda
in Agda. This will both use the libraries developed in the project and improve the
tool chain to the bene�t of other users.

In the last section we show an example (chosen small enough to �t here) to illustrate how
the three phases outlined above may be realized in practice. Note that it is done in the
current Agda system, and that we expect to be able to improve on it.

3
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4 Preliminary �ndings

We have published results showing relevant related experience in all the suggested iteration
phases and application areas as indicated below.

4.1 The three phases of the iteration

Proven-correct applications: We have worked on correct applications in Haskell [Daniels-
son and Jansson, 2004, Jansson and Jeuring, 2002] and supporting theory [Danielsson et al.,
2006]. We are now ready to move from Haskell to Agda.

Patterns into libraries: We have developed, implemented and compared libraries of
generic functions [Jansson and Jeuring, 1998a,b, Norell and Jansson, 2004b, Rodriguez
et al., 2008]. Most of this has been done in Haskell, but it has become clear that the
natural setting for generic programming is dependent types.

Re�nement of programming languages: We have designed a generic programming
language extension (PolyP [Jansson and Jeuring, 1997]) for Haskell, and we have been
involved in the design of the Agda language [Norell, 2007]. We have also contributed to
the development of the �Concepts� feature of C++ by an extensive comparison to Haskell's
type classes [Bernardy et al., 2010c].

4.2 The three application areas

AoP: We have worked actively on implementing programs and proofs in the Algebra of
Programming tradition [Backhouse et al., 1999, Mu et al., 2008].

Optim: We also have recent experience in domain modelling in Haskell [Lincke et al.,
2009] and optimisation modelling in Agda [Mu et al., 2009]. We are also working with PIK
on Agda implementations of optimisation problems in economy & environment.

Compile: We have implemented a compiler for the language extension PolyP [Jansson,
2004b], experimented with embedding generic programming support in Haskell [Norell and
Jansson, 2004a] and been involved in implementing Agda [Norell et al., 2008].

4.3 Other relevant experience

Parametricity theory and applications. Thanks to the Curry-Howard isomorphism,
the type of each program correspond to a theorem. There is another relationship be-
tween types and propositions: each type-assignment gives rise to another theorem (the

4
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parametricity condition) about the object being typed. Bernardy et al. [2010b] have inves-
tigated how to integrate the above result in dependently typed languages. In that context,
the net e�ect is that for every type given by the programmer, an additional property
becomes available (for free) for showing the correctness of the program. An interesting ap-
plication of parametricity is in property based testing of polymorphic functions [Bernardy
et al., 2010a]. We expect to �nd more uses of parametricity during this project.

Libraries for speci�cations and programs. Dependent type theory is rich enough to
express that a program satis�es a functional speci�cation, but there is no a-priori method
to derive a program once the speci�cation-as-type is written. On the other hand, Bird and
de Moor [1997] give a general methodology to derive Haskell programs from speci�cations,
via algebraic reasoning. Despite the strong emphasis on correctness, their speci�cations
and proofs are not expressed in a formally checkable way. In [Mu et al., 2009] we have
shown how to encode program derivation in the style of Bird and de Moor, in Agda. A
program is coupled with an algebraic derivation from a speci�cation, whose correctness is
guaranteed by the type system. In this project we want to go further in this direction and
develop useful libraries of programs and proofs with corresponding types and theorems.

5 Signi�cance

The production of correct software is a problem which remains unsolved, and is of great
economic signi�cance. By leveraging the potential of dependently-typed languages, this
project aims to reduce the potential for errors by developing the speci�cation of a system
together with its implementation, and keeping them synchronised throughout the lifetime
of the system. A further advantage of this approach is that the skills required to construct
programs are directly applicable to understanding the speci�cations.

Software libraries have long been recognised as vehicles for increased software productivity.
First, they capture domain knowledge in terms of software solutions to the problems a user
wants to solve. Second, they add a layer of abstraction to the underlying computation,
which allows developers to write software in terms closer to their problem domain and
usually results in improved quality and robustness. We aim to go beyond state-of-the-art
when it comes to expressivity of libraries for programming with dependent types, which is a
relatively unexplored niche. By doing so, we hope to improve the software technology �eld
in general, as these libraries should serve as examples of good design for other applications.

The scienti�c contributions to the computer science area will be in the form of software
prototypes (the libraries and other associated code will be available under an open licence),
conference/journal talks/papers (on the techniques used to create the libraries as well as
on the amendments made to the languages with dependent types), and (post-)doctoral
training.

5
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6 International and national collaboration

With this project, we believe we are in an ideal situation for collaboration, as we have
contacts both upstream with the implementors of dependently-typed languages, and down-
stream with end-users of frameworks for formal modeling and implementation. In fact, we
believe that we are in the position to �ll in the niche of producing libraries for dependently-
typed languages, which are in demand from both sides, but currently lacking.

On the upstream side, we are in direct contact with the group currently in charge of
the development of Agda: The main developers, Norell and Danielsson, were Jansson's
students; and Agda Implementors' Meetings are held yearly at Chalmers. These meetings
regularly attract participants from research groups in Nottingham Univ., TU Munich, and
AIST (in Japan), among others. We have also close contacts with the programming-logic
group at Univ. of Gothenburg, which deals with the fundamental aspects of type-theory.

Downstream, we have contacts with domain experts at the Potsdam Institute for Climate
Impact Research (PIK), which are in demand of tools to describe models of various dynam-
ical systems (such as the atmosphere or the economy) in formal ways, as well as e�cient
implementations of these models. Since political decisions may depend on the outcome of
their simulations, matching the implementation with the models is important.

7 Organisation and budget

The project is led by Patrik Jansson in the Functional Programming (FP) group of the
Computer Science and Engineering (CSE) department at Chalmers. The work will be
carried out by Jansson (20%), J-P Bernardy (PostDoc 65%)1, a PhD student (not paid by
the project) and several MSc thesis students (not paid by the project). We apply for 70%
of the total project cost from VR, the rest is covered by Chalmers and other sources. We
will bene�t from work on generic libraries and high-level modelling done at (and funded
by) PIK (Daniel Lincke, Cezar Ionescu).

The �rst year of project is devoted to library support for Algebra of Programming (mile-
stoneAoP), the second and third year focus is onOptim and the last yearCompile. Jans-
son and Bernardy will together supervise the PhD student towards her PhD on �Strongly
Typed Libraries for Programs and Proofs�.

Jansson is partially funded (20%) by J. Hughes' �Software Design and Veri�cation using
Domain Speci�c Languages� (VR, multi-project grant in ICT, 2009�2012). Hughes' project
applies functional programming techniques, especially DSLs embedded in Haskell and Er-
lang, to the design and veri�cation of complex software, taking motivating examples from
the telecom domain. The current project proposal, on the other hand, will provide more
long-term basic research in the software technology of the future.

1J-P Bernardy is currently a PhD student in the FP group but will defend his thesis in June 2011.
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8 An example illustrating the iterative process

Assume an ordering relation on values of type A. This may be expressed as follows.

postulate
A : Set
_6_ : Rel A
6�reexive : Reexive _6_
6�transitive : Transitive _6_

Furthermore, using a 6? b, we can decide which of a or b is bigger.

data Comp (a b : A) : Set where
leq : a 6 b ! Comp a b
gt : b 6 a ! Comp a b

postulate
_6?_ : (a b : A)! Comp a b

Using the above, it is possible to implement insertion into a sorted list.

insert : A ! List A ! List A
insert x [ ] = [x ]
insert x (x 0 :: xs) with x 6? x 0

insert x (x 0 :: xs) j leq = x :: x 0 :: xs
insert x (x 0 :: xs) j gt = x 0 :: insert x xs

In phase 1 we might want to prove that it preserves the property OrdAb lo that the list is
Ordered and Above a lower bound lo. The speci�cation of this property and its proof are
as follows:

7
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OrdAb : A ! List A! Set
OrdAb low [ ] = >
OrdAb low (x :: xs) = (low 6 x ) � OrdAb x xs

insert�ordered : 8 f log x xs ! lo 6 x ! OrdAb lo xs ! OrdAb lo (insert x xs)
insert�ordered x [ ] p q = (p; tt)
insert�ordered x (x 0 :: xs) p q with x 6? x 0

insert�ordered x (x 0 :: xs) p q j leq y = (p; (y ; proj2 q))
insert�ordered x (x 0 :: xs) p q j gt y = (proj1 q ; insert�ordered x xs y (proj2 q))

Independently, we might want to check that the insertion contains all the elements of the
input list. We do this by de�ning xs m ys to express that xs is a permutation of ys :

data _m_ : Rel (List A) where
stop : [ ] m [ ]
skip : 8 x fxs xs 0g ! xs m xs 0 ! x :: xs m x :: xs 0

swap : 8 x y xs ! y :: x :: xs m x :: y :: xs
trans : 8 fxs xs 0 xs 00g ! xs m xs 0 ! xs 0 m xs 00 ! xs m xs 00

insert�keeps : 8 x xs ! insert x xs m x :: xs
insert�keeps x [ ] = re
insert�keeps x (x 0 :: xs) with x 6? x 0

insert�keeps x (x 0 :: xs) j leq = re
insert�keeps x (x 0 :: xs) j gt = trans (skip x 0 (insert�keeps x xs)) (swap x x 0 xs)

In phase 2 we recognise that the induction pattern of both proofs about insertion is the
same, and we capture it in a proof-pattern of the following type (we omit the de�nition
for concision):

insert�ind : (P : A ! List A ! List A ! Set) !
(emp : 8 x ! P x [ ] [x ]) !
(les : 8 x x 0 xs ! x 6 x 0 ! P x (x 0 :: xs) (x :: x 0 :: xs)) !
(gre : 8 x x 0 xs res ! x 0 6 x ! P x xs res ! P x (x 0 :: xs) (x 0 :: res)) !
(8 x xs ! P x xs (insert x xs))

The proofs of preservation of ordering and permutation can then be easily constructed by
application of the insert�ind pattern to the speci�c induction hypothesis (the rest of the
arguments can be guessed by Agda's built-in proof search mechanism). For example:

insert�ordered : 8 f log x xs ! lo 6 x ! OrdAb lo xs ! OrdAb lo (insert x xs)
insert�ordered f lo0 g x xs = insert�ind
(� x 0 xs 0 res ! (lo : A)! lo 6 x 0 ! OrdAb lo xs 0 ! OrdAb lo res)
(� x 0 lo x0 x1 ! (x0 ; tt)) {-automatic -}
(� x 0 x0 xs 0 x1 lo x2 x3 ! (x2 ; x1 ; proj2 x3 )) {-automatic -}
(� x 0 x xs 0 res xs rec lo x3 p ! (proj1 p; rec x xs (proj2 p))) x xs lo0 {-automatic -}

8
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In phase 3 we realise that the construction of the induction-pattern for proofs can be
automatically deduced for any total function, and investigate how their generation can be
automated, perhaps via a modi�cation of the Agda system.
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