
Kansliets noteringar
Kod

Dnr

2014-2993-115587-25

2014
Project Research GrantArea of science

Natural and Engineering Sciences
Announced grants

Research grants NT April 9, 2014
Total amount for which applied (kSEK)

2015 2016 2017 2018 2019

1059 1072 1121 1142 1229

Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

APPLICANT
Name(Last name, First name) Date of birth Gender

Jansson, Patrik 720311-7515 Male
Email address Academic title Position

patrikj@chalmers.se Associate professor Biträdande professor
Phone Doctoral degree awarded (yyyy-mm-dd)

031-7725415 2000-06-19

WORKING ADDRESS
University/corresponding, Department, Section/Unit, Address, etc.

Chalmers tekniska högskola
Institutionen för data-och informationsteknik
Programvaruteknik

41296 Göteborg, Sweden

ADMINISTRATING ORGANISATION
Administrating Organisation

Chalmers tekniska högskola

DESCRIPTIVE DATA
Project title, Swedish (max 200 char)

Bibliotek du kan lita på: högnivåspecifikationer och korrekta implementationer via beroende typer

Project title, English (max 200 char)

Libraries You Can Trust: high-level specifications and correct implementations via dependent types

Abstract (max 1500 char)

Our long-term goal is to create systems (theories, programming languages, libraries and tools) which make it easy to develop
reusable software components with matching specifications. In this research project, the main focus is on libraries. Strongly-typed
programming languages allow to express functional specifications as types. Checking the types of a program then means checking it
against its specification. Within such powerful programming languages, libraries are not only building blocks of programs, but also of
proofs. We believe that such libraries will eventually become the main means of developing programs, and because they come with
strong types, the programs built using the library will come with strong properties that will make the whole easy to prove correct. The
production of such libraries will also inform the design of future strongly-typed programming languages. In recent years,
strongly-typed programming languages have started to become usable, but remain confined to a small niche. Our libraries will make
them a viable solution for a broader range of applications, bringing stronger guarantees of correctness to a wider user base. To
check the applicability of our libraries, our case studies are parallel programming by monoid homomorphisms, domain specific
modelling of emissions trading and property based testing tools.

Kod

2014-2993-115587-25
Name of Applicant

Jansson, Patrik

Date of birth

720311-7515

Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Abstract language

English
Keywords

Software Technology, Functional Programming, Dependent Types, Program Verification, Generic Programming
Review panel

NT-2
Project also includes other research area

Classification codes (SCB) in order of priority

10201, 10205, 10103
Aspects

Continuation grant

Application concerns: New grant
Registration Number:
Application is also submitted to

similar to: identical to:

ANIMAL STUDIES
Animal studies

No animal experiments

OTHER CO-WORKER
Name(Last name, First name) University/corresponding, Department, Section/Unit, Addressetc.

Bernardy, Jean-Philippe Chalmers tekniska högskola
Institutionen för data-och informationsteknik

Date of birth Gender

781215-0790 Male
Academic title Doctoral degree awarded (yyyy-mm-dd)

PhD (engi) 2011-06-07

Name(Last name, First name) University/corresponding, Department, Section/Unit, Addressetc.

Ionescu, Cezar Chalmers tekniska högskola
Institutionen för data-och informationsteknik

Date of birth Gender

681221-1479 Male
Academic title Doctoral degree awarded (yyyy-mm-dd)

PhD 2009-02-09

Name(Last name, First name) University/corresponding, Department, Section/Unit, Addressetc.

,

Date of birth Gender

Academic title Doctoral degree awarded (yyyy-mm-dd)

Name(Last name, First name) University/corresponding, Department, Section/Unit, Addressetc.

,

Date of birth Gender

Academic title Doctoral degree awarded (yyyy-mm-dd)

Kod

2014-2993-115587-25
Name of Applicant

Jansson, Patrik

Date of birth

720311-7515

Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

ENCLOSED APPENDICES
A, B, C, N, S

APPLIED FUNDING: THIS APPLICATION
Funding period (planned start and end date)

2015-01-01 -- 2019-12-31
Staff/ salaries (kSEK)

Main applicant % of full time in the project 2015 2016 2017 2018 2019

Patrik Jansson 20 319 329 340 352 363

Other staff

PhD student (new) 80 616 636 657 680 703

Total, salaries (kSEK): 935 965 997 1032 1066

Other project related costs (kSEK) 2015 2016 2017 2018 2019

Conference costs 10 10 10 10 10
Travel costs 30 30 30 30 30
Computer 20
Licentiate and PhD defence costs 15 50
Premises 51 53 55 56 58
Direct IT costs 13 14 14 14 15

Total, other costs (kSEK): 124 107 124 110 163

Total amount for which applied (kSEK)

2015 2016 2017 2018 2019

1059 1072 1121 1142 1229

ALL FUNDING
Other VR-projects (granted and applied) by the applicant and co-workers, if applic. (kSEK)

Funds received by the applicant from other funding sources, incl ALF-grant (kSEK)

POPULAR SCIENCE DESCRIPTION
Popularscience heading and description (max 4500 char)

En viktig gren av forskningen inom datavetenskap handlar om att utveckla system (programspråk, verktyg, programbibliotek, teorier)
som gör det enkelt att konstruera programvara som är korrekt och återanvändbar. Detta projekt siktar på att utnyttja funktionella
programspråk med starka typsystem till att skapa bibliotek av komponenter som kan uttrycka både specifikationer och
implementationer som uppfyller dessa. Vi kommer att utnyttja datorstödd interaktiv programutveckling där automatiska verktyg ger
snabb återkoppling på vilka delar som inte uppfyller specifikationen.

Den teoretiska möjligheten att uttrycka program och bevis i samma programspråk är känd sedan

Kod

2014-2993-115587-25
Name of Applicant

Jansson, Patrik

Date of birth

720311-7515

Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

många år, men det är först nyligen som teknikutvecklingen har medgett att utveckla större programbibliotek på detta sätt. Detta
innebär att det finns många spännande grundläggande frågor kvar att utforska och vi avser börja med enkla algoritmer för att sedan
steg för steg utforska hur långt det går att komma. Vi arbetar iterativt i tre nivåer för att utveckla komponentbiblioteken. Första nivån
är att implementera en lösning på ett visst problem (sökning, optimering eller liknande), nästa nivå är att abstrahera ut gemensamma
mönster till programbibliotek och slutligen vill vi utvärdera vilka möjliga förändringar av den underliggande språket som skulle kunna
förbättra resultaten. Inom projektet kommer vi att arbeta fram korrekta generiska bibliotek uttryckta i språket Agda. Agda är ett
verktyg baserat på typteori och funktionell programmering som möjliggör utveckling av program och specifikationer i samma språk.
Utvecklingen av språket har skett (och forskrider parallellt med biblioteksprojektet) i ett internationellt samarbete (med Japan,
Tyskland och England) lett av Chalmers.

På lång sikt kan bevisbart korrekta programbibliotek användas och återanvändas som byggstenar vid all slags
programvarukonstruktion. Detta ger allmänt sett mer pålitliga program, och färre buggar. Ett spännande applikationsområde är
exekverbara, överblickbara högnivåmodeller för komplexa system. Vi har hittills mest fokuserat på att modellera komplexa system
inom dataområdet (logiska ramverk, lingvistik, programspråk, hårdvara) men i samarbetet med Potsdams Institut för Klimatforskning
(PIK) har vi börjat arbeta med komplexa system i interaktionen mellan klimat, ekonomi och samhälle. PIK har under flera år arbetat
med simuleringar av komplexa system och har under senare år börjat använda funktionell programmering som ett verktyg för att
experimentera med och kommunicera de högnivåmodeller som behövs för att överblicka komplexa system. Dessa högnivåmodeller
översätts senare i flera steg till effektiv programkod som klarar att köra tunga simuleringar inom rimlig tid. (Dessa simuleringar ger
underlag till politiska beslut inom klimatområdet.) PIK tog kontakt med Chalmers för att fördjupa sin kompetens inom
högnivåmodellering med hjälp av moderna programspråk (som Haskell och C++) och vi har under åren som gått haft flera kontakter
där starkt typade bibliotek för program och bevis har utkristalliserats som det forskningsområde där Chalmers bäst kan komplettera
PIK. Samarbetet har lett till ett gemensamt EU-projekt, flera artiklar och bibliotek för program och bevis.

På Chalmers leds projektet av Patrik Jansson (inom gruppen Funktionell Programmering). Jansson har forskat om generisk
programmering sedan 1995 i olika konstellationer och det internationella kontaktnätet är mycket starkt. Den lokala forskningsmiljön
inom D&IT-institutionen är världsledande även inom flera närliggande områden - automatisk testning (Hughes, Claessen),
domänspecifika språk (Sheeran, Claessen), typteori (Coquand), språkteknologi (Ranta).

VRAPS/VR-Direct bilaga 2004.Ae Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Name of applicant

Date of birth

Kod

Title of research programme

Appendix A
Research programme

Libraries You Can Trust:

High-level Specifications and Correct
Implementations via Dependent Types

P. Jansson, J.-P. Bernardy and C. Ionescu

1 Main objectives

Our long term goal is to create systems (theories, programming languages, libraries and tools)
which make it easy to develop software components and matching specifications. In this re-
search project, we aim to leverage the power of languages with strong types to create libraries
of components which can express functional specifications in a natural way, and, simultane-
ously, implementations which satisfy those specifications. The ideal we aim for is not merely
correct programs, nor even proven correct programs; we want proof done against a specifica-
tion that is naturally expressed for a domain expert.
Concretely, we aim to identify common patterns in the specification of programs, and capture
those in libraries. At the same time, the patterns of implementations of these specifications will
also be captured in the library, such that the development of software will go hand-in-hand with
proofs of its functional correctness. As case-studies we will work in three areas: the Algebra
of Parallel Programming (inspired by the Algebra of Programming [Bird and de Moor, 1997]),
Domain-specific Modelling, and Testing.

2 Project description

Our project will be organised in multiple iterations, each refining the libraries developed in the
previous one. The first iteration is based on our current experience with libraries built in the
functional programming languages Haskell and Agda. Each iteration will have the following
three phases.

1. Development of a proven-correct application in a given domain. We believe that
the best way to develop libraries is by abstracting common patterns found in various
applications. In this phase, we will assess the viability of our libraries by applying them
to different applications ranging from classical problems of computer science to domain-
specific applications (details in the following subsections).

2. Extraction of common patterns into libraries. In this phase, we will identify common
patterns found in the programs and specifications produced in the previous phase, and
capture them in libraries. At the same time, we will tie each pattern of specification to one
or more patterns of implementation. We will then reimplement the application previously
produced using the the library.

3. Refinement of the programming language. In this phase we will assess the strong and
weak points of the underlying programming environment we use. We will inform the group
in charge of the development of the tool of the possible shortcomings we might identify,
and participate in their remedy, if suitable.

The iterative refinement steps will be used in three major case studies described in the following
subsections: Algebra of Parallel Programming, Domain-specific Modelling, and Testing.

1

Appendix A P. Jansson, 720311–7515, StrongLib

2.1 Algebra of Parallel Programming (AoPP)

Dependent type theory is rich enough to express that a program satisfies a functional speci-
fication, but there is no a-priori method to derive a program once the specification-as-type is
written. On the other hand, Bird and de Moor [1997] give a general methodology to derive
Haskell programs from specifications, via algebraic reasoning. Despite the strong emphasis on
correctness, their specifications and proofs are not expressed in a formally checkable way. In
[Mu et al., 2009] we have shown how to encode Bird and de Moor–style program derivation in
the dependently typed programming language Agda. A program is coupled with an algebraic
derivation from a specification, whose correctness is guaranteed by the type system. We be-
lieve that this approach is useful in tackling one of the key problems confronting the computing
world today: that of correctly implementing scalable parallel computations. This is our aim in
the first case study.
At the core of scalable parallel programming is the ability to divide a workload into two indepen-
dent tasks (which can be run in parallel) in such a way the solutions can be easily combined
into a final result. This subdivision can be done recursively to the depth needed to effectively
use the available hardware parallelism. We want the results of the parallel computation to be
independent of the number of divisions of the workload, otherwise we would obtain different re-
sults on machines with different numbers of processors. Similarly, we want to obtain the same
result irrespective of the order in which the individual tasks terminate.
These conditions are met by a large class of algorithms, namely those which are monoid ho-
momorphisms. That is, a function f : A ! B can be parallelised if it satisfies the following
laws:

f emptyA = emptyB
f (a ++A b) = f a ++B f b

where empty and ++ denote monoidal unit and composition (for the type in the subscript).
Often, a function which is not a monoid homomorphism can be formulated in terms of an
auxiliary function, which works on an extended type.
A simple example is word counting, which maps strings to natural numbers (the number of
white-space separated words in the string). The monoid structures are concatenation with the
empty string as unit for the domain, and addition with zero as unit for the codomain. It is easy
to see that word counting is not a homomorphism: if we cut a string containing a single word
(no spaces) in two, each subtask will count one word, and the addition of the two independent
results will return the erroneous count of two.
The reason for that is that we have lost the information about the (lack of) spacing. To avoid this
loss, we need to preserve the information about spacing on either side, in addition to counting
the number of full words.

helper : String ! CountAndSpacing
countSpaces : CountAndSpacing ! N
:::
wordCount : String ! N
wordCount = countSpaces � helper

In this simple case, inventing the CountAndSpacing type and the helper function does not re-
quire much ingenuity. Things change when we move on to more realistic examples, such as
that of parallel parsing.
A parser is a program that analyses a piece of text to determine its logical structure. Parsing
is, at least at first sight, an inherently sequential process, especially when it comes to formal

2

Appendix A P. Jansson, 720311–7515, StrongLib

texts, such as program code, since lines of code often require the surrounding context in order
to make sense.
Nevertheless, inspired by sparse matrix algorithms and the work of Valiant [1975] on language
recognition, we have been able to create a suitable analogue of the CountAndSpacing type for
parsing, leading to “Efficient Parallel and Incremental Parsing of Practical Context-Free Lan-
guages” [Bernardy and Claessen, 2013].
Perhaps more importantly, when formalising the proofs of correctness of the parallel parsers,
we have been able to use the Bird and de Moor approach in order to calculate the parallelisation
from the specification of parsing1. This kind of program calculation is at the core of what we
call the Algebra of Parallel Programming (AoPP).
In this project, we aim to develop and use AoPP in order to

� calculate parallel algorithms for optimisation algorithms (and other numerical methods
required by the domain-specific modelling case study),

� calculate parallel versions of certain graph algorithms (like path finding),

� develop general principles for the construction of the intermediate datatypes and helper
applications.

2.2 Domain-specific modelling (DSM)

What good is proof of correctness if no-one understands the specification? We take the stance
that specifications must be readily understood by domain experts, and therefore it is important
for computer-scientists to work with the domain-specific concepts. We have done so in the past,
in the domain of vulnerability for climate impact [Lincke et al., 2009], grammars for language
processing [Duregård and Jansson, 2011], and more recently, Walras equilibria and Pareto-
efficiency for economics [Ionescu and Jansson, 2013a].
In the case of economics, the resulting specifications, while quite close to the mathematical
formulations that the modellers are used to, are non-constructive in nature and can only be
implemented in restricted settings (for example, when all the sets involved are finite). To deal
with more general cases will involve a great deal of innovations both in the concepts to be
specified (consider the difference between discrete and continuous mathematics) and in the
numerical methods to be implemented. To bring about such innovations is our aim in this area
of the project.
The chosen application area for the first phase of our iterative development is (mathematical
models of) emissions trading games or, more generally, international environmental agree-
ments. Here we will continue from the work on scientific computing for economics and climate
impact by formalizing some of the key concepts (player, coalition, market, stability, free-riding).
In addition to domain knowledge (provided by our contacts in Potsdam), this requires specifi-
cations and proofs for higher-order constructions like monads, functors and vulnerability mea-
sures [Ionescu, 2009].
In the second phase this will lead to a library of common patterns which can be seen as a
domain specific language for expressing models of emission trading and coalition formation.
And in the third phase we will suggest ways of improving language support to present the
specifications in a way accessible to the domain experts. This includes better syntactic support
for domain specific languages starting from what is available in the language Idris [Brady and
Hammond, 2012], and better support for eliding information starting from the support for hidden
arguments in Agda.

1A paper is in preparation and the core ideas were presented as “An algebra for parallel parsing” at the IFIP
Working Group 2.1 on Algorithmic Languages and Calculi, meeting #71 in Zeegse, the Netherlands (March 2014).

3

http://www.cse.chalmers.se/~patrikj/talks/IFIP2.1ZeegseJansson_ParParseAlgebra.org

Appendix A P. Jansson, 720311–7515, StrongLib

2.3 Testing Tools

Property-based testing tools have proved useful to improve the confidence in program correct-
ness. As it is well known, testing cannot show the absence of bugs, only their presence. But
is it possible to quantify the confidence gained by running a test suite? We will aim to give a
more positive answer to the question. A first step in this direction is to specify the set of inputs
covered by a test-suite. In this project we will focus on large abstract syntax tree (AST) types
typically used in compilers, and aim at supporting interesting subsets like well-typed terms or
balanced trees (expressible as inductive families in Agda).
In a recent paper [Duregård et al., 2012] we presented a theory specifying and a generic
Haskell library for efficiently enumerating the terms of complex AST-types. The primary ap-
plication is property-based testing, where it is used to define both random sampling (for exam-
ple QuickCheck generators) and exhaustive enumeration (in the style of SmallCheck). In this
project we want to port this library and its specification to Agda and extend it towards inductive
families. Our hypothesis is that, compared to QuickCheck, the more algebraic enumeration
approach will be easier to specify and prove correct. (When successful, we may also extend
the proofs to QuickCheck.)
The testing tools developed in this case study will also be used in the other case studies in the
exploration phase towards finding the right specifications. Experience shows that testing can
be very efficient in ruling out bad specification attempts by providing concrete failing test cases.
But note that testing is not only a tool used in the project. The domain of testing and enumera-
tion is also a case study for the development of libraries you can trust. Following our common
iterative process we will 1) develop a proven correct implementation of enumeration of complex
AST types, 2) extract the common specification and implementation patterns into a library and
3) refine the underlying language to better support the interplay between testing and proving.

2.4 Organisation

The project is led by Patrik Jansson in the Functional Programming (FP) group of the CSE
department at Chalmers. The work will be carried out by Jansson (20%), a PhD student (80%)
and by J.-P. Bernardy (AssProf), C. Ionescu (PostDoc), and several MSc thesis students (not
paid by the project). We apply for 70% of the total project cost from VR, the rest is covered
by Chalmers and other sources. We will benefit from work on high-level modelling and sci-
entific computing done at (and funded by) the Potsdam Institute for Climate Impact Research
(N. Botta). The first year of project is devoted to library support for Algebra of Programming
(milestone AoPP), the second and third year focus is on DSM and the last year’s focus is Test.
Jansson and Bernardy will together supervise the PhD student towards her PhD on “High-level
Specifications and Correct Implementations via Dependent Types”.
To educate MSc and PhD students (in this and in other projects) we plan to organise a sum-
mer school in 2015 on the Algebra of Parallel Programming in Agda. We will also build up a
repository of library code (for specifications and implementations) produced in the project.

3 Research area overview

Abstraction. The ability to name and reuse parts of algorithms is one of the cornerstones
of computer science. Abstracting out common patterns enables separation of concerns, both
in the small (variables, functions) and in the large (modules, libraries). Conversely, lack of
abstraction may force the implementation to contain multiple instances of a single pattern. This
process of replication is not only tedious, but error-prone, because the risk of software error
is directly correlated with the size of the program. Hence, one important trend in the evolution

4

Appendix A P. Jansson, 720311–7515, StrongLib

of new programming languages is improved support for abstraction—making more and more
of the language features programmable. Widely used modern languages such as Java, C++,
Scheme and Haskell are actively gaining abstraction power with Java Generics, C++ Templates,
Scheme’s composable macros, and Haskell meta-programming. But power always comes at
a price: in this case, without proper checking, more complex features can increase the risk of
bugs and unintended behaviour. Thus, with new abstraction mechanisms we also need new,
preferably computer-aided, mechanisms for checking the program code.

Types. Types are used in many parts of computer science to organise the different kinds of
values and to prevent software from going wrong. In a nutshell, types enable the programmer to
keep track of the structure of data and computation in a way that is checkable by the computer
itself. Effectively, they act as contracts between the implementor of a program part and its
users. If type-checking is performed statically, when the program is compiled, it then amounts
to proving that properties hold for all possible executions of the program, independently of its
input.
By the Curry–Howard correspondence, type systems are directly related to logics. Rich type
systems, such as those for languages with higher-order abstraction, correspond to higher-order
logics. A well-know example of a system based on this principle is the Coq proof assistant [The
Coq development team, 2010].

Dependently typed programs. Even though type theory has been used as a logic for decades,
it has only recently gained popularity as a medium for programming. The viability of dependent
types in a substantial “real world” example was perhaps first demonstrated by CompCert, a C
compiler written and verified in Coq [Leroy, 2009]. Other applications are however rapidly ap-
pearing. Chlipala et al. [2009] show how to develop and verify imperative programs within Coq.
Oury and Swierstra [2008] describe a library for database access which statically guarantees
that queries are consistent with the schema of the underlying database. Swamy et al. [2011]
show how to implement distributed programming with dependent types. Brady and Hammond
[2012] use dependent types to implement resource-safe programs.

Agda. The programming language Agda is a system based on Martin-Löf type theory [Martin-
Löf, 1984]. Within it, one can express programs, functional specifications as types, and proofs
(for example using algebraic reasoning) in a single language (by taking advantage of the
Curry–Howard correspondence). Agda is currently emerging as a lingua-franca of program-
ming with dependent types. Its canonical reference, Norell’s thesis [2007], has been cited 50
times per year since its publication indicating strong academic interest. Additionally, there are
several high-quality video introductions to Agda available on the Internet, produced by scien-
tists with no affiliation to Chalmers. These range from short demonstrations (e.g., L. Maydwell’s
15 min. available on YouTube since 2012) to mini-courses consisting of five lectures (e.g., D.
Licata’s Dependently-Typed Programming in Agda, presented at the Oregon Prog. Lang. Sum-
mer School in 2013). Accordingly, the focus of this project is on expressing libraries of correct
programs and proofs in the dependently typed functional language of Agda.

Libraries for dependent types. Strongly typed languages, such as Agda and Coq, come
with standard libraries that contain useful building blocks to create programs, specifications,
and proofs. The Coq library is part of a mature system which has been used in many projects
(sometimes complemented by extensions such as Ssreflect [Gonthier, 2009]). However, it is
mostly applied to proofs rather than programs, because the Coq system is mostly intended as
a proof assistant rather than a programming language. Even projects which aim to use Coq

5

Appendix A P. Jansson, 720311–7515, StrongLib

for programming, such as Ynot and CompCert [Chlipala et al., 2009, Leroy, 2009] retain this
separation. The same observation applies to the libraries of most systems with dependent
types. The Agda standard library (developed mainly by Danielsson), has evolved from common
abstractions needed by Agda programmers. It has been applied to several domains, in par-
ticular parser combinators [Danielsson, 2010], Algebra of Programming [Mu et al., 2009] and
Cryptography (ongoing work by N. Pouillard in the www.DemTech.dk project).

4 Preliminary findings

We have published results showing relevant related experience in all the suggested iteration
phases and application areas as indicated below.

4.1 The three phases of the iteration

Proven-correct applications: We have worked on correct applications in Haskell [Daniels-
son and Jansson, 2004, Jansson and Jeuring, 2002] and supporting theory [Danielsson et al.,
2006]. We have also worked on applications to climate impact research and economic mod-
elling directly in Agda: [Ionescu and Jansson, 2013a,b].

Patterns into libraries: We have developed, implemented and compared libraries of generic
functions [Jansson and Jeuring, 1998a,b, Norell and Jansson, 2004, Rodriguez et al., 2008].
Most of this has been done in Haskell, but it has become clear that the natural setting for generic
programming is dependent types. We have also worked on libraries for parsing [Bernardy,
2009, Bernardy and Claessen, 2013, Duregård and Jansson, 2011], testing [Duregård et al.,
2012, Jeuring et al., 2012] and the above mentioned applications to climate and economy.

Refinement of programming languages: We have designed a generic programming lan-
guage extension (PolyP [Jansson and Jeuring, 1997]) for Haskell, and we have been involved
in the design of the Agda language [Norell, 2007]. We are active in the development of Agda:
from the development of parametricity theory [Bernardy and Moulin, 2012, Bernardy et al.,
2012], a new kind of generic programming, based on a generalisation of erasure, is being de-
veloped. A description and analysis of a core language exemplifying this was shown at ICFP
[Bernardy and Moulin, 2013]. We have also contributed to the development of the “Concepts”
feature of C++ by an extensive comparison to Haskell’s type classes [Bernardy et al., 2010b].

4.2 The three application areas

AoPP: In [Mu et al., 2009] we presented a library for Bird and de Moor–style program deriva-
tion in Agda. Based on this work, a similar library has been implemented in Idris by David
Christiansen.

We have developed an efficient sparse matrix based algorithm for parallel parsing [Bernardy
and Claessen, 2013]. As a follow-up, we have recently shown that it is possible to calculate
the efficient parallel algorithm from a specification of parsing, thus illustrating the promise of an
algebra of parallel programming.

6

www.DemTech.dk

Appendix A P. Jansson, 720311–7515, StrongLib

DSM: We have used dependent types in order to express high-level specifications of software
components used in computational assessments of vulnerability to climate change [Ionescu,
2014, Ionescu and Jansson, 2013b]. We have been able to prove the correctness of some of
these components (and explain why others were incorrect), and, perhaps more importantly, we
have been able to clarify some of the terminological confusion existing in the field.

In [Ionescu and Jansson, 2013a], we have also used type theory to specify the basic building
blocks of economic theory, used in almost all economic models today, concepts such as Pareto
efficiency, Walrasian equilibrium, Nash equilibrium, etc., together with the relations between
them (for example, Walrasian equilibria are Pareto efficient). Recently, we have developed
specifications and correct-by-construction implementations for a large class of sequential deci-
sion problems [Botta et al., 2013].

Test: We have explored the tension between testing and proving of higher-order properties
[Ionescu and Jansson, 2013b, Jansson et al., 2007], developed a technique for drastically re-
ducing the number of tests required for polymorphic properties [Bernardy et al., 2010a], de-
veloped a library for specifying and testing class laws [Jeuring et al., 2012] and a library for
functional enumeration [Duregård et al., 2012].

5 Significance

Effective production of correct software is a problem which remains unsolved, and is of great
economic significance. By leveraging the capabilities of dependently-typed languages, this
project aims to reduce the potential for errors by developing the specification of a system to-
gether with its implementation, and keeping them synchronised throughout the lifetime of the
system.

Dependently-typed programming languages also allow us to formally encode and verify pro-
gram derivations, which are important in minimising the number of “Eureka” steps needed to
go from the specification to the implementation. This is even more so in the context of parallel
programming, where the problems of sequential programming are compounded by the need to
invent suitable operations and types for efficient parallelisation. The development of an algebra
of parallel programming will be a significant advance in this area.

Software libraries have long been recognised as vehicles for increased software productivity.
First, they capture domain knowledge in terms of software solutions to the problems that a user
wants to solve. Second, they add a layer of abstraction to the underlying computation, which
allows developers to write software in terms closer to their problem domain and usually results
in improved quality and robustness. We aim to go beyond state-of-the-art when it comes to
expressivity of libraries for programming with dependent types, and set new standards for the
design of libraries in general.

The scientific contributions to the computer science area will be in the form of software proto-
types (the libraries and other associated code will be available under an open licence), confer-
ence and journal papers and talks (on the techniques used to create the libraries as well as
on the amendments made to the languages with dependent types), and doctoral training. We
also hope to help the wider research community by contributing libraries for increasingly correct
scientific computing.

As the example of parallel parsing shows, there are computations that can be expressed as
instances of (abstract) linear algebra algorithms. At the same time, the calculational proofs that
we have given for the correctness of these algorithms improve on the classical informal proofs.
The connection between computing science and linear algebra has been noticed several times

7

Appendix A P. Jansson, 720311–7515, StrongLib

in the literature, but it has until now been exploited mainly in one direction: finding new appli-
cations of linear algebra. We aim to explore the connection also in the other direction: using
recursive types and calculational proofs to simplify presentations of classical linear algebra no-
tions and results. This will be a natural part of our more general efforts (beyond this project) to
specify and implement validated numerical methods.

6 International and national collaboration

With this project, we believe we are in an ideal situation for collaboration, as we have contacts
both upstream with the implementors of dependently-typed languages, and downstream with
end-users of frameworks for formal modeling and implementation. In fact, we believe that we
are in the position to fill the need for libraries for dependently-typed languages, which are in
demand from both sides, but currently lacking.
On the upstream side, we are in direct contact with the group currently in charge of the devel-
opment of Agda: Two of the main developers, Norell and Danielsson, were Jansson’s students;
and Agda Implementors’ Meetings are held yearly at Chalmers. These meetings regularly at-
tract participants from research groups in Nottingham Univ., Copenhagen ITU, TU Munich, and
AIST (in Japan), among others. We have also close contacts with the programming-logic group
at Univ. of Gothenburg, which deals with the fundamental aspects of type theory (T. Coquand,
U. Norell, N. A. Danielsson, A. Abel).
Downstream, we have contacts with domain experts (N. Botta, J. Heitzig) at the Potsdam In-
stitute for Climate Impact Research (PIK), who need tools to describe models of various dy-
namical systems (such as the atmosphere or the economy) in formal ways, as well as efficient
implementations of these models. Since political decisions may depend on the outcome of their
simulations, correctly implementing these models is important.
Based on our experience with functional programming and domain specific modelling we have
also set up two consortia and applied for EU funding from the FETPROACT-1-2014 Global
Systems Science call in Horizon 2020. If granted they would complement this project well,
especially the case study on Domain Specific Modelling.

References

J.-P. Bernardy. Lazy functional incremental parsing. In Proc. of the 2nd ACM SIGPLAN symposium on
Haskell, pages 49–60. ACM, 2009.

J.-P. Bernardy and K. Claessen. Efficient divide-and-conquer parsing of practical context-free languages.
In Proc. of ICFP 2013, pages 111–122, 2013.

J.-P. Bernardy and G. Moulin. A computational interpretation of parametricity. In Proc. of the Symposium
on Logic in Comp. Sci. IEEE, 2012.

J.-P. Bernardy and G. Moulin. Type-theory in color. In Proc. of ICFP 2013, pages 61–72, 2013.

J.-P. Bernardy, P. Jansson, and K. Claessen. Testing polymorphic properties. In A. Gordon, editor,
European Symposium on Prog., volume 6012 of LNCS, pages 125–144. Springer, 2010a.

J.-P. Bernardy, P. Jansson, M. Zalewski, and S. Schupp. Generic programming with C++ concepts and
Haskell type classes—a comparison. J. Funct. Program., 20(3–4):271–302, 2010b. DOI:10.1017/

S095679681000016X.

J.-P. Bernardy, P. Jansson, and R. Paterson. Proofs for free — parametricity for dependent types. J. of
Funct. Prog., 22(02):107–152, 2012.

R. Bird and O. de Moor. Algebra of Programming, volume 100 of International Series in Computer
Science. Prentice-Hall International, 1997.

8

http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/2074-fetproact-1-2014.html
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/2074-fetproact-1-2014.html
http://dx.doi.org/10.1017/S095679681000016X
http://dx.doi.org/10.1017/S095679681000016X

Appendix A P. Jansson, 720311–7515, StrongLib

N. Botta, C. Ionescu, and E. Brady. Sequential decision problems, dependently typed solutions. In
Proceedings of the Conferences on Intelligent Computer Mathematics (CICM 2013), "Programming
Languages for Mechanized Mathematics Systems Workshop (PLMMS)", July 2013. URL ceur-ws.

org/Vol-1010/paper-06.pdf.

E. Brady and K. Hammond. Resource-safe systems programming with embedded domain specific lan-
guages. In Practical Aspects of Declarative Languages, pages 242–257. Springer, 2012.

A. Chlipala, G. Malecha, G. Morrisett, A. Shinnar, and R. Wisnesky. Effective interactive proofs for
higher-order imperative programs. In Proc. of ICFP 2009, ICFP ’09, pages 79–90. ACM, 2009.

N. A. Danielsson. Total parser combinators. In Proc. of ICFP 2010, ICFP ’10, pages 285–296. ACM,
2010.

N. A. Danielsson and P. Jansson. Chasing bottoms, a case study in program verification in the presence
of partial and infinite values. In MPC 2004, volume 3125 of LNCS, pages 85–109. Springer, 2004.

N. A. Danielsson, J. Hughes, P. Jansson, and J. Gibbons. Fast and loose reasoning is morally correct.
In POPL’06, pages 206–217. ACM Press, 2006. DOI:10.1145/1111037.1111056.

J. Duregård and P. Jansson. Embedded parser generators. In Haskell ’11, pages 107–117, New York,
NY, USA, 2011. ACM. DOI:10.1145/2034675.2034689.

J. Duregård, P. Jansson, and M. Wang. Feat: Functional enumeration of algebraic types. In Haskell’12,
pages 61–72. ACM, 2012. DOI:10.1145/2364506.2364515.

G. Gonthier. Ssreflect: Structured scripting for higher-order theorem proving. In PLMMS’09, page 1.
ACM, 2009.

C. Ionescu. Vulnerability modelling and monadic dynamical systems. PhD thesis, Freie Universität
Berlin, 2009.

C. Ionescu. Vulnerability modelling with functional programming and dependent types. Accepted for
publication, to appear., 2014.

C. Ionescu and P. Jansson. Dependently-typed programming in scientific computing: Examples from
economic modelling. In R. Hinze, editor, 24th Symposium on Implementation and Application of
Functional Languages (IFL 2012), volume 8241 of LNCS, pages 140–156. Springer-Verlag, 2013a.
DOI:10.1007/978-3-642-41582-1_9.

C. Ionescu and P. Jansson. Testing versus proving in climate impact research. In Proc. TYPES 2011, vol-
ume 19 of Leibniz International Proceedings in Informatics (LIPIcs), pages 41–54, Dagstuhl, Germany,
2013b. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. DOI:10.4230/LIPIcs.TYPES.2011.41.

P. Jansson and J. Jeuring. PolyP — a polytypic programming language extension. In Proc. POPL’97:
Principles of Programming Languages, pages 470–482. ACM Press, 1997. DOI:10.1145/263699.

263763.

P. Jansson and J. Jeuring. PolyLib – a polytypic function library. Workshop on Generic Programming,
Marstrand, 1998a. Available from www.cse.chalmers.se/~patrikj/poly/polylib/.

P. Jansson and J. Jeuring. Functional pearl: Polytypic unification. J. Funct. Program., 8(5):527–536,
1998b.

P. Jansson and J. Jeuring. Polytypic data conversion programs. Science of Computer Programming, 43
(1):35–75, 2002. DOI:10.1016/S0167-6423(01)00020-X.

P. Jansson, J. Jeuring, and students of the Utrecht U. Generic Programming class. Testing properties
of generic functions. In Z. Horvath, editor, Proceedings of IFL 2006, volume 4449 of LNCS, pages
217–234. Springer-Verlag, 2007. DOI:10.1007/978-3-540-74130-5_13.

J. Jeuring, P. Jansson, and C. Amaral. Testing type class laws. In Haskell’12, pages 49–60. ACM, 2012.
DOI:10.1145/2364506.2364514.

X. Leroy. Formal verification of a realistic compiler. Communications of the ACM, 52(7):107–115, 2009.

D. Lincke, P. Jansson, M. Zalewski, and C. Ionescu. Generic libraries in C++ with concepts from high-
level domain descriptions in Haskell: A DSL for computational vulnerability assessment. In IFIP
Working Conf. on Domain Specific Languages, volume 5658/2009 of LNCS, pages 236–261, 2009.
DOI:10.1007/978-3-642-03034-5_12.

P. Martin-Löf. Intuitionistic type theory. Bibliopolis, 1984.

9

ceur-ws.org/Vol-1010/paper-06.pdf
ceur-ws.org/Vol-1010/paper-06.pdf
http://dx.doi.org/10.1145/1111037.1111056
http://dx.doi.org/10.1145/2034675.2034689
http://dx.doi.org/10.1145/2364506.2364515
http://dx.doi.org/10.1007/978-3-642-41582-1_9
http://dx.doi.org/10.4230/LIPIcs.TYPES.2011.41
http://dx.doi.org/10.1145/263699.263763
http://dx.doi.org/10.1145/263699.263763
www.cse.chalmers.se/~patrikj/poly/polylib/
http://dx.doi.org/10.1016/S0167-6423(01)00020-X
http://dx.doi.org/10.1007/978-3-540-74130-5_13
http://dx.doi.org/10.1145/2364506.2364514
http://dx.doi.org/10.1007/978-3-642-03034-5_12

Appendix A P. Jansson, 720311–7515, StrongLib

S.-C. Mu, H.-S. Ko, and P. Jansson. Algebra of programming in Agda: dependent types for relational
program derivation. J. Funct. Program., 19:545–579, 2009. DOI:10.1017/S0956796809007345.

U. Norell. Towards a practical programming language based on dependent type theory. PhD thesis,
Chalmers Tekniska Högskola, 2007.

U. Norell and P. Jansson. Polytypic programming in Haskell. In Implementation of Functional Languages
2003, volume 3145 of LNCS, pages 168–184. Springer, 2004.

N. Oury and W. Swierstra. The power of Pi. In Proc. of ICFP 2008, pages 39–50. ACM, 2008.

A. Rodriguez, J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov, and B. C. d. S. Oliveira. Comparing
libraries for generic programming in Haskell. In Haskell’08, pages 111–122. ACM, 2008. DOI:10.

1145/1411286.1411301.

N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang. Secure distributed programming
with value-dependent types. In Proc. of ICFP 2011, pages 266–278, 2011.

The Coq development team. The Coq proof assistant, 2010.

L. Valiant. General context-free recognition in less than cubic time. J. of computer and system sciences,
10(2):308–314, 1975.

10

http://dx.doi.org/10.1017/S0956796809007345
http://dx.doi.org/10.1145/1411286.1411301
http://dx.doi.org/10.1145/1411286.1411301

VRAPS/VR-Direct bilaga 2004.Be Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Name of applicant

Date of birth

Kod

Title of research programme

Appendix B
Curriculum vitae

Appendix B P. Jansson, 720311–7515, StrongLib

B Curricula Vitæ

Curriculum Vitæ:
Patrik Jansson, 1972-03-11

Contact data: email patrikj@chalmers.se
work phone +46 31 772 5415

mobile +46 7 6369 4349
http://www.cse.chalmers.se/~patrikj/

1. Higher education degree:

1995: BSc+MSc degrees in Engineering
Physics + Engineering Mathematics from
Chalmers, Sweden. I graduated almost two
years before schedule as the best student of
my year.

2. Doctoral degree:

2000: Ph.D. degree in Computer Science from
Chalmers, Sweden, on Functional Polytypic
Programming, Advisor: Johan Jeuring.

3. PostDoc and guest research:

1998, 1998, 2001: Research visits (2 + 2 +
3 months) to Northeastern University, Boston,
USA; Oxford University Computing Lab, UK;
Dept. of Computer Science, Yale, USA.

4. Qualification as Associate Professor:

2004: Docent (Associate Professor) degree
from Chalmers, Sweden.

5. Current Employment:

2011–now: Professor, Chalmers. Research
50% (2014).

6. Previous Employment and Education:

2001–2004: Assistant Professor in Computer
Science, Chalmers.

2004–2011: Associate Professor, Chalmers.

7. Interruptions in research:

Parental leave with Julia (1999) and Erik
(2004) for a total of one full time year.

2002–2005: Director of Studies for the BSc
and MSc education at the Computer Science
department. On average 35% / year.

2005–2008: Vice head (of the Computer Sci-
ence and Engineering department) responsi-
ble for the BSc and MSc education. On aver-
age 50% of full time / year.

2011–2013: Head of the 5-year education pro-
gramme in Computer Science and Engineer-
ing (Civilingenjör Datateknik, Chalmers). On
average 42% / year.

2013–: Head of the Software Technology divi-
sion, Chalmers and GU. Around 40% / year.

8. Supervision experience:

I was PhD advisor of Ulf Norell (PhD 2007),
Nils Anders Danielsson (PhD 2007) and Jean-
Philippe Bernardy (PhD 2011). I worked
on generic programs and proofs with Norell,
on program correctness through types with
Danielsson and parametricity for dependent
types & testing with Bernardy. All three are still
in academia. I have supervised over 20 MSc
and BSc project students.

I currently supervise the PhD student Jonas
Duregård (Lic. Dec. 2012). I am also exam-
iner (but not supervisor) of two other PhD stu-
dents: Dan Rosén and Anton Ekblad.

I have been a member of the evaluation com-
mittee of three PhD defenses at Chalmers (T.
Gedell, CSE (2008), M. Zalewski, CSE (2008),
H. Johansson, Physics (2010)).

1

patrikj@chalmers.se
http://www.cse.chalmers.se/~patrikj/

Appendix B P. Jansson, 720311–7515, StrongLib

9. Awards, grants, etc.:

1991: Winner of the Swedish National Physics
Olympiad.
1991: Represented Sweden in the Interna-
tional Physics Olympiads.
1991: Represented Sweden in the Interna-
tional Mathematics Olympiad.
1996: Received the John Ericsson medal for
outstanding scholarship, Chalmers.
1998: Organiser of the first Workshop on
Generic Programming (WGP), Marstrand.
2003–2005: Co-applicant on Cover — Com-
bining Verification Methods in Software Devel-
opment funded with 8M SEK by the Swedish
Foundation for Strategic Research.
2003–2005: Main applicant on the project
Generic Functional Programs and Proofs
funded with 1.8M SEK by VR.
2008–present: Elected member of IFIP (Inter-
national Federation for Information Process-
ing) Working Group 2.1 on “Algorithmic Lan-
guages and Calculi”.
2009–2011: Elected member of the faculty
senate, Chalmers.
2009–2011: Member of the Steering group of
WGP.
2009: PC Chair for WGP
2009–2012: Co-applicant on “Software De-
sign and Verification using Domain Specific
Languages” funded with 11M SEK by the
Swedish Science Council (VR, multi-project
grant in strategic ICT).
2010–2013: Co-applicant and work-package
leader in the Coordination Action “Global Sys-
tems Dynamics and Policy” (GSDP) funded
with 1.3M EUR by the EU (ICT-2009.8.0 FET
Open).
2011–2016: Co-applicant on “RAW FP: Pro-
ductivity and Performance through Resource
Aware Functional Programming” (RAW FP)
funded with 25M SEK by the Swedish Foun-
dation for Strategic Research.
2011–2014: Main applicant on the project
Strongly Typed Libraries for Programs and
Proofs funded with 2.4M SEK by VR.
2011: Organiser of a workshop on “Domain
Specific Languages for Economical and Envi-
ronmental Modelling (DSL4EE)” in Marstrand
as part of GSDP.

2011–2012: Steering Committee Chair of
WGP.
2012: Workshops chair of the International
Conference on Functional Programming (ICFP
2012).
2012: Organised two “ICT challenges to
Global Systems Science” workshops in Brus-
sels as part of the First Open Global Systems
Science Conference.
2013: Organised the “Global Systems Sci-
ence 2013: Models and Data” workshop in
Brussels with M Rasetti, M Resch and R Dum.
2013: Workshops chair of ICFP 2013.
2013: Organised a workshop on "Formal Lan-
guages and Integrated Problem Solving proce-
dures in Global Systems Science", Brussels.
2013: Editor for the orientation paper “GSS:
Towards a Research Program for Global Sys-
tems Science” (with C. Jaeger, S. van der
Leeuw, M. Resch and J. D. Tàbara). The call
FETPROACT-1-2014 Global Systems Science
in Horizon 2020 is concrete evidence on the
success of this line of work.
I have been reviewer for EU grants (2011,
2012), Journal of Functional Programming,
Science of Computer Programming, Princi-
ples of Programming Languages, International
Conference on Functional Programming, Sym-
posium on Implementation and Application of
Functional Languages and several other jour-
nals and conferences.

Leadership experience:

2002–2008: Member of the steering group of
the department.
2002–2005: Director of Studies for the BSc
and MSc education at the CS department
2005–2008: Vice head of the CSE dept. re-
sponsible for the BSc and MSc education.
2008–2010: Deputy project leader of the IM-
PACT project at Chalmers (“Development of
Chalmers’ New Master’s Programmes”, 30M
SEK).
2009: Head of steering group of Chalmers
eScience Initiative.
2011–2013: Head of the 5-year education pro-
gramme in Computer Science and Engineer-
ing (Civilingenjör Datateknik, Chalmers).
2013–: Head of the Division of Software Tech-
nology, Chalmers and GU.

2

http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/2074-fetproact-1-2014.html

Appendix B P. Jansson, 720311–7515, StrongLib

Curriculum Vitæ:
Jean-Philippe Bernardy,
19781215-0790

1. Higher education degree:

1996–2000: BSc+MSc degrees in CS, ob-
tained with “la plus grande distinction” (highest
distinction), Université Libre de Bruxelles, July
2000.

2. Doctoral degree:

2011: Ph.D. degree in CS from Chalmers,
Sweden. Thesis: A Theory of Parametric Poly-
morphism and an Application, Advisor: Patrik
Jansson.

3. PostDoc:

2011–2012: Continued development of the
theory of parametric polymorphism, in collab-
oration with Prof. Thierry Coquand and Prof.
Peter Dybjer (Chalmers).

4. Docent degree:

I plan to obtain my Docent degree before 2015.

5. Current Employment:

2012–now: Assistant Prof., Chalmers. Re-
search 75% (2013).

6. Prev. Employment:

2007–2011: Doctoral Student, Chalmers,
Sweden

2005–2007: Software Engineer, Eurocontrol
(Brussels)

2000–2003: Software Engineer, PhiDaNi Soft-
ware (Brussels)

7. Interruptions in research:

I have taken 90 work days of parental leave
during my employment as Assistant Professor.

8. Supervised PhD and PostDoc:

I am currently co-supervising Guilhem Moulin
(main supervisor Peter Dybjer) and Dan
Rosén (main supervisor Koen Claessen).

9. Awards, grants, etc.:

Co-applicant on Types for programs and
proofs funded with 12 M SEK by the Swedish
Science Council.

10. Other information:

Research Statement: My interests lie in
fields that contribute to bridge the gap between
abstraction and efficiency, including:

� constructive type theory

� functional programming

� generic programming

� software engineering

I have more specifically pursued two indepen-
dent line of research:

� The first topic borders functional program-
ming and language technology. At the
start of my PhD studies, I investigated
syntax-driven feedback for interactive pro-
gramming environments. This led to re-
search on incremental, parallel and ro-
bust parsing, yielding three Master’s the-
ses and three publications.

� The second topic borders functional pro-
gramming and type-theory, more pre-
cisely bringing in more and more type-
theory into the realm of functional pro-
gramming. In particular, the main topic
of my PhD is parametricity: a technique
which enables functional programmers to
leverage polymorphic types to ensure cor-
rectness of programs. Besides my PhD
thesis, this line of research has led to five
publications.

Recently, as part of the SSF-Funded
Resource-Aware Functional Program-
ming project, I am working on applying
the methodology of type-theory to the

3

Appendix B P. Jansson, 720311–7515, StrongLib

domain of low-level functional program-
ming. Indeed, functional programming
languages with linear types have long
held the promise to be both low-level and
allow higher-order abstractions, but are
not yet very well known in my research
community. I have contributed to spread-
ing the ideas by leading a course in the
computer science graduate school.

Invited talks:

� “Unobtrusive Version Control”, Potsdam
Institute for Climate Impact Research,
2007

� “Concepts and Type-Classes”, Workshop
on Generic Programming, 2008

� “Yi: the Haskell editor”, Haskell Sympo-
sium, 2008

� “Testing Polymorphic Properties” Euro-
pean Symposium on Programming, 2009

� “Parametricity and Dependent types”, In-
ternational Conference of Functional Pro-
gramming, 2010

� “Proof-Irrelevance in Agda”, Agda Interest
Meeting, Nottingham 2010

� “Realisability and Parametricity in PTSs”,
Microsoft Research, Cambridge, 2010

� “Internalizing Parametricity”, Agda Inter-
est Meeting, Shonan Village, Japan, 2011

� “Implementing Parametricity”, Parametric-
ity Workshop, Glasgow 2012

� “Type-Theory in Color”, Agda Interest
Meeting, Copenhagen 2012

Teaching Experience:

I have been responsible for teaching the fol-
lowing courses:

� Programming Paradigms (2012–2014).

� Functional Programming Languages with
Linear Types (2013).

Implementations:

I am the main developer of the Yi editor.
I have made significant contributions to the fol-
lowing industrial-strength tools:

� Alex (Lexer generator)

� BNFC (Parser generator)

� Agda (Proof assistant and dependently-
typed language)

Community roles:

� Haskell Symposium 2013, PC Member

� Haskell Implementers Workshop 2010,
PC Member

4

Appendix B P. Jansson, 720311–7515, StrongLib

Curriculum Vitæ:
Cezar Ionescu,
19681221-1479

1. Higher education degree:

1988–1993: Politehnica University of
Bucharest, Faculty of Control Engineer-
ing and Computer Science, specialization
Bioinformatics. Thesis on Hardware Imple-
mentation of Neural Networks, awarded the
highest grade, 10.

2. Doctoral degree:

2009: PhD from the Fachbereich Informatik
and Mathematik of the Freie Universität Berlin
with the thesis Vulnerability Modeling and
Monadic Dynamical Systems (summa cum
laude). Advisor: Prof. Rupert Klein.

3. PostDoc:

2009–2013: Postdoc at the Potsdam Insti-
tute for Climate Impact Research within the
Research Domain Transdisciplinary Concepts
and Methods. Special focus on using type the-
ory to specify economic models.

4. Docent degree:

None.

5. Current Employment:

since August 2013: Postdoc at Chalmers.
Work on increasingly correct scientific pro-
gramming, using type theory and validated nu-
merical methods. Research 80%.

6. Prev. Employment:

� 1993–1999: Systems analyst at the In-
formatics Research Institute in Bucharest.
Worked within the Artificial Intelligence
laboratory on projects related to optimiza-
tion and adaptive control using neural net-
works, fuzzy logic and genetic algorithms.
In 1998 worked on a Y2K project for Cap
Gemini Nederland where I implemented

several tools for analyzing COBOL code
and assisting programmers in the removal
of Y2K-related bugs.

� 1999–2006: IT position at the Potsdam In-
stitute for Climate Impact Research (PIK),
project Modenv (Modeling Environment).
Implemented a Fortran code analysis tool
for coupling legacy models with Corba, a
simulation builder application for remote
distributed components (Graphical Simu-
lation Builder), participated in the design
and implementation of the Typed Data
Transfer library and was responsible for
the Python version.

� 2006–2009: Scientific position at PIK.
Worked within the project FAVAIA (For-
mal Approaches to Vulnerability, Adapta-
tion and Integrated Assessment), part of
the EU project Adaptation and Mitigation
(ADAM). Formalized the concept of “vul-
nerability” as used in the global change
community and completed PhD thesis on
vulnerability. Continued work on IT-related
projects, among them the PIK project
S (Software components for distributed
adaptive finite volume methods), where
I formulated a mathematical model for a
class of parallel programs and assisted
in the specification of relation-based algo-
rithms.

� 2009–2013: Postdoc position at PIK,
within the project Model Specification and
Program Development. Focus on us-
ing dependently-typed programming for
specifiying, developing, testing, extending
and re-factoring implementations of eco-
nomic and multi-agent models used at
PIK, in particular Lagom (a model of the
German economy) and REMIND (a multi-
regional model of global economy with
emphasis on the energy sector).

7. Interruptions in research:

I have taken six months of parental leave dur-
ing 2007–2008.

5

Appendix B P. Jansson, 720311–7515, StrongLib

8. Supervised PhD and PostDoc:

I have co-supervised the following PhD stu-
dents:

� Sarah Wolf (main supervisor Rupert
Klein). PhD in mathematics, Freie Uni-
versität Berlin, 2010. Thesis: From Vul-
nerability Formalization to Finitely Addi-
tive Probability Monads.

� Daniel Lincke (main supervisor Sibylle
Schupp). PhD in computer science, Tech-
nische Universität Hamburg-Harburg,
2012. Thesis: A transformational ap-
proach to generic software development
based on higher-order, typed functional
signatures.

9. Other information:

Project proposals:

� Co-writer of the proposal for the Adap-
tation and Mitigation EU Project (2006–
2009), specifically the proposal to formal-
ize the cluster of notions related to “vul-
nerability to climate change”. This was
responsible for 50% of the funding of my
position and for the PhD students Sarah
Wolf and Daniel Lincke.

� Co-writer of the proposal for the Coordi-
nated Action Global Systems Dynamics
and Policy (2010–2012), which, in partic-
ular, facilitated the scientific interchange
between Chalmers and PIK and other
members of the Sustainable Development
community.

Teaching:

� Advanced Functional Programming, sum-
mer semester 2012-2013, Freie Univer-
sität Berlin. Masters level course. Course
materials can be found at

http://tinyurl.com/pxc5uxk

� Introduction to Programming using Java,
winter semester 2013-2014, University of
Göteborg. First-year course. Course ma-
terials can be found at

http://tinyurl.com/pd68lvk

Other:

� Co-organizer of the Oberwolfach Seminar
Mathematics for Scientific Programming,
November 2013.

� Invited observer to IFIP Working Group
2.1 on Algorithmic Languages and Cal-
culi, attended meetings 68 (February
2012, Rome, Italy) and 71 (March 2014,
Zeegse, the Netherlands).

� Co-founder of the Cartesian Seminar,
a weekly scientific seminar held at PIK
(2000–2012), and since 2012 at the Pots-
dam University, with the aim of creat-
ing a common understanding of scientific
issues in an interdisciplinary (but math-
ematically inclined) audience, based on
close reading of essential texts and con-
genial dialog. This is one of the longest
running scientific seminars in Germany,
and since its move to the Potsdam Uni-
versity has become part of the curricu-
lum (students can receive grades based
on their ability to analyze and present sci-
entific texts).

� Chairman at the Dahlem conference New
Approaches in Economics after the Finan-
cial Crisis (August 28 to 31, 2010).

� Invited presentation at the Dahlem con-
ference Is There a Mathematics of Social
Entities? (December 14 to 19, 2008) on
Modeling versus Formalization.

� Rapporteur for Group 4 Models,
Metaphors, and Visualisation at the
Dahlem conference Is There a Mathe-
matics of Social Entities? (December 14
to 19, 2008).

6

http://tinyurl.com/pxc5uxk
http://tinyurl.com/pd68lvk

VRAPS/VR-Direct bilaga 2004.Ce Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Name of applicant

Date of birth

Kod

Title of research programme

Appendix C P. Jansson, 720311–7515, StrongLib

C Publication lists

) An arrow on the left marks the publications most relevant for this project.

Selected Publications: Patrik Jansson

Note to non computer scientists Conference articles in computer science are peer reviewed
full articles — not 1–2 page abstracts, and are the normal form of refereed publication. The
top conferences in each subfield (like POPL and ICFP below) typically have the highest impact
factor within that field, higher even than any journal.

0. Most cited publications (Google Scholar, 2014-04-06)

Jansson’s Hirsch-index is 17, his total citation count is over 1300 and the following papers are
the five most cited.

1. P. Jansson and J. Jeuring. PolyP — a polytypic programming language extension. In Proc.
POPL’97: Principles of Programming Languages, pages 470–482. ACM Press, 1997.
DOI:10.1145/263699.263763.
Number of citations: 318.

2. R. Backhouse, P. Jansson, J. Jeuring, and L. Meertens. Generic programming: An intro-
duction. In Advanced Functional Programming, volume 1608 of LNCS, pages 28–115.
Springer, 1999. URL http://www.cse.chalmers.se/~patrikj/poly/afp98/.
Number of citations: 194.

3. J. Jeuring and P. Jansson. Polytypic programming. In J. Launchbury et al., editors, Ad-
vanced Functional Programming ’96, volume 1129 of LNCS, pages 68–114. Springer-
Verlag, 1996. URL http://www.cse.chalmers.se/~patrikj/poly/AFP96.pdf.
Number of citations: 163.

4. A. Rodriguez, J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov, and B. C. d. S. Oliveira.
Comparing libraries for generic programming in Haskell. In Haskell’08, pages 111–122.
ACM, 2008. DOI:10.1145/1411286.1411301.
Number of citations: 66.

5. M. Benke, P. Dybjer, and P. Jansson. Universes for generic programs and proofs in depen-
dent type theory. Nordic Journal of Computing, 10(4):265–289, 2003. ISSN 1236-6064.
http://dl.acm.org/citation.cfm?id=985801.
Number of citations: 63.

1. Journal articles (last 8 years)

6. J.-P. Bernardy, P. Jansson, and R. Paterson. Proofs for free — parametricity for depen-
dent types. Journal of Functional Programming, 22(02):107–152, 2012. DOI:10.1017/

S0956796812000056.
Number of citations: 14.

7. J.-P. Bernardy, P. Jansson, M. Zalewski, and S. Schupp. Generic programming with C++
concepts and Haskell type classes — a comparison. Journal of Functional Programming,
20(3–4):271–302, 2010c. DOI:10.1017/S095679681000016X.
Number of citations: 13.

1

http://scholar.google.com/citations?user=eIO4EBAAAAAJ
http://dx.doi.org/10.1145/263699.263763
http://www.cse.chalmers.se/~patrikj/poly/afp98/
http://www.cse.chalmers.se/~patrikj/poly/AFP96.pdf
http://dx.doi.org/10.1145/1411286.1411301
http://dl.acm.org/citation.cfm?id=985801
http://dx.doi.org/10.1017/S0956796812000056
http://dx.doi.org/10.1017/S0956796812000056
http://dx.doi.org/10.1017/S095679681000016X

Appendix C P. Jansson, 720311–7515, StrongLib

8.) S.-C. Mu, H.-S. Ko, and P. Jansson. Algebra of programming in Agda: dependent types
for relational program derivation. J. Funct. Program., 19:545–579, 2009. DOI:10.1017/

S0956796809007345.
Number of citations: 10.

2. Refereed conference articles (last 8 years)

9.) C. Ionescu and P. Jansson. Dependently-typed programming in scientific computing: Ex-
amples from economic modelling. In R. Hinze, editor, 24th Symposium on Implementation
and Application of Functional Languages (IFL 2012), volume 8241 of LNCS, pages 140–
156. Springer-Verlag, 2013a. DOI:10.1007/978-3-642-41582-1_9.
Number of citations: 1.

10. C. Ionescu and P. Jansson. Testing versus proving in climate impact research. In Proc.
TYPES 2011, volume 19 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 41–54, Dagstuhl, Germany, 2013b. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik. DOI:10.4230/LIPIcs.TYPES.2011.41.
Number of citations: 1.

11. J. Duregård, P. Jansson, and M. Wang. Feat: Functional enumeration of algebraic types.
In Haskell’12, pages 61–72. ACM, 2012. DOI:10.1145/2364506.2364515.
Number of citations: 4.

12. J. Jeuring, P. Jansson, and C. Amaral. Testing type class laws. In Haskell’12, pages 49–
60. ACM, 2012. DOI:10.1145/2364506.2364514.
Number of citations: 2.

13. J. Duregård and P. Jansson. Embedded parser generators. In Haskell ’11, pages 107–
117, New York, NY, USA, 2011. ACM. DOI:10.1145/2034675.2034689.
Number of citations: 6.

14.) J.-P. Bernardy, P. Jansson, and R. Paterson. Parametricity and dependent types. In
Proceedings of the 15th ACM SIGPLAN international conference on Functional Pro-
gramming, pages 345–356, Baltimore, Maryland, 2010b. ACM. DOI:10.1145/1863543.

1863592.
Number of citations: 33.

15.) J.-P. Bernardy, P. Jansson, and K. Claessen. Testing polymorphic properties. In A. Gor-
don, editor, European Symposium on Programming, volume 6012 of Lecture Notes in
Computer Science, pages 125–144. Springer, 2010a. DOI:10.1007/978-3-642-11957-6_
8.
Number of citations: 17.

16. A. Rodriguez, J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov, and B. C. d. S. Oliveira.
Comparing libraries for generic programming in Haskell. In Haskell’08, pages 111–122.
ACM, 2008. DOI:10.1145/1411286.1411301.
Number of citations: 66.

17. D. Lincke, P. Jansson, M. Zalewski, and C. Ionescu. Generic libraries in C++ with concepts
from high-level domain descriptions in Haskell: A DSL for computational vulnerability as-
sessment. In IFIP Working Conf. on Domain Specific Languages, volume 5658/2009 of
LNCS, pages 236–261, 2009. DOI:10.1007/978-3-642-03034-5_12.
Number of citations: 6.

2

http://dx.doi.org/10.1017/S0956796809007345
http://dx.doi.org/10.1017/S0956796809007345
http://dx.doi.org/10.1007/978-3-642-41582-1_9
http://dx.doi.org/10.4230/LIPIcs.TYPES.2011.41
http://dx.doi.org/10.1145/2364506.2364515
http://dx.doi.org/10.1145/2364506.2364514
http://dx.doi.org/10.1145/2034675.2034689
http://dx.doi.org/10.1145/1863543.1863592
http://dx.doi.org/10.1145/1863543.1863592
http://dx.doi.org/10.1007/978-3-642-11957-6_8
http://dx.doi.org/10.1007/978-3-642-11957-6_8
http://dx.doi.org/10.1145/1411286.1411301
http://dx.doi.org/10.1007/978-3-642-03034-5_12

Appendix C P. Jansson, 720311–7515, StrongLib

18. J.-P. Bernardy, P. Jansson, M. Zalewski, S. Schupp, and A. Priesnitz. A comparison of
C++ concepts and Haskell type classes. In Proc. ACM SIGPLAN Workshop on Generic
Programming (WGP), pages 37–48. ACM, 2008a. DOI:10.1145/1411318.1411324.
Number of citations: 19.

19. S.-C. Mu, H.-S. Ko, and P. Jansson. Algebra of programming using dependent types.
In Mathematics of Program Construction, volume 5133/2008 of LNCS, pages 268–283.
Springer, 2008. DOI:10.1007/978-3-540-70594-9_15.
Number of citations: 13.

20. P. Jansson, J. Jeuring, and students of the Utrecht U. Generic Programming class. Test-
ing properties of generic functions. In Z. Horvath, editor, Proceedings of IFL 2006, volume
4449 of LNCS, pages 217–234. Springer-Verlag, 2007. DOI:10.1007/978-3-540-74130-5_
13.
Number of citations: 6.

21. N. A. Danielsson, J. Hughes, P. Jansson, and J. Gibbons. Fast and loose reasoning is
morally correct. In POPL’06, pages 206–217. ACM Press, 2006. DOI:10.1145/1111037.
1111056.
Number of citations: 58.

3+4. Review articles, book chapters, books

22. C. Niklasson, P. Jansson, and P. Lundgren. IMPACT - establishing the Bologna struc-
ture with master’s programmes at Chalmers. In Utvecklingskonferensen 2008, Nätverket
Ingenjörsutbildningarna, 2008.

23. C. Niklasson, P. Lundgren, and P. Jansson. Utvärdering av Chalmers nya masterspro-
gram - studentsynpunkter. In Den 2:a Utvecklingskonferensen för Sveriges ingenjörsut-
bildningar, pages 49–52, 2009.

24. P. Jansson and S. Schupp, editors. WGP’09: Proceedings of the 2009 ACM SIGPLAN
workshop on Generic programming, 2009. ACM. ISBN 978-1-60558-510-9.

25. C. Niklasson and P. Jansson. Pedagogical development of master’s programmes for the
Bologna structure at Chalmers - IMPACT. In European Society for Engineering Education
(SEFI) 37th Annual Conference, 2009. URL http://www.cse.chalmers.se/~patrikj/

papers/IMPACT_SEFI_2009_final.pdf.

26. H. Danielsson, editor. IMPACT — Strategic Development of Chalmers Master’s Pro-
grammes, chapter Learning from IMPACT & Quality Assurance, pages 23–24, 59–62.
Chalmers, 2010. ISBN 978-91-633-6202-6. Patrik Jansson wrote the chapters Learn-
ing from IMPACT and Quality Assurance. Available from http://publications.lib.

chalmers.se/cpl/record/index.xsql?pubid=115021.

27. C. Jaeger, P. Jansson, S. van der Leeuw, M. Resch, J. D. Tabara, and R. Dum. GSS ori-
entation paper – background material. Prepared as part of the effort to define a research
area within the upcoming EU framework programme Horizon 2020., June 2013b.

28. C. Jaeger, P. Jansson, S. van der Leeuw, M. Resch, and J. D. Tabara. GSS: Towards a
research program for Global Systems Science. http://blog.global-systems-science.
eu/?p=1512, 2013a. ISBN 978.3.94.1663-12-1. Conference Version, prepared for the
Second Open Global Systems Science Conference June 10-12, 2013, Brussels.

3

http://dx.doi.org/10.1145/1411318.1411324
http://dx.doi.org/10.1007/978-3-540-70594-9_15
http://dx.doi.org/10.1007/978-3-540-74130-5_13
http://dx.doi.org/10.1007/978-3-540-74130-5_13
http://dx.doi.org/10.1145/1111037.1111056
http://dx.doi.org/10.1145/1111037.1111056
http://www.cse.chalmers.se/~patrikj/papers/IMPACT_SEFI_2009_final.pdf
http://www.cse.chalmers.se/~patrikj/papers/IMPACT_SEFI_2009_final.pdf
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=115021
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=115021
http://blog.global-systems-science.eu/?p=1512
http://blog.global-systems-science.eu/?p=1512

Appendix C P. Jansson, 720311–7515, StrongLib

5. Patents

None.

6. Publicly available implementations (last 8 years)

I have participated in the development of the Agda proof engine (mainly through my PhD stu-
dents Ulf Norell, Nils Anders Danielsson and Jean-Philippe Bernardy),

29. U. Norell et al. Agda — a dependently typed programming language. Implementation
available from http://wiki.portal.chalmers.se/agda/, 2008.
Number of citations: 362.

The first description of Agda was in the PhD thesis of Ulf Norell (2007) and it has been
cited ’ 50 times / year since then, indicating a quick spread in academia.

I have developed a library for specifying and checking algebraic laws of Haskell type classes.

30. P. Jansson and J. Jeuring. The haskell package ClassLaws. http://hackage.haskell.

org/package/ClassLaws, 2012.

I have also contributed to several other libraries and tools:

� 2004–: ChasingBottoms: A library for working with partial and infinite values in Haskell:
http://hackage.haskell.org/package/ChasingBottoms

� 2006: The BNF Converter — a tool for generating a compiler skeleton from a labelled
BNF grammar: http://bnfc.digitalgrammars.com/

� 2012: testing-feat: a library for efficiently enumerating large abstract syntax tree types:
http://hackage.haskell.org/package/testing-feat

7. Popular science articles/presentations

31. P. Jansson and T. Fülöp. A sustainable energy future through education and research.
Presented at the G20 Youth Forum Conference held in St.Petersburg, Russia, 2013-04-
17/21. http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/SustainableEnergyFuture,
2013.

Invited presentations (2006–2013)

2006-12-12: “Testing properties of generic functions” at the Working Group 2.1 on Algorithmic
Languages and Calculi, meeting #62 in Namur, Belgium.

2007-09-12: “Comparing Libraries for Generic Programming in Haskell” at the Working Group
2.1 on Algorithmic Languages and Calculi, meeting #63 in Kyoto, Japan.

2007-09-12: “Agda tutorial” at the Working Group 2.1 on Algorithmic Languages and Calculi,
meeting #63 in Kyoto, Japan.

4

http://wiki.portal.chalmers.se/agda/
http://hackage.haskell.org/package/ClassLaws
http://hackage.haskell.org/package/ClassLaws
http://hackage.haskell.org/package/ChasingBottoms
http://bnfc.digitalgrammars.com/
http://hackage.haskell.org/package/testing-feat
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/SustainableEnergyFuture
http://www.cs.uu.nl/wiki/pub/IFIP21/KyotoJapan/kyo7jansson.pdf

Appendix C P. Jansson, 720311–7515, StrongLib

2009-07-02 : “Pedagogical development of Master’s Programmes for the Bologna Structure
at Chalmers - IMPACT” at the 2009 Annual conference of the European Society for Engineering
Education (SEFI), Rotterdam, the Netherlands.

2010-01-25: “Parametricity and Dependent Types” at the Working Group 2.1 on Algorithmic
Languages and Calculi, meeting #65 in Braga, Portugal.

2010-09-20: “Simple Pure Type System Examples” at the Working Group 2.1 on Algorithmic
Languages and Calculi, meeting #66 in Atlantic City, New Jersey, USA.

2011-09-22: “Embedded Parser Generators” at the 2011 ACM SIGPLAN Haskell Symposium,
Tokyo, Japan.

2012-10-09: “Functional Enumeration of Algebraic Types” at the IFIP Working Group 2.1 on
Algorithmic Languages and Calculi, meeting #69 in Ottawa, Canada.

2012-11-09: “Computer Science meets Global Systems Science” at the 1st Open Global Sys-
tems Science Conference, November 8th–10th, 2012, Brussels, Belgium.

2013-06-10: Plenary presentation on “ICT for Global Systems Science” at the 2nd Global
Systems Science Conference in Brussels, Belgium.

2013-06-11: “ICT for Global Systems Science” at the Global Systems Science Languages
workshop (part of the 2nd Global Systems Science Conference) in Brussels, Belgium.

2014-03-09: “An algebra for parallel parsing” at the IFIP Working Group 2.1 on Algorithmic
Languages and Calculi, meeting #71 in Zeegse, the Netherlands.

5

http://www.cse.chalmers.se/~patrikj/talks/IMPACT_SEFI09_Jansson.pdf
http://www.cse.chalmers.se/~patrikj/talks/IMPACT_SEFI09_Jansson.pdf
http://www.sefi.be/wp-content/abstracts2009/Niklasson.pdf
http://www.sefi.be/wp-content/abstracts2009/Niklasson.pdf
http://www.cs.uu.nl/wiki/pub/IFIP21/AtlanticCity/Simple_PTS_Jansson_21.pdf
http://www.cs.uu.nl/wiki/pub/IFIP21/Ottawa/Feat_PJ.pdf
http://blog.global-systems-science.eu/?p=462
http://www.gsdp.eu/fileadmin/images/events/2013-06_gss/workshops/Formal_Languages_and_Integrated_Problem_Solving_Procedures/Patrik_Jansson_-_ICT_for_Global_Systems_Science.pdf
http://www.gsdp.eu/nc/news/news/date/2013/04/26/next-gss-conference-june-10-11th-2013-brussels/
http://www.gsdp.eu/nc/news/news/date/2013/04/26/next-gss-conference-june-10-11th-2013-brussels/
http://www.cse.chalmers.se/~patrikj/talks/Jansson_GSS_2013_ICT.pdf
http://wiki.portal.chalmers.se/cse/pmwiki.php/GSDP/GSSLanguages
http://www.cse.chalmers.se/~patrikj/talks/IFIP2.1ZeegseJansson_ParParseAlgebra.org

Appendix C P. Jansson, 720311–7515, StrongLib

Selected Publications: Jean-Philippe Bernardy

Note to non computer scientists Conference articles in computer science are peer reviewed
full articles — not 1–2 page abstracts, and are the normal form of refereed publication. The
top conferences in each subfield (like LICS and ICFP below) typically have the highest impact
factor within that field, higher even than any journal.

C.1 Peer-reviewed publications in journal

J.-P. Bernardy, P. Jansson, and R. Paterson. Proofs for free — parametricity for dependent
types. Journal of Functional Programming, 22(02):107–152, 2012. DOI:10.1017/S0956796812000056.
Number of citations: 14.

J.-P. Bernardy, P. Jansson, M. Zalewski, and S. Schupp. Generic programming with C++ con-
cepts and Haskell type classes — a comparison. Journal of Functional Programming, 20(3–4):
271–302, 2010c. DOI:10.1017/S095679681000016X.
Number of citations: 13.

C.2 Peer-reviewed publications in conferences and workshops

J.-P. Bernardy and K. Claessen. Efficient divide-and-conquer parsing of practical context-free
languages. In Proceedings of the 18th ACM SIGPLAN international conference on Functional
Programming, pages 111–122, 2013.
Number of citations: 0.

J.-P. Bernardy and N. Pouillard. Names for free — polymorphic views of names and binders. In
Proceedings of the 6th ACM SIGPLAN symposium on Haskell, pages 13–24. ACM, 2013.
Number of citations: 1.

J.-P. Bernardy and G. Moulin. Type-theory in color. In Proceedings of the 18th ACM SIGPLAN
international conference on Functional Programming, pages 61–72, 2013.
Number of citations: 4.

J.-P. Bernardy and G. Moulin. A computational interpretation of parametricity. In Proceedings
of the Symposium on Logic in Computer Science. IEEE Computer Society, 2012.
Number of citations: 7.

J.-P. Bernardy and M. Lasson. Realizability and parametricity in pure type systems. In M. Hof-
mann, editor, Foundations Of Software Science And Computational Structures, volume 6604 of
Lecture Notes in Computer Science, pages 108–122. Springer, 2011.
Number of citations: 16.

J.-P. Bernardy, P. Jansson, and R. Paterson. Parametricity and dependent types. In Proceed-
ings of the 15th ACM SIGPLAN international conference on Functional Programming, pages
345–356, Baltimore, Maryland, 2010b. ACM. DOI:10.1145/1863543.1863592.
Number of citations: 33.

J.-P. Bernardy, P. Jansson, and K. Claessen. Testing polymorphic properties. In A. Gordon,
editor, European Symposium on Programming, volume 6012 of Lecture Notes in Computer
Science, pages 125–144. Springer, 2010a. DOI:10.1007/978-3-642-11957-6_8.
Number of citations: 17.

J.-P. Bernardy. Lazy functional incremental parsing. In Proceedings of the 2nd ACM SIG-
PLAN symposium on Haskell, pages 49–60, Edinburgh, Scotland, 2009. ACM. ISBN 978-1-
60558-508-6. DOI:10.1145/1596638.1596645. URL http://portal.acm.org/citation.cfm?

6

http://dx.doi.org/10.1017/S0956796812000056
http://dx.doi.org/10.1017/S095679681000016X
http://dx.doi.org/10.1145/1863543.1863592
http://dx.doi.org/10.1007/978-3-642-11957-6_8
http://dx.doi.org/10.1145/1596638.1596645
http://portal.acm.org/citation.cfm?id=1596638.1596645
http://portal.acm.org/citation.cfm?id=1596638.1596645
http://portal.acm.org/citation.cfm?id=1596638.1596645

Appendix C P. Jansson, 720311–7515, StrongLib

id=1596638.1596645.
Number of citations: 10.
J.-P. Bernardy, P. Jansson, M. Zalewski, S. Schupp, and A. Priesnitz. A comparison of C++
concepts and Haskell type classes. In WGP ’08: Proceedings of the ACM SIGPLAN workshop
on Generic programming, pages 37–48, Victoria, BC, Canada, 2008b. ACM. ISBN 978-1-
60558-060-9. URL http://dx.doi.org/10.1145/1411318.1411324.
Number of citations: 19.

C.3 Non peer-reviewed publications

J.-P. Bernardy. Yi: an editor in Haskell for Haskell. In Proceedings of the first ACM SIG-
PLAN symposium on Haskell, pages 61–62, Victoria, BC, Canada, 2008. ACM. ISBN 978-1-
60558-064-7. DOI:10.1145/1411286.1411294. URL http://portal.acm.org/citation.cfm?

id=1411286.1411294.
Number of citations: 7.

Publicly available implementations

I am the main contributor to the Yi project
J.-P. Bernardy. Yi: an editor in Haskell for Haskell. In Proceedings of the first ACM SIG-
PLAN symposium on Haskell, pages 61–62, Victoria, BC, Canada, 2008. ACM. ISBN 978-1-
60558-064-7. DOI:10.1145/1411286.1411294. URL http://portal.acm.org/citation.cfm?

id=1411286.1411294.

I have contributed the Agda proof assistant. The first description of Agda was in the PhD thesis
of Ulf Norell and it has been cited ’ 50 times / year since then, indicating a quick spread in
academia.

7

http://portal.acm.org/citation.cfm?id=1596638.1596645
http://portal.acm.org/citation.cfm?id=1596638.1596645
http://portal.acm.org/citation.cfm?id=1596638.1596645
http://dx.doi.org/10.1145/1411318.1411324
http://dx.doi.org/10.1145/1411286.1411294
http://portal.acm.org/citation.cfm?id=1411286.1411294
http://portal.acm.org/citation.cfm?id=1411286.1411294
http://dx.doi.org/10.1145/1411286.1411294
http://portal.acm.org/citation.cfm?id=1411286.1411294
http://portal.acm.org/citation.cfm?id=1411286.1411294

Appendix C P. Jansson, 720311–7515, StrongLib

Selected Publications: Cezar Ionescu

0. Most cited publications (Google Scholar, 2014-04-07)

) C. Ionescu, R. J. T. Klein, J. Hinkel, K. S. Kavi Kumar, and R. Klein. Towards a formal framework
of vulnerability to climate change. Environmental Modelling and Assessment, 14(1):1–16, 2009.
Number of citations: 124.
T. Downing, J. Aerts, J. Soussan, O. Barthelemy, S. Bharwani, C. Ionescu, J. Hinkel, R. Klein,
L. Mata, N. Martin, et al. Integrating social vulnerability into water management. Technical
report, NeWater Working Paper, 2005.
Number of citations: 51.

) C. Ionescu. Vulnerability modelling and monadic dynamical systems. PhD thesis, Freie Univer-
sität Berlin, 2009.
Number of citations: 16.
M. Zalewski, A. Priesnitz, C. Ionescu, and N. Botta. Multi-language library development from
Haskell type classes to C++ concepts. 2007.
Number of citations: 13.
C. Resteanu, F.-G. Filip, C. Ionescu, and M. Somodi. On optimal choice problem solving. In
Systems, Man, and Cybernetics, 1996., IEEE International Conference on, volume 3, pages
1864–1869. IEEE, 1996.
Number of citations: 13.

1. Peer-reviewed publications in journal

) C. Ionescu. Vulnerability modelling with functional programming and dependent types. Mathe-
matical Structures in Computer Science, accepted for publication, to appear.
Number of citations: 0.

) D. Lincke, S. Schupp, and C. Ionescu. Functional prototypes for generic c++ libraries: a transfor-
mational approach based on higher-order, typed signatures. International Journal on Software
Tools for Technology Transfer, pages 1–15, 2014.
Number of citations: 0.

) N. Botta, A. Mandel, C. Ionescu, M. Hofmann, D. Lincke, S. Schupp, and C. Jaeger. A functional
framework for agent-based models of exchange. Applied Mathematics and Computation, 218
(8):4025 – 4040, 2011.
Number of citations: 4.

) C. Ionescu, R. J. T. Klein, J. Hinkel, K. S. Kavi Kumar, and R. Klein. Towards a formal framework
of vulnerability to climate change. Environmental Modelling and Assessment, 14(1):1–16, 2009.
Number of citations: 124.
N. Botta and C. Ionescu. Relation-based computations in a monadic BSP model. Parallel
Computing, 33(12):795 – 821, 2007.
Number of citations: 12.

2. Peer-reviewed publications in conferences and workshops

) N. Botta, A. Mandel, M. Hofmann, S. Schupp, and C. Ionescu. Mathematical specification of an
agend-based model of exchange. In Enabling Domain Experts to use Formalised Reasoning,
page NA, 2013b.
Number of citations: 0.

) C. Ionescu and P. Jansson. Testing versus proving in climate impact research. In Proc. TYPES
2011, volume 19 of Leibniz International Proceedings in Informatics (LIPIcs), pages 41–54,

8

http://scholar.google.com/citations?user=eIO4EBAAAAAJ

Appendix C P. Jansson, 720311–7515, StrongLib

Dagstuhl, Germany, 2013b. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. DOI:10.4230/
LIPIcs.TYPES.2011.41.
Number of citations: 1.

) C. Ionescu and P. Jansson. Dependently-typed programming in scientific computing: Examples
from economic modelling. In R. Hinze, editor, 24th Symposium on Implementation and Appli-
cation of Functional Languages (IFL 2012), volume 8241 of LNCS, pages 140–156. Springer-
Verlag, 2013a. DOI:10.1007/978-3-642-41582-1_9.
Number of citations: 1.

) N. Botta, C. Ionescu, and E. Brady. Sequential decision problems, dependently-typed solutions.
URL http://ceur-ws.org/Vol-1010/paper-06.pdf.
Number of citations: 0.

) N. Botta, C. Ionescu, and E. Brady. Sequential decision problems, dependently typed solu-
tions. In Proceedings of the Conferences on Intelligent Computer Mathematics (CICM 2013),
"Programming Languages for Mechanized Mathematics Systems Workshop (PLMMS)", July
2013a. URL ceur-ws.org/Vol-1010/paper-06.pdf.
Number of citations: 0.

3. Review articles

) C. C. Jaeger, L. Paroussos, D. Mangalagiu, R. Kupers, A. Mandel, J. D. Tàbara, N. Botta,
S. Fürst, E. Henning, C. Ionescu, et al. A new growth path for europe. Generating Prosperity
and Jobs in the Low-Carbon Economy. Synthesis Report PIK, University of Oxford, ICCS, Uni-
versité Paris, 1, 2011.
Number of citations: 9.

4. Books

) C. Ionescu. Vulnerability modelling and monadic dynamical systems. PhD thesis, Freie Univer-
sität Berlin, 2009.
Number of citations: 16.

5–6. Patents, open-access computer programs

None.

7. Popular science articles/presentations

S. Wolf, J. Hinkel, M. Hallier, A. Bisaro, D. Lincke, C. Ionescu, and R. J. Klein. Clarifying vulnera-
bility definitions and assessments using formalisation. International Journal of Climate Change
Strategies and Management, 5(1):54–70, 2013.
Number of citations: 2.

9

http://dx.doi.org/10.4230/LIPIcs.TYPES.2011.41
http://dx.doi.org/10.4230/LIPIcs.TYPES.2011.41
http://dx.doi.org/10.1007/978-3-642-41582-1_9
http://ceur-ws.org/Vol-1010/paper-06.pdf
ceur-ws.org/Vol-1010/paper-06.pdf

VRAPS/VR-Direct bilaga 2004.Re Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Name of applicant

Date of birth

Kod

Title of research programme

Appendix N P. Jansson, 720311–7515, StrongLib

N Budget

N.1 Explanation of the proposed budget

I apply for 80% of a PhD student salary (the other 20% are covered by teaching) and for 20% of
my own salary. The amounts include indirect costs from the department and university level. I
also apply for direct costs for conferences, travel, computers, premises, IT-costs, licentiate and
PhD defence costs.
The co-applicants (Bernardy and Ionescu) will also be active in the project, but will be funded
from other sources (EU-projects and other VR and SSF projects).

N.2 Total research resources of the project

StrongLib (VR) All three applicants (Jansson 15%, Ionescu 40%, Bernardy 50%) are cur-
rently partially funded by an earlier VR project (Strongly Typed Libraries for Programs and
Proofs, P. Jansson, 2011–2013). The current project application (LibTrust) can be seen as a
continuation of StrongLib.

RAWFP (SSF) Jansson and Bernardy are partially funded (currently 10%) by J. Hughes’
“RAWFP: Resource aware functional programming” (SSF, 2011–2016). RAWFP will most likely
continue to co-fund Jansson and Bernardy during 2015–2016. Hughes’ project applies func-
tional programming techniques, especially DSLs embedded in Haskell, to the design and ver-
ification of complex software, taking motivating examples from the telecom and automotive
domains. The current project proposal, on the other hand, will provide more long-term basic
research in the software technology of the future.

Types (VR) Bernardy is partially funded (25%) by a multi-project-grant (VR 2013–2016, num-
ber 2012-5294) lead by T. Coquand. Coquand’s project will also complement the current project
by strengthening the Agda group at U. of Gothenburg.

SciComp (Chalmers) Ionescu is partially funded (40%) by the CSE department as a strate-
gic investment in the connection between computer science and sustainability (“Increasingly
Correct Scientific Computing”, Chalmers 2013–2015).

N.3 Applications in the pipeline

LibTrust (VR) The current application “Libraries You Can Trust: high-level specifications and
correct implementations via dependent types” would fund Jansson (20%) and a new PhD stu-
dent (80%). The new project is a natural continuation of the old project but what we have learnt
during the way has changed the focus a bit. Where the old project talks about programs and
proofs, the new project explicitly includes specification (and automatic testing) as intermediate
stages.

GSS (EU) Jansson and Ionescu have recently applied (2014-04-01) for two EU projects under
the call FETPROACT-1-2014 Global Systems Science (GSS) in Horizon 2020. The Chalmers
site is in both cases responsible for Domain Specific Languages.

LTPA (VR) Bernardy is applying for a Project Research Grant for Junior Researchers on “Lin-
ear Types for Parallel Arrays”.

1

http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/2074-fetproact-1-2014.html

VRAPS/VR-Direct b Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Name of applicant

Date of birth Reg date

Kod Dnr

Project title

DateApplicant

Head of department at host University Clarifi cation of signature Telephone

Vetenskapsrådets noteringar
Kod

	AmnesOmrade_S: *Övrigt generellt
	Amnesrad_S: NT
	AnsokanKod_A: 2014-2993-115587-25
	AnsokanKod_B: 2014-2993-115587-25
	AnsokanKod_C: 2014-2993-115587-25
	AnsokanKod_N: 2014-2993-115587-25
	AnsokanKod_S: 2014-2993-115587-25
	appendix: Appendix S
	appendix_C: Appendix C
	appendix_N: Appendix N
	Ar_S: 2014 -
	BeredGrp_S: NT-2
	Bidragsform_S: Project Research Grant
	Budget:
	Ar_S1: 2015
	Ar_S2: 2016
	Ar_S3: 2017
	Ar_S4: 2018
	Ar_S5: 2019

	DetBud:
	Dnr_S:
	ForhandText_A:
	ForhandText_B:
	ForhandText_C:
	ForhandText_N:
	ForhandText_S:
	ForvMynd_S: Chalmers tekniska högskola
	hjalptext1: A signature on the application is required not only from the applicant but also from the authorised representative of the administrating organisation/institution or equivalent (normally the head of the department or establishment where the research is to be conducted). The signature confirms that the department can accommodate the proposed research, position or equipment; that the costing in the application is approved for the department's part, that any proposed experimentation on human or animal subjects has been reported, and that the applicant has reported any secondary occupations and commercial ties (s)he may have, and nothing inconsistent with good research practice has thereby emerged. The applicant must have discussed these conditions with the representative of the administrating organisation/institution or equivalent before the latter approves and signs the application.
	hjalptext6: NOTE the exceptions!Please note that a different procedure applies for the following types of grants:•	Infrastructure- Operation Grants•	Infrastructure- Grants for Expensive Equipment•	Infrastructure- Grants for Large Databases•	Framework Grant SIMSAM•	International RecruitmentFor these types of grants the vice-chancellor, instead of the head of department, must sign Appendix S. Thereby (s)he confirms the commitments of the administrative organization. The details are specified in the Call for Proposals, published at www.vr.se.
	hjalptext7:
	hjalptext8:
	ProjTitelEng_A: Libraries You Can Trust: high-level specifications and correct implementations via dependent types
	ProjTitelEng_B: Libraries You Can Trust: high-level specifications and correct implementations via dependent types
	ProjTitelEng_C: Libraries You Can Trust: high-level specifications and correct implementations via dependent types
	ProjTitelEng_S: Libraries You Can Trust: high-level specifications and correct implementations via dependent types
	ProjTitelSv_N:
	RegDate_S: 2014-04-09 16:00:08
	S:
	Namn_A: Jansson, Patrik
	Namn_B: Jansson, Patrik
	Namn_C: Jansson, Patrik
	Namn_N: Jansson, Patrik
	Namn_S: Jansson, Patrik
	PersNr_A: 720311-7515
	PersNr_B: 720311-7515
	PersNr_C: 720311-7515
	PersNr_N: 720311-7515
	PersNr_S: 720311-7515

	sign: Signatures
	SoktBeloppAr_S1: 1059
	SoktBeloppAr_S2: 1072
	SoktBeloppAr_S3: 1121
	SoktBeloppAr_S4: 1142
	SoktBeloppAr_S5: 1229
	StartSlut_S: 2015-01-01 -- 2019-12-31
	Text2: 2
	Utlysning_S: Research grants NT April 9, 2014

