
Type Theory as a Framework for

Modelling and Programming

Cezar Ionescu1[0000−0003−3908−2843], Patrik Jansson2[0000−0003−3078−1437], and
Nicola Botta3[0000−0002−8923−2734]

1 University of Oxford, Cezar.Ionescu@conted.ox.ac.uk
2 Chalmers University of Technology, patrik.jansson@chalmers.se

3 Potsdam Institute for Climate Impact Research, botta@pik-potsdam.de

Abstract. In the context provided by the proceedings of the UVMP
track of ISoLA 2016, we propose Type Theory as a suitable framework
for both modelling and programming. We show that it �ts most of the
requirements put forward on such frameworks by Broy et al. and discuss
some of the objections that can be raised against it.

Keywords: Software Technology · Speci�cation · Functional Program-
ming · Dependent Types · Domain-Speci�c Languages

1 Introduction

The present paper was written as a contribution to the ISoLA 2018 track entitled
�Towards a Uni�ed View of Modeling and Programming�. The basic question to
be discussed there was that of the relation between �modelling�4 and �program-
ming�. In one of its stronger forms, the question was formulated as

what are the arguments for and against the statement:
modeling is programming?

Such a question needs to be addressed in a certain context, one which would
exclude certain possible meanings of �modelling�, e.g., �To display (clothes) as
a fashion model� (9th entry in the current Oxford Dictionary of English under
�modelling�), and of �programming� (e.g., �To arrange by or according to a pro-
gramme; to include or name in a programme; to draw up a scheme or itinerary of;
to plan or schedule de�nitely�, �rst entry under �programming� � the computer-
oriented meaning only comes in fourth place). In order to obtain this context,
we made a review of the de�nitions of modelling and programming used in the
previous edition of this track, hosted at ISoLA 2016. The results of this review
are presented in the next section. As a result of this review, we were led to pro-
pose Type Theory as a uni�ed framework for modelling and programming. We
present a brief description of Type Theory, and show that the proposal is con-
sistent with most of the requirements for such an framework put forward during
ISoLA 2016 by Broy et al. We then discuss some possible objections, followed
by some of the wider implications of this proposal.

4 We have used the British spelling throughout the document, except in literal quotes.



2 ISoLA 2016 de�nitions of modelling and programming

Seven of the sixteen contributions published within the �Towards a Uni�ed View
of Modeling and Programming� section of the ISoLA 2016 proceedings [38] con-
tain a more or less explicit de�nition for both �modelling� and �programming�.

� Seli¢ [51]:
• An engineering model is a selective representation of some system in-
tended to capture accurately and concisely all of its essential properties
of interest for a given set of concerns.

• A program is a human-readable textual representation of the binary data
that is actually stored and executed in a computer.

Remark: since a program is itself a �selective representation�, it follows that
it is also a model (cf. the given de�nition), but Seli¢ argues that this is
misleading, since �programming languages are intended primarily and almost
exclusively for prescriptive purposes�.

� Seidewitz [50]:
• A model is always about something, which I term the system under study
(SUS). For our purposes here, we can consider a model to consist of a
set of statements about the SUS expressed in some modeling language.
These statements make assertions about certain properties of the SUS,
but say nothing about other properties that are not mentioned.

• Programs [. . . ] are precise models of execution (where, for simplicity, I
consider both data and algorithmic aspects to be included in the term
�execution�).

Remark: Seidewitz considers that models are more general than programs:
�From this point of view all programs are actually models. And all executable
models are actually programs. But there are, of course, software models that
are not programs.�

� Elaasar and Badreddin [15]:
• A model is a simpli�ed representation of a more complex system. It is
frequently used to abstract and analyze a system by focusing on one or
more aspects. Models are used to understand, communicate, simulate,
calibrate, evaluate, test, validate and explore alternatives for system de-
velopment. Modelers use a wide variety of models to explore di�erent
aspects of the system such as requirements, structure, behavior, event,
time, security, �ow, process, activity, performance, quality, usability, etc.
These models can be expressed in many forms including textual and vi-
sual representations.

• Programming, on the other hand, is the activity of developing executable
software. Programs are written in a programming language, which is a
set of rules for expressing computations in a human-readable form that
can be translated unambiguously to a machine-readable form.



� Prinz et al. [46]:
• Modelling is the activity to describe a real or imagined (part of a) system
using a language with a semantics. The model does not provide a full
match of the real system, but an abstraction.

• Programming is the activity to prescribe a new (part of a) system us-
ing a language with a well-de�ned execution semantics. The program
determines the system.

� Lethbridge et al. [36]:
• Three criteria for what it means to �look and feel like a model�, attributed
by the authors to Ludewig [37, p. 196] and summarised as
∗ (m1) There is a mapping between the model and the system being
modeled, or part of it. The system is called the `original' by Ludewig.

∗ (m2) This mapping abstracts some properties of the system, hence
providing a simpli�ed view. Typical abstractions focus on behavioural
properties or structural properties, but the same model may include
both, as well as other types of abstractions.

∗ (m3) The model is useful in that one can do things with the model
instead of having to have access to the full (executable) system. Key
things one can do with a model under m3 include analyzing it to
measure it or to �nd defects, and transforming it into other forms.
Models are therefore useful in early stages of design, but in some
cases can also be used to generate some or all of the system.

• Three criteria for what it means for a system to �look and feel like code�:
∗ (c1) The system, or parts of it, are composed of a set of units (�les
in the case of Umple), which can be edited using a text editor sup-
porting syntax highlighting.

∗ (c2) The textual syntax is designed to be usable by programmers.
∗ (c3) When it is processed (compiled in the case of Umple), feed-
back such as warnings and errors is produced, highlighting issues on
speci�c lines.

� Naujokat et al. [42]:
At a conceptual level, modeling and programming can be regarded
as two sides of the same medal: the WHAT and the HOW descrip-
tions of a certain artefact. This duality of WHAT and HOW has a
long tradition in engineering, where models were built to predict cer-
tain WHATs, like the aerodynamics of an envisioned car or its visual
appearance, in order to optimize vital aspects, before entering the
costly HOW-driven production phase, where modi�cations become
extremely expensive. [. . . ] In classical engineering, there is typically
a very clear and agreed upon distinction between a model (a WHAT)
and an implementation (the HOW), frequently connected to distinct
abstraction layers and di�erent natures of the respective description
means. [. . . ] the understanding of what is a HOW (an implementa-
tion or a program) and what a WHAT (a model or a speci�cation)
in software becomes quite situation dependent.



� Broy et al. [12]:

Models are meant to describe a system at a high level of abstraction
for the purpose of human understanding and analysis. Programs,
on the other hand, are meant for execution. However, programming
languages are becoming increasingly higher-level, with convenient
notation for concepts that in the past would only be reserved for
formal speci�cation languages.

Of the remaining nine papers, Berry [4] de�nes programming (�As an activ-
ity, programming is quite easy to de�ne: one writes texts or graphics that are
compiled into some machine language and executed by some computer.�), but
not modelling (�Modeling is not as clear-cut, because it deals with many more
concepts and objects.�).

The remaining eight papers contain no de�nitions of modelling or program-
ming. Rybicki et al. [49], and Larsen et al. [31] use the terminology of the model-
based engineering community (see, e.g., [40]), Rouquette [48] that of UML [43],
Elmqvist et al. [16] that of Modelica [18], Haxthausen and Pelska [20] �model�
both in the sense of modelling languages and in that of model theory. Lattmann
et al. [33] discuss domain-speci�c modelling languages. Kugler [28] refers to �a
combination of programming, modelling languages, speci�cation formalisms and
methodologies�, but there are no details in his brief contribution. Finally, Leav-
ens et al. [34] do not mention modelling at all, discussing instead speci�cations,
i.e., partial descriptions of a software system against which the correctness of
implementations is to be assessed. This last treatment of modelling might seem
quite limited when compared to the others, but we believe that in this context
it is, in fact, quite natural.

2.1 Models and speci�cations

The picture that emerges from a study of the de�nitions and of the most im-
portant references given in the ISoLA 2016 proceedings is, broadly speaking,
the following: a model of a system is a partial description of that system. The
particular form of the partial description depends on the means we have, on
the system to be modelled, on what we plan to do with the description, etc.
In general, the relationship between the description and the system is not fully
formalised (and often not fully formalisable). There is a great variety of kinds
of description (scale models, mathematical models, narratives, pictures, formal
models, software models, . . . ). The systems being modelled do not necessarily
exist �in reality�. For example, architectural blueprints can be seen as partial de-
scriptions of buildings that have yet to be built. In such cases, the relationship
to the system can be quite formal5, as blueprints are part of contracts and it
must be decidable whether the buildings have been constructed correctly or not.

5 Here, formal is in the OED's sense 5.a: "Done or made with the forms recognized
as ensuring validity; explicit and de�nite, as opposed to what is matter of tacit
understanding."



This variety of possible models can seem quite daunting, but there is one
de�nite constraint in the context of ISoLA: the only models being considered
are those that describe programs. In other words, the only models considered
are speci�cations, which justi�es the point of view implicitly adopted by Leavens
et al. in [34].

This constraint is obvious in most of the articles above, but what about the
models of real systems considered by Kugler, Printz et al., and others? In these
cases, the models are meant to describe simulations of the real systems, but sim-
ulations are the result of the execution of programs. This is explained in Printz
et al. when they discuss correctness: a model of a system (called the reference
system) is correct if programs described by the model produce a simulation of
that system.

In their contribution, Broy et al. call for �a single universal formalism for
modeling and programming any form of system�, but, again, the context makes
clear that what is meant are software systems (object-oriented, functional, im-
perative, etc.). The uni�cation being sought is at the level of the framework

used, ideally, for both activities. Most of the ISoLA 2016 papers refer to such a
framework, sometimes called environment (as in Elmqvist et al. [16]) or thought
of as a high-level programming language (as in Seidewitz [50]).

3 A brief introduction to Type Theory

If the above analysis is correct, and we can therefore equate modelling with
speci�cation of software systems, then that is good news, for we do have a
uni�ed framework for modelling and programming, one that is mature (several
decades old), with solid implementations (NuPRL, Coq, Agda, Idris, Lean), and
impeccable mathematical credentials: Type Theory.

Type Theory, sometimes referred to as Dependently Typed Theory, is a pure
functional programming language with a static type system. It is similar to
Haskell, and stands in roughly the same relation to it as predicate logic to propo-
sitional logic. Type Theory was developed by the Swedish mathematician and
philosopher Per Martin-Löf, who intended it to have the same foundational role
for intuitionistic mathematics that set theory expressed in predicate logic had
had for classical mathematics.

This is not the place for a presentation of Type Theory, especially since nowa-
days there are many very good ones available (for a particularly accessible one,
see [1]). What we want to do here is to provide an intuition for why Type Theory
is able to provide an environment for both speci�cations and implementations,
and for the various �types as . . . � analogies.

We start by recalling that set theory derives its foundational role in classical
mathematics from its ability to represent properties in several di�erent (equiva-
lent) ways, within a �rst-order language. For example, given a property P over
a set A, expressed as a formula in the �rst-order language of sets, we can view
it as a



� set P = {a | P a }, a ∈ P i� a has the property P
� Boolean-valued function P : P a = True i� a has the property P
� set-valued function P : P a not empty i� a has the property P

In the third representation we can think of P a as the set of witnesses to a
having the property P .

All these allow us to talk about the property within the theory: it becomes
an element of the universe of discourse. In contrast, the formula expressing the
property is not an element of the universe of discourse.

These are consequences of the axiom of comprehension, which, in particular,
directly legitimises the view of properties as sets. Other axioms of set theory
introduce new ways of building sets from existing ones, by means of taking the
powerset, unions and intersections.

If we take types in programming languages to be the analogues of sets in
set theory, we can see that the available means for their construction are more
restricted. Like many other programming languages, Type Theory allows the
construction of inductive types. For example:

Z :Nat

n :Nat

S n :Nat

and

data Nat : Type where
Z :Nat
S :Nat → Nat

are two equivalent ways of expressing the rules for the construction of natural
numbers, one in �natural deduction� style, the other in the style of Haskell, Agda,
or Idris.

In most programming languages, we can usually represent properties as
Boolean-valued predicates. For example:

isEven :Nat → Bool
isEven Z = True
isEven (S Z ) = False
isEven (S (S n)) = isEven n

In most cases, however, we cannot represent the associated set (here, the set of
even numbers) as a datatype or as a type-valued function. Therefore, if a function
requires its argument to be even, then the best we can do is to guard the call
of the function with a run-time check. This leads to expressing requirements
or speci�cations as tests, as in test-driven development methods or design by
contract.

In contrast, in Type Theory, we have the additional possibility of representing
a property by a type-valued function (or type family), which corresponds to the
set-valued version in set theory. For example

k :Nat

MkEven k : Even (2 ∗ k)



and

data Even :Nat → Type where
MkEven : (k :Nat)→ Even (2 ∗ k)

are equivalent ways of expressing the type-valued function version of isEven. For
every natural number n, Even n is a type. If n is not even, then the type will
be empty. Otherwise, the type will have one element, namely MkEven (n / 2).
Perhaps the best way to think of an element e : Even n is that it represents
evidence that n is even, by showing that n is made out of the doubling of a
natural number.

If a function requires its argument to be even, we can now formulate this
requirement at the level of its type, for instance

f : (n :Nat)→ Even n → X

The function f is here in curried form, allowing partial application: f n is a
function of type Even n → X , f n e is a value of type X , assuming n and e
have the appropriate types. This notation is standard in functional programming
languages, but also, e.g., in VDM (see the VDM-10 manual ([32]), Section 3.2.8,
page 29).

In order to call f with an argument n, we have to supply another argument
of type Even n. We can only do that if n is Even, since otherwise Even n would
be empty. This additional argument must be reducible to the form MkEven k ,
where k = n / 2, and this can be checked at compile time (or, rather, at �type-
checking time�). This ensures that f will never give rise to a run-time error, a
much stronger guarantee than we can enforce by means of tests.

The ability to de�ne inductive datatypes and type families lends Type Theory
a surprisingly strong expressive power, equal to that of classical higher-order
logic. In particular, we can formulate all the notions in current mathematics.
Note, however, that the only formulas we can prove are those of constructive
mathematics: the logic of Type Theory is intuitionistic.

When it comes to speci�cations of programs, this is not a bug, but rather a
feature. The requirements on a program can be expressed at the level of types,
for example

f : (x :X )→ Pre x → Σ (y :Y ) (Post x y)

is the type of a function that takes as input elements of a type X having the
property Pre, and delivers elements of a type Y which are in the relation Post
with the input. An implementation of f that satis�es the type checker will ful�l
this speci�cation.

This approach to speci�cation and implementation in Type Theory has been
successfully used in e.g., producing a veri�ed C compiler, CompCert [35]; de-
veloping database access libraries which statically guarantee that queries are
consistent with the schema of the underlying database [44]; implementing secure
distributed programming [52]; implementing resource-safe programs [41,11]; and
many others.



As a modelling framework, modelling in Type Theory has the advantage of
mathematical consistency over using UML or similar approaches. As such, it
is closer to formal methods like VDM, but we �nd it easier to express high-
level, domain-speci�c properties in Type Theory. For example, we can formulate
types for �resource-safe operations�, �privacy-ensuring protocols�, but also for
�avoidable states� [6] or even �measures of vulnerability to climate change� [22].

4 Type Theory as a framework for modelling and

programming

In [12], Broy et al. put forward ten requirements for a uni�ed framework for
modelling and programming. We give a brief overview of how Type Theory fares
with respect to them.

1. Target domains: can the formalism account for �modeling; programming of
non-embedded systems, such as web applications, including scripting; and
�nally programming of embedded and cyber-physical systems�? Type Theory
has been successfully used in all these domains, for example: modelling using
dynamical systems [23,6], implementing typed web client applications [27],
programming embedded systems [47].

2. Predicate speci�cations: �A formalism must generally support specifying prop-
erties as predicates rather than only as algorithms.� As explained above, we
can use types to express arbitrarily complex predicates.

3. Programming in the large: �A formalism must support programming in the
large, and in general provide good modularization and component-based de-
velopment.� Types are a natural structuring mechanism for programs, espe-
cially when supplemented with higher-order constructs such as type classes.
Most implementations of Type Theory provide support for modules, sepa-
rate compilation units, packages, etc. In the context of �programming in the
large�, Broy et al. emphasise concurrency, both at the level of programming
and that of modelling. Concurrent programming is di�cult in any frame-
work, and Type Theory is no exception, but it is the topic of active research
(see, for example, [10,27,21]) that can build on the high-quality Haskell im-
plementations of concurrency [39].

4. High-level programming: �A formalism must support high-level programming
as found in modern programming languages.� Type Theory is a high-level
programming language, so this requirement could be considered satis�ed �by
de�nition�. However, the explanation of this requirement notes: �A formalism
should be statically typed, although with type inference, and with allowance
for going type less in clearly de�ned regions to support scripting.� While
it is not obvious to us that scripting necessarily implies dynamic typing
(especially in the presence of type inference), we do believe that there are
situations in which the type checker must be forced to accept a given typing.
This is the case, for example, when integrating with external programs writ-
ten in a di�erent language, or for which the source code is not available. Most



(all?) implementations of Type Theory provide such a mechanism, usually
by means of postulates.

5. Low-level programming: �A formalism must support low-level programming.�
The dependently-typed language Low* has been used to implement e�cient
low-level programs [47], and there are many other similar applications of
implementations based on Type Theory. However, it is correct that at the
current stage, implementations of Type Theory do not generate programs
with the same performance characteristics as C.

6. Continuous mathematics: �A formalism can support modeling of cyber-physical
systems.� As a system originally designed for the formalisation of mathemat-
ics, Type Theory ful�ls this requirement �by construction�. The modelling ca-
pabilities of constructive mathematics have been amply demonstrated, e.g.,
by Bishop and Bridges [5], and the ForMath project [17].

7. Domain-speci�c languages: �A formalism must support de�nition of domain-
speci�c languages.� Like most functional programming languages, Type The-
ory is an excellent vehicle for embedding domain-speci�c languages (see, for
example, Brady [9]).

8. Visualization: �A formalism must be visualizable.�. This requirement is the
only one that is currently not satis�ed. Providing visual representations of
formal speci�cations such as those represented by types in Type Theory
is a problem that not only has not been solved, but, as far as we know,
is not currently being tackled in a systematic way (say, in the framework
of a Horizon 2020 project). The activities that come nearest to the mark
are those involving diagrammatic reasoning, such as string diagrams [14].
These o�er visual representations of the relationships of various entities in
a categorical setting, and come with rules that allow rigorous proofs by
means of manipulations of the diagrams. There exists a software tool that
implements this kind of reasoning with string diagram, available at http:
//globular.science/ [2], but it is unclear whether this kind of presentation
would be appropriate for the proofs normally conducted in Type Theory.
Perhaps the main di�culty here is that of coming up with the �right kind�
of visualisation of type-based speci�cations, which will require the joint e�ort
of HCI experts, modellers, programmers, and specialists in Type Theory.

9. Analysis: �A formalism must be analyzable.�. This requirement refers to �ba-
sic built-in support for unit testing, over advanced testing capabilities, in-
cluding test input generation and monitoring, to concepts such as static
analysis, model checking, theorem proving and symbolic execution�, which
the more popular implementations of Type Theory support. However, the
requirement asks that �the main emphasis should be put on automation. The
average user should be able to bene�t from automated veri�cation, without
having to do manual proofs.� Tactics implemented in, e.g., Idris or Coq, at-
tempt to automate certain parts of proofs, and are quite successful when
dealing with properties that �t a certain pattern (which is often the case in
DSLs, [11]). However, the moment one strays from the beaten path, proof
obligations can no longer be �lled-in automatically, thus we can only claim
partial satis�ability of this requirement.

http://globular.science/
http://globular.science/


10. What modelers do that programmers don't: �A central question is how a
model/program is represented.� This requirement refers to the need for �a
more sophisticated approach than the text-based source code repositories
often used by programmers�, since modelers �have the habits of querying
models, transforming models, and generally consider models as data, in con-
trast to the programming community where data usually are separated from
programs�, and notes that �from within a program one can usually not get
access to the entire AST of the program itself, although often limited forms
of re�ection are possible�. Frameworks based on Type Theory are among
the leading environments for meta-programming (a term that covers both
re�ection and code generation), which has been considered one of the �killer
applications� for dependent types (e.g., by Chlipala in [13]), so we consider
that this requirement is satis�ed. Broy et al. point out that this requirement
is connected to that of visualisation: this link might provide a starting point
for projects aiming to satisfy the latter.

Type Theory fully satis�es most of the requirements, with partial scores
for �programming in the large�, �analysis�, and �what modelers do�. The only
requirement that is not satis�ed is �visualisation�, which we hope will be a topic
of future research.

5 Potential objections

In this section, we consider some potential objections to using Type Theory as
a uni�ed framework for modelling and programming.

Three of the papers of the ISoLA 2016 proceeding, Haxthausen and Peleska
[20], Larsen et al. [31], and Naujokat et al. [42], argue against the feasibility and
usability of a uni�ed framework for modelling and programming. In all three,
the argument is that multiple formalism are needed to do justice to the wealth
of potential goals, requirements, stakeholders etc.

All three papers point out the necessity of relating the various formalisms, in
order to combine them to create more complex models, or to translate between
them in order to reuse common aspects. We believe that the best way to do this is
to implement the various formalisms as DSLs embedded in a common language,
and that Type Theory is the most adequate candidate for such a language.

We will, however, very quickly admit that it is not a perfect candidate. The
required level of precision can sometimes become a burden. For example, since
each value has a unique type, we have di�culties working with subtypes. This can
create problems when building hierarchies of models, since the familiar �subset�
relation turns out to be quite awkward in a type-theoretical context. Similar
remarks apply to other common set-theoretical constructions, such as that of
quotient sets, which amount to introducing a new equality relation on a set.
In Type Theory, the canonical equality on the elements of a type, namely the
identity relation, has a privileged status, and working with a di�erent equivalence
relation instead is much more cumbersome.



Type Theory is an area of active research, and we hope that these di�culties
will gradually be alleviated. In particular, the developments in the area of homo-

topy type theory seem to hold the key to the problem of working with di�erent
equivalence relations.

6 Conclusions

We have presented several arguments for the use of Type Theory as a framework
for uni�ed modelling and programming, where we have interpreted �modelling� to
refer to (partial) descriptions of software systems, i.e., speci�cations of software
systems.

In these concluding remarks, we would like to explain why we believe that
Type Theory is a more adequate such framework than others, such as VDM
or the B-method. It is quite likely that, with some additions and modi�cations,
these too could meet the requirements put forward by Broy et al. After all, VDM
and similar frameworks have been developed for the exact purpose of covering the
spectrum from software speci�cation to implementation in a formal, systematic
fashion. Moreover, they have the same mathematical foundation as all (or at
least most) of classical mathematics: set theory.

Indeed, all the standard mathematical theories can be �compiled down� to the
�rst-order language of ZFC (Zermelo-Fraenkel with the Axiom of Choice). How-
ever, ZFC is far from actual mathematical practice. Instead, what one usually
sees is a usage of �naive� set theory, as presented in the books of Halmos [19] and
Bourbaki's summary [7] (but not in Bourbaki's extended treatment of set theory
[8]!). This is then combined with some form of �naive� (and mostly implicit) type
theory, to prevent set-theoretical �excesses�, such as taking the intersection of π
with the square root function. This has been pointed out again and again, and
has led to the search for alternative foundations, e.g., based on category theory.
For the computer scientist, this comes as no surprise: after all, just because every
programming language must eventually be compiled down to machine code, it
does not at all follow that the best way to understand programming languages
is through the prism of machine code.

Thus, perhaps surprisingly, being based on ZFC o�ers little advantage when
it comes to modelling actual mathematical concepts (see the requirement labelled
continuous mathematics in Broy et al.'s list). On the contrary, the awkwardness
in formulating and working with notions such as �continuous function�, �di�er-
entiable function�, �linear operator�, etc., makes it di�cult for such systems to
make inroads into the area of scienti�c computing.

ZFC is also at a disadvantage when it comes to the foundations of computing
science, for example, in giving an account of the semantics of programming
languages. In fact, the study of the relationships between various programming
languages has led to the introduction in computing science of the lambda calculus
[30] and its various typed variants [3,45]. This has in�uenced the current style in
computing science, which emphasises the distinction of syntax versus semantics,



the introduction of names and structure [29], encourages calculational proofs
and the creation of DSLs, all using types as the main structuring mechanism.

The mathematician Charles Wells used the term �computer science perspec-
tive� in an article published in the American Mathematical Monthly [54], in
which he was arguing that this style could also be valuable in teaching mathe-
matics. This �perspective� is perhaps one of the most valuable contributions that
computing science can make to the larger intellectual landscape, and we have
witnessed its e�ectiveness during the lectures given within the Domain-Speci�c

Language of Mathematics course taught in Chalmers from 2015/16 on [24,25,26].
Type Theory provides a natural foundation for both the computer science

perspective and for constructive mathematics. When extended with classical
postulates, resulting in a typed predicate logic [53], it brings us much closer to
the language of mathematical practice than ZFC. Thus, Type Theory turns out
to be a suitable vehicle for both mathematics and computing, at least in part
because it was not created with any connection to software development.

A �nal remark: we have consciously decided to talk about �Type Theory�
rather than any one of its implementations, because the most important uni�-
cation that can be achieved is at the conceptual level, rather than the software
level. The existing implementations have their strengths and weaknesses, and
readers should make their choice based on their goals, needs, and background.

Acknowledgements

The work presented in this paper heavily relies on free software, among others
on Idris, Agda, GHC, git, vi, Emacs, LATEX and on the FreeBSD and Debian
GNU/Linux operating systems. It is our pleasure to thank all developers of these
excellent products. This work was partially supported by the CoeGSS project
(grant agreement No 676547), which has received funding from the European
Union's Horizon 2020 research and innovation programme.

References

1. Altenkirch, T.: Naive type theory (2017), http://www.cs.nott.ac.uk/~psztxa/
mgs-17/notes-mgs17.pdf, lecture notes for a course at MGS 2017.

2. Bar, K., Kissinger, A., Vicary, J.: Globular: an online proof assistant for higher-
dimensional rewriting. Logical Methods in Computer Science 14(1) (2018),
doi: 10.23638/LMCS-14(1:8)2018, http://arxiv.org/abs/1612.01093

3. Barendregt, H.P.: Lambda calculi with types. In: Abramsky, S., Gabbay, D.M.,
Maibaum, S.E. (eds.) Handbook of Logic in Computer Science (Vol. 2), pp. 117�
309. Oxford University Press, Inc., New York, NY, USA (1992), http://dl.acm.
org/citation.cfm?id=162552.162561

4. Berry, G.: Formally unifying modeling and design for embedded systems - A per-
sonal view. In: Margaria and Ste�en [38], pp. 134�149, doi: 10.1007/978-3-319-
47169-3_11

5. Bishop, E., Bridges, D.: Constructive Analysis. Springer-Verlag (1985),
doi: 10.1007/978-3-642-61667-9

http://www.cs.nott.ac.uk/~psztxa/mgs-17/notes-mgs17.pdf
http://www.cs.nott.ac.uk/~psztxa/mgs-17/notes-mgs17.pdf
http://dx.doi.org/10.23638/LMCS-14(1:8)2018
http://arxiv.org/abs/1612.01093
http://dl.acm.org/citation.cfm?id=162552.162561
http://dl.acm.org/citation.cfm?id=162552.162561
http://dx.doi.org/10.1007/978-3-319-47169-3_11
http://dx.doi.org/10.1007/978-3-319-47169-3_11
http://dx.doi.org/10.1007/978-3-642-61667-9


6. Botta, N., Jansson, P., Ionescu, C.: Contributions to a computational theory of
policy advice and avoidability. Journal of Functional Programming 27, 1�52 (2017),
doi: 10.1017/S0956796817000156

7. Bourbaki, N.: Éléments de mathématique: Fasc. I. Livre 1, Théorie des ensem-
bles;[5], Fascicule de résultats. Hermann (1964)

8. Bourbaki, N.: Théorie des ensembles. Springer (2006)
9. Brady, E.: The idris programming language � implementing embedded domain

speci�c languages with dependent types. In: Central European Functional Pro-
gramming School - 5th Summer School, CEFP 2013, Cluj-Napoca, Romania, July
8-20, 2013, Revised Selected Papers. pp. 115�186 (2013), doi: 10.1007/978-3-319-
15940-9_4

10. Brady, E.: Type-driven development of concurrent communicating systems. Com-
puter Science 18(3) (2017), doi: 10.7494/csci.2017.18.3.1413, https://journals.agh.
edu.pl/csci/article/view/1413

11. Brady, E., Hammond, K.: Resource-safe systems programming with embedded do-
main speci�c languages. In: Practical Aspects of Declarative Languages, pp. 242�
257. Springer (2012), doi: 10.1007/978-3-642-27694-1_18

12. Broy, M., Havelund, K., Kumar, R.: Towards a uni�ed view of modeling and pro-
gramming. In: Margaria and Ste�en [38], pp. 238�257, doi: 10.1007/978-3-319-
47169-3_17

13. Chlipala, A.: Ur: Statically-typed metaprogramming with type-level record com-
putation. In: Proceedings of the 31st ACM SIGPLAN Conference on Programming
Language Design and Implementation. pp. 122�133. PLDI '10, ACM, New York,
NY, USA (2010), doi: 10.1145/1806596.1806612

14. Coecke, B., Kissinger, A.: Picturing Quantum Processes: A First Course in Quan-
tum Theory and Diagrammatic Reasoning. Cambridge University Press (2017)

15. Elaasar, M., Badreddin, O.: Modeling meets programming: A comparative study
in model driven engineering action languages. In: Margaria and Ste�en [38], pp.
50�67, doi: 10.1007/978-3-319-47169-3_5

16. Elmqvist, H., Henningsson, T., Otter, M.: Systems modeling and programming in
a uni�ed environment based on Julia. In: Margaria and Ste�en [38], pp. 198�217,
doi: 10.1007/978-3-319-47169-3_15

17. ForMath project team: Papers and slides from the �formalisation of mathematics�
(ForMath) project, available from http://wiki.portal.chalmers.se/cse/pmwiki.php/
ForMath/PapersAndSlides

18. Fritzson, P.: Principles of object-oriented modeling and simulation with Modelica
2.1. John Wiley & Sons (2010)

19. Halmos, P.: Naive Set Theory. Van Nostrand (1960), reprinted by Springer-Verlag,
Undergraduate Texts in Mathematics, 1974

20. Haxthausen, A.E., Peleska, J.: On the feasibility of a uni�ed modelling and pro-
gramming paradigm. In: Margaria and Ste�en [38], pp. 32�49, doi: 10.1007/978-3-
319-47169-3_4

21. Igried, B., Setzer, A.: Programming with monadic CSP-style processes in depen-
dent type theory. In: Proceedings of the 1st International Workshop on Type-
Driven Development. pp. 28�38. TyDe 2016, ACM, New York, NY, USA (2016),
doi: 10.1145/2976022.2976032, http://doi.acm.org/10.1145/2976022.2976032

22. Ionescu, C.: Vulnerability modelling and monadic dynamical systems. Ph.D. thesis,
Freie Universität Berlin (2009)

23. Ionescu, C.: Vulnerability modelling with functional programming and depen-
dent types. Mathematical Structures in Computer Science 26(01), 114�128 (2016),
doi: 10.1017/S0960129514000139

http://dx.doi.org/10.1017/S0956796817000156
http://dx.doi.org/10.1007/978-3-319-15940-9_4
http://dx.doi.org/10.1007/978-3-319-15940-9_4
http://dx.doi.org/10.7494/csci.2017.18.3.1413
https://journals.agh.edu.pl/csci/article/view/1413
https://journals.agh.edu.pl/csci/article/view/1413
http://dx.doi.org/10.1007/978-3-642-27694-1_18
http://dx.doi.org/10.1007/978-3-319-47169-3_17
http://dx.doi.org/10.1007/978-3-319-47169-3_17
http://dx.doi.org/10.1145/1806596.1806612
http://dx.doi.org/10.1007/978-3-319-47169-3_5
http://dx.doi.org/10.1007/978-3-319-47169-3_15
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/PapersAndSlides
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/PapersAndSlides
http://dx.doi.org/10.1007/978-3-319-47169-3_4
http://dx.doi.org/10.1007/978-3-319-47169-3_4
http://dx.doi.org/10.1145/2976022.2976032
http://doi.acm.org/10.1145/2976022.2976032
http://dx.doi.org/10.1017/S0960129514000139


24. Ionescu, C., Jansson, P.: Domain-speci�c languages of mathematics: Present-
ing mathematical analysis using functional programming. In: Proceedings of
the 4th and 5th International Workshop on Trends in Functional Programming
in Education, TFPIE 2016, Sophia-Antipolis, France and University of Mary-
land College Park, USA, 2nd June 2015 and 7th June 2016. pp. 1�15 (2016),
doi: 10.4204/EPTCS.230.1

25. Jansson, P., Einarsdóttir, S.H., Ionescu, C.: Examples and results from a bsc-level
course on domain speci�c languages of mathematics. In: Proc. 7th Int. Workshop
on Trends in Functional Programming in Education. EPTCS, Open Publishing
Association (2018), in submission. Presented at TFPIE 2018.

26. Jansson, P., Ionescu, C.: Domain speci�c languages of mathematics: Lecture notes
(2018), available from https://github.com/DSLsofMath/DSLsofMath

27. Je�rey, A.: Dependently typed web client applications. In: Sagonas, K. (ed.) Prac-
tical Aspects of Declarative Languages (PADL). pp. 228�243. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2013), doi: 10.1007/978-3-642-45284-0_16

28. Kugler, H.: Unifying modelling and programming: A systems biology perspective.
In: Margaria and Ste�en [38], pp. 131�133, doi: 10.1007/978-3-319-47169-3_10

29. Lamport, L.: How to write a 21st century proof. Journal of Fixed Point Theory
and Applications (November 2011), doi: 10.1007/s11784-012-0071-6, https://www.
microsoft.com/en-us/research/publication/write-21st-century-proof/

30. Landin, P.J.: The next 700 programming languages. Communications of the ACM
9(3), 157�166 (March 1966)

31. Larsen, P.G., Fitzgerald, J.S., Woodcock, J., Nilsson, R., Gamble, C., Foster, S.: To-
wards semantically integrated models and tools for cyber-physical systems design.
In: Margaria and Ste�en [38], pp. 171�186, doi: 10.1007/978-3-319-47169-3_13

32. Larsen, P.G., Lausdahl, K., Battle, N., Fitzgerald, J., Wol�, S., Sahara, S., Verhoef,
M., Tran-Jørgensen, P.W.V., Oda, T.: VDM-10 Language Manual. Tech. Rep. TR-
001, The Overture Initiative, www.overturetool.org (April 2013)

33. Lattmann, Z., Kecskés, T., Meijer, P., Karsai, G., Völgyesi, P., Lédeczi, Á.: Ab-
stractions for modeling complex systems. In: Margaria and Ste�en [38], pp. 68�79,
doi: 10.1007/978-3-319-47169-3_6

34. Leavens, G.T., Naumann, D.A., Rajan, H., Aotani, T.: Specifying and verifying ad-
vanced control features. In: Margaria and Ste�en [38], pp. 80�96, doi: 10.1007/978-
3-319-47169-3_7

35. Leroy, X.: Formal veri�cation of a realistic compiler. Communications of the ACM
52(7), 107�115 (2009), doi: 10.1145/1538788.1538814

36. Lethbridge, T.C., Abdelzad, V., Orabi, M.H., Orabi, A.H., Adesina, O.: Merging
modeling and programming using Umple. In: Margaria and Ste�en [38], pp. 187�
197, doi: 10.1007/978-3-319-47169-3_14

37. Ludewig, J.: Models in software engineering � an introduction. Softw. Syst. Model
2, 5�14 (2003), doi: 10.1007/s10270-003-0020-3

38. Margaria, T., Ste�en, B. (eds.): Leveraging Applications of Formal Methods,
Veri�cation and Validation: Discussion, Dissemination, Applications - 7th In-
ternational Symposium, ISoLA 2016, Imperial, Corfu, Greece, October 10-14,
2016, Proceedings, Part II, Lecture Notes in Computer Science, vol. 9953 (2016),
doi: 10.1007/978-3-319-47169-3

39. Marlow, S.: Parallel and concurrent programming in Haskell. In: Central Euro-
pean Functional Programming School: 4th Summer School, CEFP 2011, Budapest,
Hungary, June 14�24, 2011, Revised Selected Papers. pp. 339�401. Springer Berlin
Heidelberg, Berlin, Heidelberg (2012), doi: 10.1007/978-3-642-32096-5_7

http://dx.doi.org/10.4204/EPTCS.230.1
https://github.com/DSLsofMath/DSLsofMath
http://dx.doi.org/10.1007/978-3-642-45284-0_16
http://dx.doi.org/10.1007/978-3-319-47169-3_10
http://dx.doi.org/10.1007/s11784-012-0071-6
https://www.microsoft.com/en-us/research/publication/write-21st-century-proof/
https://www.microsoft.com/en-us/research/publication/write-21st-century-proof/
http://dx.doi.org/10.1007/978-3-319-47169-3_13
http://dx.doi.org/10.1007/978-3-319-47169-3_6
http://dx.doi.org/10.1007/978-3-319-47169-3_7
http://dx.doi.org/10.1007/978-3-319-47169-3_7
http://dx.doi.org/10.1145/1538788.1538814
http://dx.doi.org/10.1007/978-3-319-47169-3_14
http://dx.doi.org/10.1007/s10270-003-0020-3
http://dx.doi.org/10.1007/978-3-319-47169-3
http://dx.doi.org/10.1007/978-3-642-32096-5_7


40. MBE Visual Glossary project: Model-based engineering visual glossary. See http:
//modelbasedengineering.com/glossary/ (2017)

41. Morgenstern, J., Licata, D.: Security-typed programming within dependently-
typed programming. In: International Conference on Functional Programming.
ACM (2010), doi: 10.1145/1863543.1863569

42. Naujokat, S., Neubauer, J., Margaria, T., Ste�en, B.: Meta-level reuse for mastering
domain specialization. In: Margaria and Ste�en [38], pp. 218�237, doi: 10.1007/978-
3-319-47169-3_16

43. Object Management Group (OMG): Uni�ed modeling language. OMG Document
Number formal/17-12-05 (https://www.omg.org/spec/UML/2.5.1/) (2017)

44. Oury, N., Swierstra, W.: The power of Pi. In: Proc. of ICFP 2008. pp. 39�50. ACM
(2008), doi: 10.1145/1411204.1411213

45. Pierce, B.C.: Types and Programming Languages. MIT Press, 1st edn. (2002)
46. Prinz, A., Møller-Pedersen, B., Fischer, J.: Modelling and testing of real systems.

In: Margaria and Ste�en [38], pp. 119�130, doi: 10.1007/978-3-319-47169-3_9
47. Protzenko, J., Zinzindohoué, J.K., Rastogi, A., Ramananandro, T., Wang, P.,

Zanella-Béguelin, S., Delignat-Lavaud, A., Hriµcu, C., Bhargavan, K., Fournet,
C., Swamy, N.: Veri�ed low-level programming embedded in F*. Proc. ACM
Program. Lang. 1(ICFP), 17:1�17:29 (Aug 2017), doi: 10.1145/3110261, http:
//arxiv.org/abs/1703.00053

48. Rouquette, N.F.: Simplifying OMG mof-based metamodeling. In: Margaria and
Ste�en [38], pp. 97�118, doi: 10.1007/978-3-319-47169-3_8

49. Rybicki, F., Smyth, S., Motika, C., Schulz-Rosengarten, A., von Hanxleden, R.:
Interactive model-based compilation continued - incremental hardware synthesis
for SCCharts. In: Margaria and Ste�en [38], pp. 150�170, doi: 10.1007/978-3-319-
47169-3_12

50. Seidewitz, E.: On a uni�ed view of modeling and programming position paper. In:
Margaria and Ste�en [38], pp. 27�31, doi: 10.1007/978-3-319-47169-3_3

51. Selic, B.: Programming ⊂ modeling ⊂ engineering. In: Margaria and Ste�en [38],
pp. 11�26, doi: 10.1007/978-3-319-47169-3_2

52. Swamy, N., Chen, J., Fournet, C., Strub, P.Y., Bhargavan, K., Yang, J.: Secure
distributed programming with value-dependent types. In: Proc. of ICFP 2011. pp.
266�278 (2011), doi: 10.1145/2034773.2034811

53. Turner, R.: Computable Models. Springer-Verlag, 1 edn. (2009), doi: 10.1007/978-
1-84882-052-4

54. Wells, C.: Communicating mathematics: Useful ideas from computer science.
American Mathematical Monthly pp. 397�408 (1995), doi: 10.2307/2975030

http://modelbasedengineering.com/glossary/
http://modelbasedengineering.com/glossary/
http://dx.doi.org/10.1145/1863543.1863569
http://dx.doi.org/10.1007/978-3-319-47169-3_16
http://dx.doi.org/10.1007/978-3-319-47169-3_16
https://www.omg.org/spec/UML/2.5.1/
http://dx.doi.org/10.1145/1411204.1411213
http://dx.doi.org/10.1007/978-3-319-47169-3_9
http://dx.doi.org/10.1145/3110261
http://arxiv.org/abs/1703.00053
http://arxiv.org/abs/1703.00053
http://dx.doi.org/10.1007/978-3-319-47169-3_8
http://dx.doi.org/10.1007/978-3-319-47169-3_12
http://dx.doi.org/10.1007/978-3-319-47169-3_12
http://dx.doi.org/10.1007/978-3-319-47169-3_3
http://dx.doi.org/10.1007/978-3-319-47169-3_2
http://dx.doi.org/10.1145/2034773.2034811
http://dx.doi.org/10.1007/978-1-84882-052-4
http://dx.doi.org/10.1007/978-1-84882-052-4
http://dx.doi.org/10.2307/2975030

	Type Theory as a Framework for Modelling and Programming
	Introduction
	ISoLA 2016 definitions of modelling and programming
	Models and specifications

	A brief introduction to Type Theory
	Type Theory as a framework for modelling and programming
	Potential objections
	Conclusions


