
Kansliets noteringar
Kod

Dnr

2013-2993-109043-9

2013
Grants for distinguished professorsArea of science

Natural and Engineering Sciences
Announced grants

Grants for distinguished Professors 2013
Total amount for which applied (kSEK)

2014 2015 2016 2017 2018

Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

APPLICANT
Name(Last name, First name) Date of birth Gender

Jansson, Patrik 720311-7515 Male
Email address Academic title Position

patrikj@chalmers.se Professor Biträdande professor
Phone Doctoral degree awarded (yyyy-mm-dd)

031-7725415 2000-06-19

ADMINISTRATING ORGANISATION
Administrating Organisation

Chalmers tekniska högskola

WORKING ADDRESS
University/corresponding, Department, Section/Unit, Address, etc.

Chalmers tekniska högskola
Institutionen för data-och informationsteknik
Programvaruteknik

41296 Göteborg, Sweden

PROPOSED HOST ORGANISATION
University/corresponding, Department, Section/Unit, Address, etc.

Chalmers tekniska högskola
Institutionen för data-och informationsteknik
Programvaruteknik

41296 Göteborg, Sweden

UNIVERSITY, FACULTY AND DEPARTMENT FOR DOCTORAL EXAM

DESCRIPTIVE DATA
Project title, Swedish (max 200 char)

Starkt typade bibliotek för program och bevis

Project title, English (max 200 char)

Strongly Typed Libraries for Programs and Proofs

Abstract (max 1500 char)

Our long-term goal is to create systems (theories, programming languages, libraries and tools) which make it easy to develop
reusable software components with matching specifications. In this research project, the main focus is on libraries. Strongly-typed
programming languages allow to express functional specifications as types. Checking the types of a program then means checking it
against its specification. Within such powerful programming languages, libraries are not only building blocks of programs, but also of
proofs. We believe that such libraries will eventually become the main means of developing programs, and because

Kod

2013-2993-109043-9
Name of Applicant

Jansson, Patrik

Date of birth

720311-7515

Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

they come with strong types, the programs built using the library will come with strong properties that will make the whole easy to
prove correct. The production of such libraries will also inform the design of future strongly-typed programming languages. In the
recent years, strongly-typed programming languages have started to become usable, but remain confined to a small niche. Our
libraries will make them a viable solution for a broader range of applications, bringing higher guarantees of correctness to a wider
user base. To check the applicability of our libraries, we will apply them to classical problems of computer programming, such as
certain divide-and-conquer algorithms or optimisation problems, as well as to the construction of tools supporting dependently-typed
programming themselves.

Abstract language

English
Keywords

Software Technology, Functional Programming, Dependent Types, Program Verification, Generic Programming
Review panel

NT-RP
Classification codes (SCB) in order of priority

10201, 10205, 10103
Aspects

ENCLOSED APPENDICES
A, B, C, S

APPLIED FUNDING: THIS APPLICATION
Funding period (planned start and end date)

2014-01-01 -- 2023-12-31
The amount is predetermined by the Swedish Research Council.

Popularscience heading and description (max 4500 char)

En viktig gren av forskningen inom datavetenskap handlar om att utveckla system (programspråk, verktyg, programbibliotek, teorier)
som gör det enkelt att konstruera programvara som är korrekt och återanvändbar. Detta projekt siktar på att utnyttja funktionella
programspråk med starka typsystem till att skapa bibliotek av komponenter som kan uttrycka både specifikationer och
implementationer som uppfyller dessa. Vi kommer att utnyttja datorstödd interaktiv programutveckling där automatiska verktyg ger
snabb återkoppling på vilka delar som inte uppfyller specifikationen.

Den teoretiska möjligheten att uttrycka program och bevis i samma programspråk är känd sedan många år, men det är först nyligen
som teknikutvecklingen har medgett att utveckla större programbibliotek på detta sätt. Detta innebär att det finns många spännande
grundläggande frågor kvar att utforska och vi avser börja med enkla algoritmer för att sedan steg för steg utforska hur långt det går
att komma. Vi arbetar iterativt i tre nivåer för att utveckla komponentbiblioteken. Första nivån är att implementera en lösning på ett
visst problem (sökning, optimering eller liknande), nästa nivå är att abstrahera ut gemensamma mönster till programbibliotek och
slutligen vill vi utvärdera vilka möjliga förändringar av den underliggande språket som skulle kunna förbättra resultaten. Inom projektet
kommer vi att arbeta fram korrekta generiska bibliotek uttryckta i språket Agda. Agda är ett verktyg baserat på typteori och funktionell
programmering som möjliggör utveckling av program och specifikationer i samma språk. Utvecklingen av språket har skett (och
forskrider

Kod

2013-2993-109043-9
Name of Applicant

Jansson, Patrik

Date of birth

720311-7515

Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

parallellt med biblioteksprojektet) i ett internationellt samarbete (med Japan, Tyskland och England) lett av Chalmers.

På lång sikt kan bevisbart korrekta programbibliotek användas och återanvändas som byggstenar vid all slags
programvarukonstruktion. Detta ger allmänt sett mer pålitliga program, och färre buggar. Ett spännande applikationsområde är
exekverbara, överblickbara högnivåmodeller för komplexa system. Vi har hittills mest fokuserat på att modellera komplexa system
inom dataområdet (logiska ramverk, lingvistik, programspråk, hårdvara) men i samarbetet med Potsdams Institut för Klimatforskning
(PIK) har vi börjat arbeta med komplexa system i interaktionen mellan klimat, ekonomi och samhälle. PIK har under flera år arbetat
med simuleringar av komplexa system och har under senare år börjat använda funktionell programmering som ett verktyg för att
experimentera med och kommunicera de högnivåmodeller som behövs för att överblicka komplexa system. Dessa högnivåmodeller
översätts senare i flera steg till effektiv programkod som klarar att köra tunga simuleringar inom rimlig tid. (Dessa simuleringar ger
underlag till politiska beslut inom klimatområdet.) PIK tog kontakt med Chalmers för att fördjupa sin kompetens inom
högnivåmodellering med hjälp av moderna programspråk (som Haskell och C++) och vi har under åren som gått haft flera kontakter
där starkt typade bibliotek för program och bevis har utkristalliserats som det forskningsområde där Chalmers bäst kan komplettera
PIK. Samarbetet har lett till ett gemensamt EU-projekt, flera artiklar och bibliotek för program och bevis.

På Chalmers leds projektet av Patrik Jansson (inom gruppen Funktionell Programmering). Jansson har forskat om generisk
programmering sedan 1995 i olika konstellationer och det internationella kontaktnätet är mycket starkt. Den lokala forskningsmiljön
inom D&IT-institutionen är världsledande även inom flera närliggande områden - automatisk testning (Hughes, Claessen),
domänspecifika språk (Sheeran, Claessen), typteori (Coquand), språkteknologi (Ranta).

VRAPS/VR-Direct bilaga 2004.Ae Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Name of applicant

Date of birth

Kod

Title of research programme

Appendix A
Research programme

Strongly Typed Libraries for Programs and Proofs

1 Purpose and aims

Our long term goal is to create systems (the-
ories, programming languages, libraries and
tools) which make it easy to develop software
components and matching speci�cations. In
this research project, we aim to leverage the
power of languages with strong types to cre-
ate libraries of components which can ex-
press functional speci�cations in a natural
way, and, simultaneously, implementations
which satisfy those speci�cations. The ideal
we aim for is not merely correct programs,
nor even proven correct programs; we want
proof done against a speci�cation that is nat-
urally expressed for a domain expert.

Concretely, we aim to identify common pat-
terns in the speci�cation of programs, and
capture those in libraries. At the same time,
the patterns of implementations of these
speci�cations will also be captured in the
library, such that the development of soft-
ware will go hand-in-hand with proofs of its
functional correctness. As case-studies we
will work in three areas: divide-and-conquer
algorithms, domain speci�c modelling and
testing tools.

2 Survey of the �eld

Abstraction. The ability to name and
reuse parts of algorithms is one of the cor-
nerstones of computer science. Abstract-
ing out common patterns enables separa-
tion of concerns, both in the small (vari-
ables, functions) and in the large (mod-
ules, libraries). Conversely, lack of ab-
straction may force the implementation to
contain multiple instances of a single pat-

tern. This process of replication is not
only tedious, but error-prone, because the
risk of software error grows with the size of
the program. Hence, one important trend
in the evolution of new programming lan-
guages is improved support for abstraction�
making more and more of the language fea-
tures programmable. Widely used modern
languages are actively gaining abstraction
power with Java Generics, C++ Templates,
Scheme's composable macros and Haskell
meta-programming. But there is a danger
lurking�more complex features can increase
the risk of bugs. With new abstraction
mechanisms we also need new computer-
aided sanity checks of the program code.

Types. Types are used in many parts of
computer science to keep software from go-
ing wrong. Types enable the programmer
to keep track of the structure of data and
computation in a way that is checkable by
the computer itself. They act as contracts
between the implementer of a program part
and its users. Type-checking at compile
time then amounts to proving that proper-
ties hold for all executions of the program.

By the Curry�Howard correspondence, type
systems closely match up with logics. Type
systems for languages with higher-order ab-
straction, correspond to higher-order logics.
A well-know example of a system based on
this principle is the Coq proof assistant [1].

Dependently typed programs. Even
though type-theory has been used as a logic
for decades, it has recently gained popularity
as a medium for programming. The �agship
of dependently-typed programs is perhaps

1

Appendix A P. Jansson, 720311�7515, StrongLib

Compcert, a C compiler written and veri-
�ed in Coq [2]. Other applications include
imperative programs within Coq, database
access with static guarantees and distributed
programming with dependent types [3].

Agda. The programming language Agda
is based on Haskell and type-theory [4].
Within it, one can express programs, func-
tional speci�cations as types, and proofs (for
example using algebraic reasoning) in a sin-
gle language. Agda is currently emerging
as a lingua-franca of programming with de-
pendent types and its canonical reference,
Norell's Thesis [5], has been cited 50 times
per year since its publication. The focus of
this project is on expressing libraries of cor-
rect programs and proofs in the dependently
typed functional language of Agda.

Libraries for dependent types. Agda
and Coq come with standard libraries that
contain useful building blocks to create pro-
grams, speci�cations, and proofs. The Coq
library is part of a mature system which has
been used in many projects. However, it
is mostly applied to proofs rather than pro-
grams, because the Coq system is mostly in-
tended as a proof assistant rather than a pro-
gramming language. Even projects which
aim to use Coq as a programming platform,
such as Ynot and Compcert [2, 6] retain this
separation. The same observation applies
to the libraries of most systems with depen-
dent types. The Agda standard library (de-
veloped mainly by Danielsson), has evolved
from common abstractions needed by Agda
programmers. It has been applied to sev-
eral domains, in particular parser combina-
tors [7], Algebra of Programming [J19]1 and

1We use [Jnn] to cite papers in Jansson's publi-
cation list (appendix C) to avoid duplication.

Cryptography (see the DemTech.dk project).
In its current version, the parts of the Agda
library aimed at programming are essentially
decoupled from the parts aimed at proving.
This can be a drawback: the structure of
a proof often follows the same structure as
the program it refers to, therefore keeping
the two separated violates the principle of
abstraction described above.

3 Programme description

Starting from our current experience with li-
braries for Haskell and Agda, our project will
be organised in multiple iterations, each re-
�ning the libraries obtained during the pre-
vious one. Each iteration will have the fol-
lowing three phases.

1. Development of a proven-correct

application in a given domain. We be-
lieve that the best way to develop libraries
is by abstracting common patterns found in
various application domains. In this phase,
we will assess the viability of our libraries by
applying them to a particular domain.

2. Extraction of common patterns into

libraries. Next, we will identify common
patterns found in the programs and speci�-
cations produced above, and capture them
in libraries. At the same time, we will refac-
tor the application and tie each speci�cation
pattern to an implementation pattern.

3. Re�ning the prog. language. In this
phase we will assess the strong and weak
points of the underlying programming envi-
ronment we use. We will inform the group
in charge of the development of the tool of
the possible shortcomings we might identify,
and participate in their remedy, if suitable.

2

DemTech.dk

Appendix A P. Jansson, 720311�7515, StrongLib

3.1 Application areas

We work iteratively on case studies (correct
libraries) in three application areas:

Algebra of Parallel Programming: A
large class of sequence-processing algorithms
can be converted to parallel algorithms if
they are monoid homomorphisms. That is,
a function f : A ! B can be parallelised
if it satis�es the following laws:

f emptyA = emptyB

f (a ++A b) = f a ++B f b

where empty and ++ denote monoidal unit
and composition. In some cases, the func-
tion is not a monoid homomorphism, but it
can be phrased in terms of an auxiliary func-
tion, which works on an extended type.

A simple example is word counting, which
maps each string to a natural number (the
number of white-space separated words in
the string). Word counting is not by itself
a monoid homomorphism but if we keep the
number of full words, plus some information
about spacing on either side we can make a
homomorphic helper .

helper : String ! (Count ; Spa)
countSpaces : (Count ; Spa) ! N
:::
wordCount : String ! N
wordCount = countSpaces � helper

The resulting algorithm works for any tree-
like partitioning of the string into chunks
and can thus be made fast by using many
processors. In this project we want to de-
velop a library for specifying, implement-
ing and proving correctness of divide-and-
conquer algorithms. Initial results by our
group show that this works even for some-
thing as sequential-looking as parsing [8].

Domain speci�c modelling: What good
is proof of correctness is if no-one under-
stands the speci�cation? We take the stance
that speci�cations must be readily under-
stood by domain experts, and therefore it
is important for computer-scientists to work
with the domain speci�c concepts. We have
done so in the past, in the domain of vulnera-
bility for climate impact [J17], grammars for
language processing [J13], and mathemati-
cal economics [J9]. In addition to domain
knowledge this requires support for higher-
order constructions like monads, functors
and natural transformations. In this part
we will focus on optimisation and dynamical
systems. In particular, we will continue the
work on economics and develop libraries of
speci�cations for agent-based modelling. We
will also work on improving language sup-
port to present the speci�cations in a way
accessible to the domain experts.

Testing Tools: Property-based testing
tools have proved useful to improve the con-
�dence in program correctness. As it is well
known, testing cannot show the absence of
bugs, only their presence. But is it possible
to quantify the con�dence gained by running
a test suite? We aim to give a positive an-
swer to the question. A �rst step in this
direction is to specify the set of inputs cov-
ered by a test-suite. In this project we will
focus on large abstract syntax tree (AST)
types typically used in compilers, and aim
at supporting interesting subsets like well-
typed terms or balanced trees (expressible
as inductive families in Agda).

In a recent paper [J11] we presented a theory
for specifying, and a generic Haskell library
for e�ciently enumerating, the terms of com-
plex AST-types. The primary application is
property-based testing, where it is used to

3

Appendix A P. Jansson, 720311�7515, StrongLib

de�ne both random sampling (QuickCheck
generators) and exhaustive enumeration. In
this project we will port this library and
its speci�cation to Agda and extend it to-
wards inductive families. Our hypothesis is
that, compared to QuickCheck, the more al-
gebraic enumeration approach will be easier
to specify and prove correct.

4 Preliminary �ndings

We have published initial results in all the
three suggested iteration phases and three
application areas as indicated below.

Proven-correct applications: We have
worked on correct applications in Haskell [9]
[J5] and supporting theory [J21]. We have
also worked on applications to climate im-
pact research and economic modelling di-
rectly in Agda [J9, J10].

Patterns into libraries: We have devel-
oped, implemented and compared libraries
of generic functions [10, 11] [J16]. Most
of this has been done in Haskell, but it
has become clear that the natural setting
for generic programming is dependent types.
We have also worked on libraries for parsing
[12] [J13], testing [J11, J12] and the above
mentioned applications to climate and econ-
omy.

Re�nement of prog. languages: We
have designed a generic programming lan-
guage extension (PolyP [J1]) for Haskell, and
we are actively involved in the design of the
Agda language [J30] [13]. We have also been
involved in the development of the Concepts
feature aimed at improving future versions
of C++ and Haskell [J7, J18].

Algebra of Parallel Programming: We
have worked actively on implementing pro-

grams and proofs in the Algebra of Program-
ming [J2, J19] tradition. Recent work in-
cludes an e�cient sparse matrix based algo-
rithm for parallel parsing and its proof [8].

Domain Speci�c Modelling: Depen-
dent type theory is rich enough to express
that a program satis�es a functional speci-
�cation, but there is no a-priori method to
derive a program once the speci�cation-as-
type is written. On the other hand, Bird &
de Moor [14] give a general methodology to
derive Haskell programs from speci�cations,
via algebraic reasoning. Despite the strong
emphasis on correctness, their speci�cations
and proofs are not expressed in a formally
checkable way. In [J8] we have shown how
to encode program derivation in the style
of Bird and de Moor, in Agda. A program
is coupled with an algebraic derivation from
a speci�cation, whose correctness is guaran-
teed by the type system. In this project we
want to go further in this direction and de-
velop useful libraries of programs and proofs
with corresponding types and theorems.

Testing and veri�cation: We have ex-
plored the tension between testing and prov-
ing of higher-order properties [J20, J10], de-
veloped a technique for drastically reducing
the number of tests required for polymor-
phic properties [J15], developed a library for
specifying and testing class laws [J12] and a
library for enumerating test cases [J11].

We have also started a very promising line of
work on parametricity theory : in [J14, J6] we
have explained how the classic results from
�Theorems for free!� [15] can be extended to
dependently typed languages to give �Proofs
for free�. By combining our results from
polymorphic testing with our later results on
parametricity we aim at a generic library for
testing polymorphic properties in Agda.

4

Appendix A P. Jansson, 720311�7515, StrongLib

5 Signi�cance

E�ective production of correct software is
a problem which remains unsolved, and is
of great economic signi�cance. By using
dependently-typed languages, this project
aims to reduce the potential for errors by
developing the speci�cation of a system to-
gether with its implementation, and keeping
them synchronised throughout the lifetime
of the system. An advantage of this ap-
proach is that the skills required to construct
programs are directly applicable to under-
standing the speci�cations. This also means
that the libraries become self-documenting.

Software libraries have long been recognised
as vehicles for increased software productiv-
ity. First, they capture domain knowledge in
terms of software solutions to the problems
that a user wants to solve. Second, they add
a layer of abstraction to the underlying com-
putation, which allows developers to write
software in terms closer to their problem do-
main and usually results in improved qual-
ity and robustness. We aim to go beyond
state-of-the-art when it comes to expressiv-
ity of libraries for programming with depen-
dent types, which is a relatively unexplored
niche. By doing so, we hope to improve the
software technology �eld in general, as these
libraries should serve as examples of good
design for other applications.

The scienti�c contributions to the computer
science area will be in the form of open
source software prototypes, doctoral train-
ing, conference and journal papers and talks
(on the techniques used for the libraries as
well as on the language improvements). We
also hope to help the wider research commu-
nity by contributing strongly typed libraries
for increasingly correct scienti�c computing.

References

[1] The Coq development team. The Coq proof
assistant, 2010.

[2] Leroy. Formal veri�cation of a realistic
compiler. Comm. of the ACM, 52(7):107�
115, 2009.

[3] Swamy et al. Secure distributed program-
ming with value-dependent types. In ICFP

2011, p. 266.

[4] Martin-Löf. Intuitionistic type theory. Bib-
liopolis, 1984.

[5] Norell. Towards a practical programming

language based on dependent type theory.
PhD thesis, Chalmers, 2007.

[6] Chlipala et al. E�ective interactive proofs
for higher-order imperative programs. In
ICFP 2009, p. 79. ACM, 2009.

[7] Danielsson. Total parser combinators. In
ICFP 2010, p. 285. ACM, 2010.

[8] Bernardy & Claessen. E�cient divide-and-
conquer parsing of practical context-free
languages. To appear in ICFP 2013.

[9] Danielsson & Jansson. Chasing bottoms, a
case study in program veri�cation. InMPC

2004, LNCS 3125, p. 85. Springer.

[10] Norell & Jansson. Polytypic programming
in Haskell. In IFL 2003, LNCS 3145, p.
168. Springer, 2004.

[11] Jansson & Jeuring. Functional pearl: Poly-
typic uni�cation. J. Funct. Program.,
8(5):527�536, 1998.

[12] Bernardy. Lazy functional incremental
parsing. In Haskell 2009, p. 49. ACM.

[13] Bernardy & Moulin. Type-theory in color.
To appear in ICFP 2013.

[14] Bird & de Moor. Algebra of Programming,
volume 100 of International Series in Com-

puter Science. Prentice-Hall, 1997.

[15] Wadler. Theorems for free! In Proc. of

FPCA 1989, p. 347. ACM, 1989.

5

VRAPS/VR-Direct bilaga 2004.Be Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Name of applicant

Date of birth

Kod

Title of research programme

Appendix B
Curriculum vitae

Appendix B P. Jansson, 720311�7515, StrongLib

Curriculum Vitæ: Patrik Jansson, 1972-03-11

1. Higher education degree:

1995: BSc+MSc degrees in Engineering Physics + Engineering Mathematics from Chalmers,
Sweden. I graduated almost two years before schedule as the best student of my year.

2. Doctoral degree:

2000: Ph.D. degree in Computer Science from Chalmers, Sweden, on Functional Polytypic
Programming, Advisor: Johan Jeuring.

3. Present position:

2011�now: Professor, Chalmers. Research 50% (2013).

4. Previous Employment and Education:

1998, 1998, 2001: Research visits (2 + 2 + 3 months) to Northeastern University, Boston,
USA; Oxford University Computing Lab, UK; Dept. of Computer Science, Yale, USA.

2000�2001: PostDoc, Chalmers.

2001�2004: Assistant Professor in Computer Science, Chalmers.

2004�2011: Associate Professor (docent), Chalmers.

5. Supervision, doctorates and postdocs:

I was PhD advisor of Ulf Norell (PhD 2007), Nils Anders Danielsson (PhD 2007) and Jean-
Philippe Bernardy (PhD 2011). I worked on generic programs and proofs with Norell, on
program correctness through types with Danielsson and parametricity for dependent types
& testing with Bernardy. All three are still in academia.

I have also supervised four PostDocs: Grégoire Hamon and Andreas Abel (2003�2005),
Jean-Philippe Bernardy (2011�2012) and now Cezar Ionescu (2013�).

I currently supervise the PhD student Jonas Duregård (Lic. Dec. 2012). I am also examiner
(but not supervisor) of three other PhD students: Ramona Enache, Dan Rosén and Anton
Ekblad.

I have been a member of the evaluation committee of three PhD defences at Chalmers (T.
Gedell, Computer Science (2008), M. Zalewski, Computer Science (2008), H. Johansson,
Physics (2010)). I have also supervised over 20 MSc and BSc project students.

1

Appendix B P. Jansson, 720311�7515, StrongLib

6. National or international distinctions and awards:

National and international grants:

1997�2004: Obtained travel grants (277k SEK in total) from several private foundations

2003�2005: Co-applicant on Cover � Combining Veri�cation Methods in Software De-

velopment funded with 8M SEK by the Swedish Foundation for Strategic Research.

2003�2005: Main applicant on the project Generic Functional Programs and Proofs

funded with 1.8M SEK by VR.

2009�2012: Co-applicant on �Software Design and Veri�cation using Domain Speci�c

Languages� funded with 11M SEK by the Swedish Science Council (VR, multi-project
grant in strategic Information and Communication Technology).

2010�2013: Co-applicant and work-package leader in the Coordination Action �Global
Systems Dynamics and Policy� (GSDP) funded with 1.3M EUR by the EU (ICT-2009.8.0
Future and Emerging Technology Open call).

2011�2016: Co-applicant on �RAW FP: Productivity and Performance through Resource

Aware Functional Programming� funded with 25M SEK by the Swedish Foundation for
Strategic Research.

2011�2013: Main applicant on the project Strongly Typed Libraries for Programs and

Proofs funded with 2.4M SEK by VR.

Commissions of trust:

1998: Organiser of the �rst Workshop on Generic Programming (WGP), Marstrand. The
workshop has later grown into an o�cial Association of Computing Machinery Special
Interest Group on Programming LANguages (ACM SIGPLAN) workshop and I've been
PC member (2000), PC chair (2009), Steering Committee member (2009�2011) and Chair
of the Steering Committee (2011�2012).

2001: PC member of the ACM SIGPLAN Haskell Workshop.

2008�present: Elected member of IFIP (International Federation for Information Pro-
cessing) Working Group 2.1 on �Algorithmic Languages and Calculi�.

2009�2011: Elected member of the faculty senate, Chalmers.

2009�2011: Member of the Steering group of Workshop on Generic Programming.

2009: PC Chair for Workshop on Generic Programming

2011: Organiser of a workshop on �Domain Speci�c Languages for Economical and Envi-
ronmental Modelling� in Marstrand as part of EU coordination action GSDP.

2011�2012: Steering Committee Chair of Workshop on Generic Programming.

2012: Workshops chair of the 17th ACM SIGPLAN International Conference on Func-
tional Programming Programming (ICFP 2012).

2012: Organised a workshop on �Computer Science meets Global Systems Science� as part
of the First Open Global Systems Science Conference in Brussels.

2

Appendix B P. Jansson, 720311�7515, StrongLib

2012: Co-organised a workshop on �Models and Narratives in Global Systems Science� with
Ilan Chabay as part of the First Open Global Systems Science Conference in Brussels.

2013: Organised the �Global Systems Science 2013: Models and Data� workshop in Brus-
sels with Mario Rasetti, Michael Resch and Ralph Dum.

2013: Workshops chair of the 18th ACM SIGPLAN International Conference on Func-
tional Programming (ICFP 2013).

2013: Organised a workshop on "Formal Languages and Integrated Problem Solving pro-
cedures in Global Systems Science", Brussels.

2013: Editor for the orientation paper �GSS: Towards a Research Program for Global
Systems Science� (with C. Jaeger, S. van der Leeuw, M. Resch and J. D. Tàbara) as part
of the e�ort to de�ne a research area within the upcoming EU framework programme
Horizon 2020.

I have been reviewer for EU grants (2011, 2012), Journal of Functional Programming,
Science of Computer Programming, Principles of Programming Languages, International
Conference on Functional Programming, Symposium on Implementation and Application
of Functional Languages and several other journals and conferences.

Awards and prices:

1991: Winner of the Swedish National Physics Olympiad

1991: Represented Sweden in the International Physics Olympiads.

1991: Represented Sweden in the International Mathematics Olympiad.

1996: Received the John Ericsson medal for outstanding scholarship, Chalmers

7. Leadership experience:

2002�2008: Member of the steering group of the department.

2002�2005: Director of Studies for the BSc and MSc education at the Computer Science
department.

2005�2008: Vice head of the Computer Science and Engineering dept. responsible for
the BSc and MSc education.

2008�2010: Deputy project leader of the IMPACT project at Chalmers (�Development
of Chalmers' New Master's Programmes�, 30M SEK).

2009: Head of steering group of Chalmers eScience Initiative.

2011�2013: Head of the 5-year education programme in Computer Science and Engineer-
ing (Civilingenjör Datateknik, Chalmers).

2013�: Head of the Division of Software Technology, Chalmers and University of Gothen-
burg (30% of full time / year). Around 40 employees and a yearly turnover of 47M SEK.

3

Appendix B P. Jansson, 720311�7515, StrongLib

8. Lecturing experience:

BSc level courses: Lecturer on Imperative Programming in Ada (1998, 1997), Pro-
gramming Languages (2000, 2001), Databases (2000, 2001), Program Veri�cation (2006),
and supervisor of BSc theses (2003, 2009).

MSc level courses: Lecturer of Advanced Functional Programming (2010, 2011, 2012,
2013), and supervisor of MSc theses (> 20 students, 2001�)

PhD level courses: Lecturer of Functional Polytypic Programming (2000), Algebra of
Programming (2004, 2008), Category Theory and Functional Programming (2010, 2011)
and supervisor of four PhD students (2004�).

9. Future goal:

Just as the transition from spoken language to written language boosted the ability for
mankind to accumulate and transmit knowledge from generation to generation the ongoing
transition from informal language to formal code promises a giant leap in computer aided
knowledge management and inference in all sciences. I want to contribute to this devel-
opment through pushing for formalisation, automation and veri�cation of research results
nationally and internationally starting from the corner I know well and expanding step by
step to neighbouring areas. This will require resources well beyond what the Distinguished
Professor grant can o�er, but I have already worked for three years on informal �lobbying�
in the EU machinery for what we now call �Global Systems Science� with the aim of making
signi�cant funding available as part of Horizon 2020.

Research in software technology is also cruical for the success of Swedish industry, as
shown by the recent report by Swedish ICT: �Innovation enabled by Information and
Communication Technologies�. I would like to help in lifting this innovation and research
agenda to the European level to secure priority support from the European commission for
research and development in software technology.

4

http://blog.global-systems-science.eu/?author=45
https://www.sics.se/sites/default/files/pub/innovation_enabled_by_ict_final_v20130415.pdf
https://www.sics.se/sites/default/files/pub/innovation_enabled_by_ict_final_v20130415.pdf

VRAPS/VR-Direct bilaga 2004.Ce Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Name of applicant

Date of birth

Kod

Title of research programme

Appendix C P. Jansson, 720311�7515, StrongLib

Selected Publications: Patrik Jansson

Note to non computer scientists Conference articles in computer science are peer
reviewed full articles � not 1�2 page abstracts, and are the normal form of refereed pub-
lication. The top conferences in each sub�eld (like POPL and ICFP below) typically have
the highest impact factor within that �eld, higher even than any journal.

The publications most relevant for this research project are marked with an arrow ()).

0. Most cited publications (Google Scholar, 2013-09-03)

Jansson's Hirsch-index is 17, his total citation count is 1279 and the following papers are
the �ve most cited (not including the papers in the last 8 years).

1. P. Jansson and J. Jeuring. PolyP � a polytypic programming language extension. In
Proc. POPL'97: Principles of Programming Languages, pages 470�482. ACM Press,
1997. doi:10.1145/263699.263763.
Number of citations: 314.

2. R. Backhouse, P. Jansson, J. Jeuring, and L. Meertens. Generic programming: An
introduction. In Advanced Functional Programming, volume 1608 of LNCS, pages
28�115. Springer, 1999. http://www.cse.chalmers.se/~patrikj/poly/afp98/.
Number of citations: 186.

3. J. Jeuring and P. Jansson. Polytypic programming. In J. Launchbury et al.,
editors, Advanced Functional Programming '96, volume 1129 of LNCS, pages 68�114.
Springer-Verlag, 1996. http://www.cse.chalmers.se/~patrikj/poly/AFP96.pdf.
Number of citations: 160.

4. M. Benke, P. Dybjer, and P. Jansson. Universes for generic programs and proofs in
dependent type theory. Nordic Journal of Computing, 10(4):265�289, 2003. ISSN
1236-6064. http://dl.acm.org/citation.cfm?id=985801.
Number of citations: 59.

5.) P. Jansson and J. Jeuring. Polytypic data conversion programs. Science of Com-
puter Programming, 43(1):35�75, 2002. doi:10.1016/S0167-6423(01)00020-X.
Number of citations: 51.

1. Peer-reviewed journal articles (last 8 years, excluding the above)

6. J.-P. Bernardy, P. Jansson, and R. Paterson. Proofs for free � parametricity
for dependent types. Journal of Functional Programming, 22(02):107�152, 2012.
doi:10.1017/S0956796812000056.
Number of citations: 12.

1

http://scholar.google.com/citations?user=eIO4EBAAAAAJ
http://dx.doi.org/10.1145/263699.263763
http://www.cse.chalmers.se/~patrikj/poly/afp98/
http://www.cse.chalmers.se/~patrikj/poly/AFP96.pdf
http://dl.acm.org/citation.cfm?id=985801
http://dx.doi.org/10.1016/S0167-6423(01)00020-X
http://dx.doi.org/10.1017/S0956796812000056

Appendix C P. Jansson, 720311�7515, StrongLib

7. J.-P. Bernardy, P. Jansson, M. Zalewski, and S. Schupp. Generic programming with
C++ concepts and Haskell type classes � a comparison. Journal of Functional
Programming, 20(3�4):271�302, 2010. doi:10.1017/S095679681000016X.
Number of citations: 10.

8.) S.-C. Mu, H.-S. Ko, and P. Jansson. Algebra of programming in Agda: depen-
dent types for relational program derivation. J. Funct. Program., 19:545�579, 2009.
doi:10.1017/S0956796809007345.
Number of citations: 8.

2. Peer-reviewed conference contributions (last 8 years)

9.) C. Ionescu and P. Jansson. Dependently-typed programming in scienti�c com-
puting: Examples from economic modelling. In R. Hinze, editor, 24th Symposium
on Implementation and Application of Functional Languages (IFL 2012), LNCS.
Springer-Verlag, 2013. http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/

DTPinSciComp.
Number of citations: 0.

10. C. Ionescu and P. Jansson. Testing versus proving in climate impact research. In
Proc. TYPES 2011, volume 19 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 41�54, Dagstuhl, Germany, 2013. Schloss Dagstuhl�Leibniz-Zentrum
fuer Informatik. doi:10.4230/LIPIcs.TYPES.2011.41.
Number of citations: 0.

11. J. Duregård, P. Jansson, and M. Wang. Feat: Functional enumeration of algebraic
types. In Haskell'12, pages 61�72. ACM, 2012. doi:10.1145/2364506.2364515.
Number of citations: 5.

12. J. Jeuring, P. Jansson, and C. Amaral. Testing type class laws. In Haskell'12, pages
49�60. ACM, 2012. doi:10.1145/2364506.2364514.
Number of citations: 0.

13. J. Duregård and P. Jansson. Embedded parser generators. In Proceedings of the 4th
ACM Symposium on Haskell, Haskell '11, pages 107�117, New York, NY, USA, 2011.
ACM. doi:10.1145/2034675.2034689.
Number of citations: 5.

14.)J.-P. Bernardy, P. Jansson, and R. Paterson. Parametricity and dependent types.
In Proc. 15th ACM SIGPLAN international conference on Functional programming,
pages 345�356, Baltimore, Maryland, 2010. ACM. doi:10.1145/1863543.1863592.
Number of citations: 29.

15.) J.-P. Bernardy, P. Jansson, and K. Claessen. Testing polymorphic properties. In
A. Gordon, editor, European Symposium on Programming, volume 6012 of Lecture

2

http://dx.doi.org/10.1017/S095679681000016X
http://dx.doi.org/10.1017/S0956796809007345
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/DTPinSciComp
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/DTPinSciComp
http://dx.doi.org/10.4230/LIPIcs.TYPES.2011.41
http://dx.doi.org/10.1145/2364506.2364515
http://dx.doi.org/10.1145/2364506.2364514
http://dx.doi.org/10.1145/2034675.2034689
http://dx.doi.org/10.1145/1863543.1863592

Appendix C P. Jansson, 720311�7515, StrongLib

Notes in Computer Science, pages 125�144. Springer, 2010. doi: 10.1007/978-3-642-
11957-6_8.
Number of citations: 18.

16. A. Rodriguez, J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov, and B. C. d. S. Oliveira.
Comparing libraries for generic programming in Haskell. In Haskell'08, pages 111�
122. ACM, 2008. doi:10.1145/1411286.1411301.
Number of citations: 59.

17. D. Lincke, P. Jansson, M. Zalewski, and C. Ionescu. Generic libraries in C++ with
concepts from high-level domain descriptions in Haskell: A DSL for computational
vulnerability assessment. In IFIP Working Conf. on Domain Speci�c Languages,
volume 5658/2009 of LNCS, pages 236�261, 2009. doi: 10.1007/978-3-642-03034-
5_12.
Number of citations: 5.

18. J.-P. Bernardy, P. Jansson, M. Zalewski, S. Schupp, and A. Priesnitz. A compari-
son of C++ concepts and Haskell type classes. In Proc. ACM SIGPLAN Workshop on
Generic Programming (WGP), pages 37�48. ACM, 2008. doi:10.1145/1411318.1411324.
Number of citations: 21.

19. S.-C. Mu, H.-S. Ko, and P. Jansson. Algebra of programming using dependent types.
In Mathematics of Program Construction, volume 5133/2008 of LNCS, pages 268�
283. Springer, 2008. doi: 10.1007/978-3-540-70594-9_15.
Number of citations: 12.

20. P. Jansson, J. Jeuring, and students of the Utrecht University Generic Programming
class. Testing properties of generic functions. In Z. Horvath, editor, Proceedings
of IFL 2006, volume 4449 of LNCS, pages 217�234. Springer-Verlag, 2007. doi:
10.1007/978-3-540-74130-5_13.
Number of citations: 4.

21. N. A. Danielsson, J. Hughes, P. Jansson, and J. Gibbons. Fast and loose reasoning
is morally correct. In Proc. Principles of Programming Languages, pages 206�217.
ACM Press, 2006. doi:10.1145/1111037.1111056.
Number of citations: 51.

3. Review articles, book chapters, books

22. C. Niklasson, P. Jansson, and P. Lundgren. IMPACT - establishing the Bologna
structure with master's programmes at Chalmers. In Utvecklingskonferensen 2008,
Nätverket Ingenjörsutbildningarna, 2008.

23. C. Niklasson, P. Lundgren, and P. Jansson. Utvärdering av Chalmers nya mas-
tersprogram - studentsynpunkter. In Den 2:a Utvecklingskonferensen för Sveriges
ingenjörsutbildningar, pages 49�52, 2009.

3

http://dx.doi.org/10.1007/978-3-642-11957-6_8
http://dx.doi.org/10.1007/978-3-642-11957-6_8
http://dx.doi.org/10.1145/1411286.1411301
http://dx.doi.org/10.1007/978-3-642-03034-5_12
http://dx.doi.org/10.1007/978-3-642-03034-5_12
http://dx.doi.org/10.1145/1411318.1411324
http://dx.doi.org/10.1007/978-3-540-70594-9_15
http://dx.doi.org/10.1007/978-3-540-74130-5_13
http://dx.doi.org/10.1007/978-3-540-74130-5_13
http://dx.doi.org/10.1145/1111037.1111056

Appendix C P. Jansson, 720311�7515, StrongLib

24. P. Jansson and S. Schupp, editors. WGP'09: Proceedings of the 2009 ACM SIGPLAN
workshop on Generic programming, 2009. ACM. ISBN 978-1-60558-510-9.

25. C. Niklasson and P. Jansson. Pedagogical development of master's programmes for
the Bologna structure at Chalmers - IMPACT. In European Society for Engineering
Education (SEFI) 37th Annual Conference, 2009.

26. H. Danielsson, editor. IMPACT � Strategic Development of Chalmers Master's Pro-
grammes, chapter Learning from IMPACT & Quality Assurance, pages 23�24, 59�62.
Chalmers, 2010. ISBN 978-91-633-6202-6. Patrik Jansson wrote the chapters Learn-
ing from IMPACT and Quality Assurance. Available from http://publications.

lib.chalmers.se/cpl/record/index.xsql?pubid=115021.

27. C. Jaeger, P. Jansson, S. van der Leeuw, M. Resch, J. D. Tabara, and R. Dum. GSS
orientation paper � background material. Prepared as part of the e�ort to de�ne a
research area within the upcoming EU framework programme Horizon 2020., June
2013.

28. C. Jaeger, P. Jansson, S. van der Leeuw, M. Resch, and J. D. Tabara. GSS: To-
wards a research program for Global Systems Science. Available from http://blog.

global-systems-science.eu/?p=1512., 2013. ISBN 978.3.94.1663-12-1. Confer-
ence Version, prepared for the Second Open Global Systems Science Conference June
10-12, 2013, Brussels.

4. Patents, state date of registration.

None.

5. Open access computer programs that you have developed

I designed and implemented a compiler for the polytypic language PolyP (which I was later
involved in retiring in favour of its successor; Generic Haskell):

29. P. Jansson and U. Norell. The PolyP 2 compiler. Available from http://www.cse.

chalmers.se/~patrikj/poly/, 2004.

I have participated in the development of the Agda proof engine (mainly through my
PhD students Ulf Norell, Nils Anders Danielsson and Jean-Philippe Bernardy). The �rst
description of Agda was in the PhD thesis of my student Ulf Norell (2007) and it has been
cited ’ 50 times / year since then, indicating a quick spread in academia.

30. U. Norell et al. Agda � a dependently typed programming language. Implementation
available from http://wiki.portal.chalmers.se/agda/, 2008.

I have developed a library for specifying and checking algebraic laws of Haskell type classes.

4

http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=115021
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=115021
http://blog.global-systems-science.eu/?p=1512
http://blog.global-systems-science.eu/?p=1512
http://www.cse.chalmers.se/~patrikj/poly/
http://www.cse.chalmers.se/~patrikj/poly/
http://wiki.portal.chalmers.se/agda/

Appendix C P. Jansson, 720311�7515, StrongLib

31. P. Jansson and J. Jeuring. The haskell package ClassLaws. http://hackage.

haskell.org/package/ClassLaws, 2012.

I have also contributed to several other libraries and tools:

� 2004�: ChasingBottoms: A library for working with partial and in�nite values in
Haskell: http://hackage.haskell.org/package/ChasingBottoms

� 2006: The BNF Converter � a tool for generating a compiler skeleton from a labelled
BNF grammar: http://bnfc.digitalgrammars.com/

� 2012: testing-feat: a library for e�ciently enumerating large abstract syntax tree
types: http://hackage.haskell.org/package/testing-feat

6. Popular science articles/presentations

32. P. Jansson and T. Fülöp. A sustainable energy future through education and research.
Presented at the G20 Youth Forum Conference held in St.Petersburg, Russia, 2013-
04-17/21. Available from http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/

SustainableEnergyFuture, 2013.

Invited presentations (2006�2013)

2006-12-12: �Testing properties of generic functions� at the Working Group 2.1 on Al-
gorithmic Languages and Calculi, meeting #62 in Namur, Belgium.

2007-09-12: �Comparing Libraries for Generic Programming in Haskell� at the Working
Group 2.1 on Algorithmic Languages and Calculi, meeting #63 in Kyoto, Japan.

2007-09-12: �Agda tutorial� at the Working Group 2.1 on Algorithmic Languages and
Calculi, meeting #63 in Kyoto, Japan.

2009-07-02 : �Pedagogical development of Master's Programmes for the Bologna Struc-
ture at Chalmers - IMPACT� at the 2009 Annual conference of the European Society for
Engineering Education (SEFI), Rotterdam, the Netherlands.

2010-01-25: �Parametricity and Dependent Types� at the Working Group 2.1 on Algo-
rithmic Languages and Calculi, meeting #65 in Braga, Portugal.

2010-09-20: �Simple Pure Type System Examples� at the Working Group 2.1 on Algo-
rithmic Languages and Calculi, meeting #66 in Atlantic City, New Jersey, USA.

5

http://hackage.haskell.org/package/ClassLaws
http://hackage.haskell.org/package/ClassLaws
http://hackage.haskell.org/package/ChasingBottoms
http://bnfc.digitalgrammars.com/
http://hackage.haskell.org/package/testing-feat
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/SustainableEnergyFuture
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/SustainableEnergyFuture
http://www.cs.uu.nl/wiki/pub/IFIP21/KyotoJapan/kyo7jansson.pdf
http://www.cse.chalmers.se/~patrikj/talks/IMPACT_SEFI09_Jansson.pdf
http://www.cse.chalmers.se/~patrikj/talks/IMPACT_SEFI09_Jansson.pdf
http://www.sefi.be/wp-content/abstracts2009/Niklasson.pdf
http://www.sefi.be/wp-content/abstracts2009/Niklasson.pdf
http://www.cs.uu.nl/wiki/pub/IFIP21/AtlanticCity/Simple_PTS_Jansson_21.pdf

Appendix C P. Jansson, 720311�7515, StrongLib

2011-09-22: �Embedded Parser Generators� at the 2011 ACM SIGPLAN Haskell Sym-
posium, Tokyo, Japan.

2012-10-09: �Functional Enumeration of Algebraic Types� at the IFIP Working Group
2.1 on Algorithmic Languages and Calculi, meeting #69 in Ottawa, Canada.

2012-11-09: �Computer Science meets Global Systems Science� at the 1st Open Global
Systems Science Conference, November 8th�10th, 2012, Brussels, Belgium.

2013-06-10: Plenary presentation on �ICT for Global Systems Science� at the 2nd Global
Systems Science Conference in Brussels, Belgium.

2013-06-11: �ICT for Global Systems Science� at the Global Systems Science Languages
workshop (part of the 2nd Global Systems Science Conference) in Brussels, Belgium.

6

http://www.cs.uu.nl/wiki/pub/IFIP21/Ottawa/Feat_PJ.pdf
http://blog.global-systems-science.eu/?p=462
http://www.gsdp.eu/fileadmin/images/events/2013-06_gss/workshops/Formal_Languages_and_Integrated_Problem_Solving_Procedures/Patrik_Jansson_-_ICT_for_Global_Systems_Science.pdf
http://www.gsdp.eu/nc/news/news/date/2013/04/26/next-gss-conference-june-10-11th-2013-brussels/
http://www.gsdp.eu/nc/news/news/date/2013/04/26/next-gss-conference-june-10-11th-2013-brussels/
http://www.cse.chalmers.se/~patrikj/talks/Jansson_GSS_2013_ICT.pdf
http://wiki.portal.chalmers.se/cse/pmwiki.php/GSDP/GSSLanguages

VRAPS/VR-Direct b Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Name of applicant

Date of birth Reg date

Kod Dnr

Project title

DateApplicant

Head of department at host University Clarifi cation of signature Telephone

Vetenskapsrådets noteringar
Kod

	AmnesOmrade_S: * Övrigt generellt
	Amnesrad_S: NT
	AnsokanKod_A: 2013-2993-109043-9
	AnsokanKod_B: 2013-2993-109043-9
	AnsokanKod_C: 2013-2993-109043-9
	AnsokanKod_S: 2013-2993-109043-9
	appendix: Appendix S
	appendix_C: Appendix C
	Ar_S: 2013 -
	BeredGrp_S: NT-RP
	Bidragsform_S: Grants for distinguished professors
	Budget:
	Ar_S1: 2014
	Ar_S2: 2015
	Ar_S3: 2016
	Ar_S4: 2017
	Ar_S5: 2018

	DetBud: List of publications
	Dnr_S:
	ForhandText_A:
	ForhandText_B:
	ForhandText_C:
	ForhandText_S:
	ForvMynd_S: Chalmers tekniska högskola
	hjalptext1: A signature on the application is required not only from the applicant but also from the authorised representative of the administrating organisation/institution or equivalent (normally the head of the department or establishment where the research is to be conducted). The signature confirms that the department can accommodate the proposed research, position or equipment; that the costing in the application is approved for the department's part, that any proposed experimentation on human or animal subjects has been reported, and that the applicant has reported any secondary occupations and commercial ties (s)he may have, and nothing inconsistent with good research practice has thereby emerged. The applicant must have discussed these conditions with the representative of the administrating organisation/institution or equivalent before the latter approves and signs the application.
	hjalptext6: NOTE the exceptions!Please note that a different procedure applies for the following types of grants:•	Infrastructure- Operation Grants•	Infrastructure- Grants for Expensive Equipment•	Infrastructure- Grants for Large Databases•	Framework Grant SIMSAM•	International RecruitmentFor these types of grants the vice-chancellor, instead of the head of department, must sign Appendix S. Thereby (s)he confirms the commitments of the administrative organization. The details are specified in the Call for Proposals, published at www.vr.se.
	hjalptext7:
	hjalptext8:
	ProjTitelEng_A: Strongly Typed Libraries for Programs and Proofs
	ProjTitelEng_B: Strongly Typed Libraries for Programs and Proofs
	ProjTitelEng_C: Strongly Typed Libraries for Programs and Proofs
	ProjTitelEng_S: Strongly Typed Libraries for Programs and Proofs
	RegDate_S: 2013-09-10 19:39:55
	S:
	Namn_A: Jansson, Patrik
	Namn_B: Jansson, Patrik
	Namn_C: Jansson, Patrik
	Namn_S: Jansson, Patrik
	PersNr_A: 720311-7515
	PersNr_B: 720311-7515
	PersNr_C: 720311-7515
	PersNr_S: 720311-7515

	sign: Signatures
	SoktBeloppAr_S1:
	SoktBeloppAr_S2:
	SoktBeloppAr_S3:
	SoktBeloppAr_S4:
	SoktBeloppAr_S5:
	StartSlut_S: 2014-01-01 -- 2023-12-31
	Text2: 2
	Utlysning_S: Grants for distinguished Professors 2013

