
A semantics of core AUTOSAR
Johan Nordlander Patrik Jansson

Department of Computer Science and Engineering, Chalmers University of Technology

Abstract—The AUTOSAR system architecture for the automotive
industry is rich in features and large in size, but lacks a com-
prehensive definition that allows its Software Components and
Runtime Environment to be treated as an abstract programming
model in its own right. As a result, AUTOSAR components are
hard to analyze, test and evaluate without first committing to a
particular execution platform and component context. This paper
addresses this shortcoming by means of a formalization of the
core AUTOSAR specification as a labelled transition system. The
resulting semantic rules can be used to clarify the specification,
emphasize design tradeoffs and serve as a foundation for tools
that fulfill the AUTOSAR promise of platform- and vendor-
independent automotive software development.

I. INTRODUCTION

The AUTOSAR standard is an open software component
architecture for the automotive industry [1]. Its main purpose is
to enable interoperability of software modules among different
vendors and on heterogeneous platforms, via an extensive
set of standardized interfaces and libraries, and a common
software development methodology.

The standard has a rather wide scope and covers many features
normally associated with complex operating systems, like I/O
abstraction, concurrency, communication, distribution and real-
time predictability. Unlike existing operating systems, how-
ever, AUTOSAR is not de facto defined in terms of a particular
implementation. Instead, an explicit goal of AUTOSAR is to
constitute an abstract specification that allows multiple and
competing realizations, and even systems built as an assembly
of fragments from many different (and competing) vendors.
Such a goal naturally puts a heavy focus on the standard
specification itself.

Unfortunately, the AUTOSAR specification is not very rig-
orous, despite a sheer size of more than 12,500 pages of
text and UML diagrams in total. It is also not very abstract,
in that it makes frequent references to assumed implementa-
tion techniques for the purpose of defining its semantics. In
practice, the AUTOSAR standard becomes blurred with the
specific behavior of one’s chosen platform and development
tools. And because the standard is open to interpretation,
the interoperability of software components across tools and
platforms is often seriously hampered. What is more, a single
software component cannot easily be studied and understood
in isolation, since its interactive behavior is only indirectly
defined in terms of the concrete C-code and OS tasks that
realize it and its interaction environment.

In this paper we take a first step towards a remedy to
these problems, by contributing a formal specification of a
substantial core of the AUTOSAR standard. AUTOSAR itself
is summarized in Section II. The formalization covers most of
the Software Component Template and its accompanying Run-
Time Environment (RTE) (Section III), and is able to directly
express every legal way a system of software components can
evolve at run-time on an arbitrarily fast platform (Section IV).
It can thus serve as a basis for both a concrete AUTOSAR

implementation on a specific platform (whose supported be-
haviors must be a subset of those defined by the formal
semantics), and a platform-independent AUTOSAR simulator
(where behaviors from the legal set can be picked at random).
Non-determinism and concurrency is emphasized in Section V,
together with an example of an unfortunate consequence
of the specified standard. Section VI identifies some areas
where the AUTOSAR documents has been found unclear;
here our chosen readings are put in relation to alternative
interpretations. Section VII, finally, gives a detailed account
on the scope limitations we have imposed on our work.

The semantics has been formalized with the intent to accurately
capture the informal meaning of the AUTOSAR standard,
although mistakes and misunderstandings are certainly both
possible and plausible. A formal notation is nevertheless a
good starting point for any discussion on the resolution of
such issues. The semantics is furthermore written to be unam-
biguous, except where concurrent execution should allow for
more than one observed behavior. Examples of questions that
can be firmly resolved on basis of our formalized semantics
include:

• How many runnable instances will a sequence of received
values give rise to?

• What values may ever be returned when an inter-runnable
variable is first read?

• At what times will two timing events coincide, if at all?

II. AUTOSAR

An AUTOSAR model is primarily a structure of interconnected
software components (SWCs) [2]. Links between SWCs are
called connectors, which attach to ports exposed by the
SWCs. A port is either required or provided, and then classi-
fied according to what interface it exposes: sender-receiver,
client-server, trigger and mode-switch are common interface
types. A sender-receiver interface is an aggregation of one
or more data-elements, with each element characterized by
the type of data it carries and optional further communication
specification details. A client-server interface likewise consists
of one or more operations, that each gives the signature of a
procedure call and the possible errors that may result.

Some components merely act as containers of other com-
ponents structures, these are called composition SWCs. In
contrast, atomic SWCs define their own behavior, primarily in
terms of runnables and inter-runnable variables. A runnable
denotes a sequential and (normally) terminating piece of code,
although its actual behavioral definition is typically relegated
to external C or Matlab files rather than being part of the
AUTOSAR model proper. Instead, an AUTOSAR runnable
only provides constraints on what ports and inter-runnable
variables the actual implementation can access; as well as
event declarations that determine under what conditions it will
get executed.

component Bcomponent A

 runnable R3

 runnable R4

 runnable R1

 runnable R2

sender/
receiver

client/
server

P1

P2

P5

P3

P4

P0

inter-runnable variable

inter-runnable variable

exclusive area

Fig. 1. Example of a graphical AUTOSAR software components model.

A runnable under execution is called a runnable instance, and
several instances may execute concurrently even if they belong
to the same SWC. Each runnable indicates whether or not it
may be instantiated concurrently with itself. Runnable code
can also use exclusive areas (a form of mutex semaphores) to
further control concurrent behavior.

To interact with ports, inter-runnable variables and exclusive
areas, runnables use what is abstractly known as the virtual
function bus (VFB). Concretely, the VFB takes the shape
of a C programming interface to the run-time environment
(RTE), custom-generated for each runnable on the basis of
its access constraints [3]. Behind the RTE, a collection of
OS kernels, communication stacks and other basic software
modules implement the VFB services for the platform at hand.
Complete AUTOSAR designs also typically contain ECU and
task assignments, which are manually built tables that control
how SWCs and runnables map onto the available hardware and
OS resources, respectively.

AUTOSAR models are completely static, which means that
all components, runnables, ports, connectors, etc, are created
ahead of execution time. Runnable instances are an exception,
but they are only identified by AUTOSAR for conceptual
purposes and are never part of any model syntax. This static
nature renders AUTOSAR models very suitable to graphical
notations, which by far is the most widespread representation
format for AUTOSAR models. A graphical model example is
shown in Figure 1.

III. SYNTAX AND PRELIMINARIES

The formal approach we have chosen is that of a typical
process calculus [9], where a system of concurrent processes
evolves in a sequence of atomic steps, as determined by a
global set of transition rules. Our process terms correspond to
the individual state-carrying parts of an AUTOSAR system,
like the runnables, runnable instances, inter-runnable variables
and port elements. Each such term is also assigned a constant
address parameter for identification purposes.

Components do not carry any dynamic state besides the state of
their constituent parts, so they need no explicit representation
as process terms. However, in order to still be able to talk about
model elements using their locally scoped names, we employ
a hierarchical addressing scheme, such that address i.r means
runnable r of component i and i.e means port element e within
component i. We use the following meta-variable conventions:

i ∈ Component names
r ∈ Runnable names
e ∈ Sender-receiver port element names
o ∈ Client-server port operation names
s ∈ Inter-runnable variable names
x ∈ Exclusive area names

a, b ∈ Addresses
a, b ::= i.r | i.e | i.o | i.s | i.x

AUTOSAR elements and operations are actually only unique
within the ports they belong to, so technically we ought to
address them by reference to an intended port name as well,
as in i.p.e or i.p.o for some port p. However, port names play
no role of their own in our study, so we choose to leave them
implied by the element and operation names we reference.
Moreover, component names i can also be considered to have
a nested internal structure (component i1 within component
i2 within component i3 , etc). We can ignore this detail
too, though, as the hierarchical layout of components in an
AUTOSAR system has no run-time implications [2, ch. 3.3.1].

The process terms of our calculus are as follows:

• runnable(i.r, t, act , n)
Dynamic state for runnable r of component i, indicating
n current instances, t seconds left until next possible
instantiation, and activation state act .

• rinst(i.r, c, xs, code)
An instance of runnable r of component i, currently exe-

cuting code and owning the exclusive areas xs , possibly
running on behalf of client c.

• irv(i.s, v)
Inter-runnable variable s of component i, currently hold-
ing value v.

• excl(i.x, u)
Exclusive area x of component i, with boolean occupation
state u.

• delem(i.e, u, v)
Non-queued sender-receiver port element e of component
i, currently holding value v with boolean update status
flag u.

• qelem(i.e, n, vs)
Queued sender-receiver port element e of component
i with maximum capacity n, currently holding value
sequence vs .

• oper(i.o,m, srv)
Client-server port operation o of component i, currently
holding sequence number m and call state srv .

• timer(i.r, tp, t)
Periodic timer for runnable r of component i, with a
period of tp and t seconds left of its current cycle.

In the untyped setting of this report, a value v can be any data
item computed and communicated by an AUTOSAR system,
including the unit value void and the error codes that might
be returned from RTE calls [3, ch. 5.5.1]. Meta-variables n
and m stand for natural numbers, while u and t range over
boolean values and (floating point) time values, respectively.
The client c of a runnable instance is a tuple holding the
address, sequence number and argument value of the current
invocation (if the runnable was invoked by a client-server call),
or is void otherwise. An activation state act either toggles
between idle and pending, or is a sequence of client tuples (in
the case of a runnable triggered by client-server calls). A call
state srv alternates between indicating an ongoing call with a
timeout and a finished call with a result value. Formally,

v ∈ Values
n,m ∈ Natural numbers

u ∈ Boolean values
t ∈ Time values
c ∈ Clients

act ∈ Activation states
srv ∈ Call states

c ::= (i.o,m, v) | void
act ::= idle | pending | cs
srv ::= calling(t) | done(v)

We write vs for a sequence of values v , cs for a sequence of
clients c, etc. Sequences may be empty, which is written ε.
By |vs| we mean the length of sequence vs . Left (right)
concatenation of an element with a sequence is written v:vs
(vs:v). We use meta-variable conventions to resolve whether
concatenation implies a fixed number of elements (as in v1:v2)
or is open-ended (as in v:vs or vs:v).

The code part of a runnable instance should technically be
a representation of the C or Matlab implementation that
must accompany an AUTOSAR runnable definition once it
is complete. However, since our task in this report is not to
investigate the semantics of these languages in any detail, a
more abstract notion of executable code will be required.

To this end, we have chosen to ignore all internal computations
and just capture the observable effects of runnable execution

as a pure string of RTE (VFB) calls [3, ch. 5.6]. And because
the result from an RTE call may in general affect subsequent
behavior, we use a continuation-passing style [11] where every
code term except the final return command literally contains
the commands that may follow, as a continuation parameter k .

code ∈ Code
k ∈ Values→ Code

code ::= enter(x, k)
| exit(x, k)
| irvWrite(s, v, k)
| irvRead(s, k)
| send(e, v, k)
| receive(e, k)
| write(e, v, k)
| read(e, k)
| invalidate(e, k)
| isUpdated(e, k)
| call(o, v, k)
| result(o, k)
| return(v)

In contrast to code sequences, process terms are completely
unordered. This is expressed in the standard process calculus
style using an associative operator that allows arbitrary sets
of primitive processes to be composed in parallel. This operator
also has a left and right unit in the form of process 0, which
stands for the empty, or terminated, process. The complete
grammar for our process terms thus looks as follows:

p, q ::= runnable(a, t, act , n)
| rinst(a, c, xs, code)
| irv(a, v)
| excl(a, u)
| delem(a, u, v)
| qelem(a, n, vs)
| oper(a,m, srv)
| timer(a, tp , t)
| p q
| 0

IV. SEMANTICS

Our semantic approach defines the meaning of an AUTOSAR
system as the possible chains of state changes that can be
applied to the system’s initial state; or equivalently, as the set
of traces that can be generated from the initial process term
p0 . A trace is a possibly infinite sequence of transitions

p0
l1−→ p1

l2−→ p2
l3−→ · · ·

where each step

pi−1
li−→ pi

states that the system state captured as process term pi−1 can
evolve into state pi by means of a single transition labelled li.

The label l of a transition can essentially be of two kinds,
indicating that the affected process either “says” or “hears”
something during the transition. Such a label always consists
of an address a paired with some additional detail d. There is
also a special form of “hearing” that denotes letting time pass

and which does not carry any address. The different labels are
captured in the following grammar.

l ::= a!d Say a and d
| a?d Hear a and d
| δ(t) Let t seconds pass

The possible forms of the extra label detail d will be intro-
duced as the different transition rules are defined.

Two processes p and q can make transitions in parallel if they
agree on what is being said or heard. Just as the saying/hearing
intuition suggests, at most one of the processes can have
the saying role in such an agreement. The following set of
inference rules capture this intuition formally.

p1 q1
a !d−−→ p2 q2 if p1

a !d−−→ p2 ∧ q1
a?d−−→ q2 (1)

p1 q1
a !d−−→ p2 q2 if p1

a?d−−→ p2 ∧ q1
a !d−−→ q2 (2)

p1 q1
a?d−−→ p2 q2 if p1

a?d−−→ p2 ∧ q1
a?d−−→ q2 (3)

p1 q1
δ(t)−−→ p2 q2 if p1

δ(t)−−→ p2 ∧ q1
δ(t)−−→ q2 (4)

The effect of these agreement rules closely resembles the
idea of a broadcast: what one process says may be heard
by every other process in a large parallel composition [10].
This behavior serves us well, because in general, what one
AUTOSAR runnable does may have impact on many (if not
all) parts of the executing system. It is, however, important not
to confuse this broadcasting notion with any particular form
of AUTOSAR communication [2, ch. 4.2]. The way transition
labels distribute over the parallel composition operator is
merely a technical aspect of our process calculus, and will be
used to express several different AUTOSAR communication
semantics, among other things.

The initial process p0 is determined fully by the AUTOSAR
model under study, as the parallel composition of the following
terms:

1) For each runnable r of each component i, a term

runnable(i.r, 0, act , 0)

where act is ε if r is triggered by an OperationInvokedE-
vent; else act is pending if r is triggered by an InitEvent;
otherwise act is idle.

2) For each inter-runnable variable s of each atomic com-
ponent i, a term

irv(i.s, v)

where v is the initValue attributed to s if it exists,
otherwise v is void.

3) For each exclusive area x of each atomic component i,
a term

excl(i.x, false)

4) For each required port element e of each atomic com-
ponent i, a term

qelem(i.e, n, ε)

if the swImplPolicy attribute of element e is queued (with
capacity n); otherwise, a term

delem(i.e, false,neverReceived)

5) For each required port operation o of each atomic
component i, a term

oper(i.o, 0,done(void))

6) For each TimingEvent of each runnable r of each atomic
component i, a term

timer(i.r, tp, 0)

where tp is the period of the event.

The AUTOSAR naming scheme [2, ch. 3.2.5] guarantees that
all processes terms in such an initial composition will carry
unique addresses, with the exception of timer terms which
share addresses with the runnables they belong to. We will
later see how runnable instances reuse the address of their
runnables in the same manner.

Some further static model information will also be referenced
by the transition rules. We refer to the connectors of a model
using a binary relation ⇒ on port elements and operations,
where the arrow points in the provided-to-required direction
[2, ch. 3.3.3]. Although connectors are technically defined for
ports, we assume ⇒ is lifted to the common elements and
operations of connected ports, and that it is transitively closed
(i.e., expresses end-to-end connectivity across Delegation- as
well as AssemblySwConnectors).

We expect the implementation of a runnable to be available
as a continuation function k , even though the real AUTOSAR
model will be referring to concrete functions in external C
files [3, ch. 5.1.1]. We will further abstract away from actual
numbers of input and output parameters to these functions by
assuming that records (structs) are used as the single continua-
tion argument and result whenever the arity so requires. Absent
arguments or results will be replaced by the unit value void.

We write implementation(i.r, k) to state the assumption that
the static AUTOSAR model under study assigns implementa-
tion function k to runnable i.r. Similar notations will be used
to express other references to the underlying static model; for
example DataReceivedEvent(i.r, i.e) to state that the model
allows runnable i.r to be triggered by data reception events on
port element i.e. Although the chosen notation is sometimes
significantly shorter than the UML/XML-based syntax used
in the AUTOSAR specification, the intended meaning should
nevertheless be clear.

The semantic transition rules and axioms are written in full
in Appendix A. We will discuss each definition group in turn,
starting with the relatively simple behavior of inter-runnable
variables and exclusive areas. In most cases, the driving force
behind a transition is some runnable instance wishing to say
something which other processes either react to or ignore. How
the runnable instances themselves come into existence will be
detailed in Section IV-G.

A. Inter-runnable variables

An inter-runnable variable (irv) represents state that is local
to a particular component and accessible by all runnables of
that component [3, ch. 4.3.3.1]. Axioms (5) and (7) show the
say transitions taken by a runnable instance wishing to read
and write an irv s. In both cases the embedded continuation
k is applied to the command result. The corresponding hear
transitions of an irv appear as axioms (6) and (8). Thanks to
inference rule (1), a runnable instance and an irv can now

engage in a parallel transition, for example expressing the
writing of shared data.

rinst(i.r, c, xs, irvWrite(s, v, k)) irv(i.s,)

i.s! IRVW(v)−−−−−−−→
rinst(i.r, c, xs, k(void)) irv(i.s, v)

The corresponding read transition looks as follows:

rinst(i.r, c, xs, irvRead(s, k)) irv(i.s, v)
i.s! IRVR(v)−−−−−−−→

rinst(i.r, c, xs, k(v)) irv(i.s, v)

Section IV-I will show how examples like these can be
extended to the case when both participating processes are
embedded in arbitrarily large parallel process compositions.

Note that in the last example above, the read value v flows
from the irv process to the runnable instance, even though
axiom (6) states that an irv actually hears the transition payload
IRVR(v). This apparent paradox is simply a reminder that the
saying/hearing distinction of our calculus is entirely separate
from the dataflow patterns it defines.

B. Exclusive areas

An exclusive area is the AUTOSAR equivalent of a binary
semaphore, that can be acquired and released in an atomic
fashion by competing runnable instances [3, ch. 4.2.2.5].
Axiom (9) states that a runnable instance wishing to enter
exclusive area x may successfully proceed to its continuation k
by broadcasting i.x!ENT. Axiom (10) expresses that exclusive
area i.x accepts hearing an ENT payload if it is currently
not taken; i.e., carries the boolean state false. This makes the
following parallel transition possible:

rinst(i.r, c, xs, enter(x, k)) excl(i.x, false)
i.x!ENT−−−−→

rinst(i.r, c, x:xs, k(void)) excl(i.x, true)

Exiting from an exclusive area is simply the reverse, as defined
in axioms (11) and (12):

rinst(i.r, c, x:xs, exit(x, k)) excl(i.x, true)
i.x!EX−−−−→

rinst(i.r, c, xs, k(void)) excl(i.x, false)

Because axiom (10) is only defined for exclusive areas in the
not taken state, there is no way to derive any parallel transition
of the following form:

p excl(i.x, true) i.x!ENT−−−−→ . . .

This means that any runnable instance in p wishing to enter
i.x is effectively blocked from making progress until some
other process in p chooses to exit i.x. In the same manner, a
process wishing to exit an exclusive area not taken is also
effectively blocked. The conditions on exiting are actually
stronger than those that govern entering, since axiom (11) is
only applicable to a runnable instance for which the exited
area x is at the top of its stack of acquired exclusive areas (as
expressed by the sequence pattern x:xs). An exclusive area can
thus only be exited by the process that entered it, and only in
the reverse order of entering [3, ch. 5.6.28]. Section VI-E will
bring up some alternatives to this semantics, and also discuss
the interpretation of blocked processes in more detail.

C. Unbuffered sending/receiving

Axioms (13) and (15) define unbuffered inter-process com-
munication from a runnable instance point of view. These
transitions are just syntactic variants of shared variable reading
and writing (axioms (5) and (7)). A data element (delem)
process term contains two pieces of state in addition to its
address: a communicated data value and a boolean flag for
keeping track of unread writes [3, ch. 4.3.1.10.1]. Axioms (14)
and (16) capture reads and writes to the data value and also
set the update flag accordingly. The side-condition in axiom
(16) makes the rule apply only if there is a static connection
from the data element being written and the address of the
matched term (recall that data element storage is associated
with the receiving side of a connection). Because AUTOSAR
allows sender-receiver communication patterns to be one-to-
many (such as i.e ⇒ a and i.e ⇒ b), parallel data element
updates like the following are possible [3, ch. 4.3.1.4]:

rinst(i.r, c, xs,write(p.e, v, k))
delem(a, ,) delem(b, ,)

i.e!WR(v)−−−−−−→
rinst(i.r, c, xs, k(void))

delem(a, true, v) delem(b, true, v)

As an aside, note that the ordering of terms in a parallel
composition is made entirely irrelevant by the symmetric
formulation of transition rules (1) and (2).

Axiom (17) provides another means of interpreting a data
element write. It expresses that a runnable set up to trigger on
data reception on required data element a should be marked
as pending whenever a write occurs on an element connected
to a. An example may be as follows (assuming i.e ⇒ a and
DataReceivedEvent(b, a)):

rinst(i.r, c, xs,write(p.e, v, k))
delem(a, ,) runnable(b, t, , n)

i.e!WR(v)−−−−−−→
rinst(i.r, c, xs, k(void))

delem(a, true, v) runnable(b, t,pending, n)

Transitions that actually create an instance of a pending
runnable will be introduced in Section IV-G.

A data element can also be queried for its update status flag
[3, ch. 5.6.35], and be marked as carrying no valid value
[3, ch. 5.6.7]. Axioms (18)-(21) define the corresponding
transitions.

D. Buffered sending/receiving

Buffered inter-process communication (axioms (22) - (30)) is
just a minor variant of the unbuffered mechanism, where the
single-value store of a delem term is replaced by a qelem
process holding a sequence of values [3, ch. 4.3.1.10.2]. The
buffer is consumed from the left (axiom (23)) and extended to
the right (axiom (27)). When the buffer is empty, the special
value (error code) nodata is returned to receiving runnable
instances (axiom (24)). When the buffer is at its maximum
capacity, the communicated value is simply dropped (axiom
(28)).

However, the AUTOSAR specification requires the send com-
mand to inform its caller whether all connected buffers were
able to successfully store the communicated value or whether
some buffers had it dropped [3, ch. 5.6.5]. Such non-local

information can be expressed as an additional parameter as
to the SND transition label, listing the addresses of connected
qelem processes that have no spare capacity. The preconditions
of axioms (27) and (28) ensure that as reflects the truth,
and axioms (25) and (26) feed different error codes to the
sender’s continuation depending on whether as is empty or
not. By requiring connectivity for all a in as in axiom (26),
the possibility of letting irrelevant addresses in as cause bogus
limit results is ruled out.

The following example illustrates a scenario where a sent value
is only stored in a subset of the connected buffers. Assuming
i.e⇒ a and i.e⇒ b (and let as be the singleton sequence b):

rinst(i.r, c, xs, send(p.e, v, k))
qelem(a, 2, ε) qelem(b, 2, v1:v2)

i.e!SND(v,b)−−−−−−−→
rinst(i.r, c, xs, k(limit))

qelem(a, 2, v) qelem(b, 2, v1:v2)

E. Calling a server

The behavior of client-server communication in AUTOSAR
[3, ch. 4.3.2] depends on whether a client lists the required
server port operation as a synchronous or an asynchronous
callpoint (which are mutually exclusive model attributes). In
the former case, the call command is treated as if it were
immediately followed by a command for retrieving the server
result (axiom (31)), whereas in the latter case, the call succeeds
immediately and the result has to be retrieved explicitly by the
client’s continuation code (axiom (32)). In both cases, however,
an attempt to call the server before it is done processing a
previous asynchronous call leads to immediate abortion with
the error code limit (axiom (35)).

The AUTOSAR specification restricts client-server connec-
tions to the many-to-one pattern only, assigning a dedicated
runnable responsible for implementing the offered service [2,
ch. 4.3.2]. It furthermore forbids runnables to be triggered by
any events other than operation invocations of compatible sig-
natures, making it natural to associate the state needed to buffer
up server invocations with the server runnables themselves.
On the other hand, the specification also introduces timeouts
[3, ch. 4.3.2.3] and sequence counters [3, ch. 4.3.2.6.1] that
are private to each connection, which is why our calculus
also needs process terms that correspond to each required
(i.e., client-side) operation. Axiom (33) shows how the current
sequence counter m blazes a call transition if the client-side
operation is not already busy, while the busy case is detected in
axiom (36). In axiom (34), a successful call transition causes
the client identifier a to be buffered up in the server runnable
together with sequence number m and call parameter v. Axiom
(37) lets a server runnable ignore an aborted call attempt.

Here is an example of how a client runnable instance, a client
port operation and a server runnable interact during a call
transition (assuming OperationInvokedEvent(b, a), a ⇒ i.o,
and serverCallPointTimeout(i.o, t)).

rinst(i.r, c, xs, call(p.o, v, k))
oper(i.o,m,done(nodata))

runnable(b, 0, cs, 0)
i.o!CALL(m,v)−−−−−−−−−→

rinst(i.r, c, xs, k(ok))
oper(i.o,m, calling(t))

runnable(b, 0, cs:(i.o,m, v), 0)

F. Passing back a server result

The result command can appear as an implicit effect of a
previous call command, if the operation invoked is marked as
an synchronousServerCallPoint (c.f. axiom (31)). It can also be
referenced explicitly in a client runnable’s code, if the current
runnable lists the operation as an asynchronousServerCallPoint
[3, ch. 5.6.14]. For the synchronous case, axiom (38) excludes
nodata values, which effectively blocks progress of the caller
until a server result distinct from nodata has been produced.
The asynchronous case of axiom (39) has no value restrictions,
so it will happily pass back the nodata tag as well as an
indication that a result is not yet available.

The state keeping track of a call’s status resides in the oper
term of a connection. Axiom (40) defines that nodata is the
result provided while a call is open, whereas axiom (41) returns
the stored result once a call has completed.

A server runnable instance is identified by a client parameter
distinct from void. Axiom (42) says that when such a runnable
instance reaches the end of its code sequence, it must announce
the produced value, together with the sequence number and
oper address of its current invocation, before it is allowed to
terminate (to be defined in Section IV-G). The addressed oper
term reacts according to axiom (43), by completing the call,
storing the produced value and increasing its sequence counter
in preparation for the next call. However, should the oper
timeout counter reach zero before a transition according to (43)
can be taken, the client is obliged to unilaterally terminate the
call and set the result to error code timeout (axiom (44)).
Axiom (45) enables the completion of a call—successfully
or via a timeout—to trigger a subscribing runnable (can be
distinct from the original client).

Because of call timeouts, server runnables run the risk of
producing results that the original client is not waiting for
anymore. Detecting such mismatches is the job of the sequence
numbers, as witnessed by the requirement in axiom (43): the
sequence number returned by the server and the one expected
by the client must be identical (variable m). However, there
must also exist a means for server runnables to simply discard
their results, otherwise they would not be able to terminate.
Axiom (46) therefore defines an alternative transition for
finished servers, applicable on the condition that the returned
sequence number does not match what the client expects
(axiom (47)). By means of axiom (48), subscribing runnables
are allowed to ignore the corresponding transition.

An example of a normal server result interaction can look as
follows:

rinst(b, (i.o, 91, v0), xs, return(v))
oper(i.o, 91, calling(t))

i.o!RET(91,v)−−−−−−−−→
rinst(b, void, xs, return(void))

oper(i.o, 92,done(v))

As a contrast, this is the behavior observed when a call timeout
occurs:

rinst(b, (i.o, 91, v0), xs, code)
oper(i.o, 91, calling(0))

i.o!RET(91,timeout)−−−−−−−−−−−→
rinst(b, (i.o, 91, v0), xs, code)

oper(i.o, 92,done(timeout))

The processes are now in a state where runnable instance b
is prohibited from doing a normal return. Termination of b is
only possible via axioms (46) and (47).

rinst(b, (i.o, 91, v0), xs, return(v))
oper(i.o, 92,done(timeout))

i.o!SKIP(91)−−−−−−−→
rinst(b, void, xs, return(void))

oper(i.o, 92,done(timeout))

G. Spawning and terminating

Runnables with an activation state distinct from idle or ε are
amenable to instantiation [3, ch. 4.2.3]. Axiom (49) defines
this crucial step for runnables triggered by all types of events
except server invocation, which is instead handled by axiom
(50). Both rules have many details in common:

• They apply only when the runnable instantiation timer
(parameter two) has reached zero.

• They reset the timer to a model-defined minimumStartIn-
terval to disable further instantiation immediately after a
new instance is born.

• They are guarded by the condition that the current number
of runnable instances (fourth parameter) is either zero,
or the runnable has been defined to accept concurrent
invocations.

• They make the runnable keep track of the new number
of instances.

• They let the new instance inherit the address of its parent
runnable.

• They create the new instance in parallel with its parent
(runnable instances is actually the only example of dy-
namic process creation in this calculus).

• They initialize the new instance with code according to
the model-defined implementation and an empty list of
owned exclusive areas.

The differences all emanate from the server/non-server distinc-
tion:

• The non-server runnable instance gets a void client pa-
rameter whereas the server instance is assigned the client
tuple from the head of the server’s client queue.

• The non-server runnable toggles back to the idle activa-
tion state, while the server just chops of the head of its
client queue.

• Only the server runnable instance is given a non-void
code parameter, which is taken from the same client queue
head.

The transition label of axioms (49) and (59) is noteworthy
because it is not matched by a corresponding hearing transi-
tion; all other process terms just ignore the information that
a new runnable instance has been spawned. An example of
process instantiation within a parallel context will thus merely
be a trivial variant of one of the instantiation axioms, and is
therefore left out.

Complementing the notion of spawning is a mechanism for
runnable instance termination. An instance with a void client
parameter (either acquired natively, or via axioms (42) or
(46)) transforms into the terminated process 0 as defined in
axiom (51). Since this term is the unit of parallel process
composition, it is silently absorbed by any other process in
parallel with it. The instance termination is also noted by
the associated runnable parent, which reacts by decrementing

its current instance counter (axiom (52)). An example of this
interaction follows below.

runnable(b, t, act , 3) rinst(b, void, ε, return(v))
i.o!TERM−−−−−→

runnable(b, t, act , 2) 0
≡

runnable(b, t, act , 2)

H. Passing time

In common with most real-time process calculi, the concept
of passing time in our calculus is kept separate from the
computational work expressed by the say/hear transitions [7].
This has the advantage of freeing the semantics from pos-
sessing a particular computation speed, as any finite number
of computation steps can be performed before time must
advance. On the other hand, it also means that the limitations
of a particular platform cannot be directly studied unless the
calculus is complemented with some form of constraint on the
work/time relationship. Such an extension is beyond the scope
of the current report, though.

The passage of time is captured as a special transition relation
δ(t)−−→ , whose only effect on the related process terms is to

decrement any contained time variables by t. For some pro-
cesses, time cannot advance until a particular work transition
has been taken; this corresponds to time events that must
be noted (although not necessarily acted upon) at the exact
time instance when they occur. Yet other processes can only
take time transitions, which simply means that they represent
an idle system that currently has no work to do. Mostly,
though, work and time transitions are simultaneously available,
indicating that the semantics considers the slightly slower and
slightly faster behavior alternatives to be equally correct.

Most process terms actually ignore the passage of time, which
is expressed by axioms (53) to (58). In axiom (59), an oper
term in the calling state lets time pass by decrementing its
timeout counter. The counter is not allowed to go negative,
though, which forces the oper term to handle the timeout once
the counter reaches zero (c.f. axiom (44)). Axiom (60) defines
a similar behavior for the start interval timer of a runnable,
although this timer is also allowed to slip behind further time
updates once it has reached zero (axiom (61)). The reason for
this is that the interval timers do not enforce any particular
action when they time out, they just enable new transition
options that do not have to be taken immediately [3, ch. 4.2.3].

A timer process, finally, decrements its counter according to
axiom (62). When the counter has become zero, the timer is
forced to take the TICK transition of axiom (63), which also
resets the counter to its static period value tp. The net effect
of such a transition is that the runnable to which the ticking
timer belongs is put into the pending state (axiom (64)). An
example of a transition sequence involving a time-activated

runnable follows below [3, ch. 4.2.2.8].

runnable(a, 0, idle, 0) timer(a, 2.5, 0.3)
δ(0.3)−−−−→

runnable(a, 0, idle, 0) timer(a, 2.5, 0)
a!TICK−−−−→

runnable(a, 0,pending, 0) timer(a, 2.5, 2.5)
a!NEW−−−−→

runnable(a, 0.8, idle, 1) timer(a, 2.5, 2.5)
rinst(a, void, ε, code1)

−→ · · · −→
runnable(a, 0.8, idle, 1) timer(a, 2.5, 2.5)

rinst(a, void, ε, code2)
δ(0.8)−−−−→

runnable(a, 0, idle, 1) timer(a, 2.5, 1.7)
rinst(a, void, ε, code2)

−→ · · · −→
runnable(a, 0, idle, 1) timer(a, 2.5, 2.5)

rinst(a, void, ε, return(void))
a!TERM−−−−→

runnable(a, 0, idle, 0) timer(a, 2.5, 1.7)
δ(1.5)−−−−→ · · · δ(0.2)−−−−→

runnable(a, 0, idle, 0) timer(a, 2.5, 0)
a!TICK−−−−→
· · ·

I. Ignoring broadcasts

Although our chosen mechanism for coordinating transitions
among process terms goes under the name broadcast, there
is no implication that every process must react to everything
being said — the intent is rather that a process term not directly
or indirectly addressed in a transition should be allowed to
ignore it. One could try to express this as some form of
”catch-up” rule p

l−→ p, that would apply only if none of
the axioms (5) to (64) match p and l. However, such a
rule would be too liberal, as it would also enable transitions
that are deliberately omitted from the previous axioms, like
excl(i.x, true) i.x!ENT−−−−→ excl(i.x, true) (granting entry to an
exclusive area already taken).

Instead we need a more restrictive rule, that applies to
processes not addressed by earlier axioms but avoids those
previously excluded by restrictive patterns and other side-
conditions. To make this idea precise, however, we need to
split the rule according to the different forms of p so that
the addressing notion of each process type can be individually
captured. Axioms (65) to (72) contain the resulting definitions.

Runnable instances and timers can ignore everything being
said by others, as they define no hearing transitions proper
that need to be excluded here (axioms (65) and (66)). Ex-
clusive areas, inter-runnable variables and operation terms
have hearing transitions previously defined, but only for label
addresses matching their own; they can thus safely ignore
transitions labelled with any other address. Axioms (70) to
(72) constitute the non-trivial cases, because here there are
multiple earlier definitions to exclude, which also link label
and process addresses via static model references. Still, it can
be verified that each of the axioms (70) to (72) is guarded by an
exact negation of the addressing conditions of any previously
defined hearing transition for the same process type.

As an concrete illustration, consider the example of Sec-
tion IV-D. The axioms that enable each individual process
transition in that example are (26), (27) and (28), respectively
(and rules (1) and (3) allow them to be combined). In par-
ticular, axiom (28) is applicable because of the assumption
i.e ⇒ b, which simultaneously blocks applicability of axiom
(70). However, under the different assumption that there is no
connection from i.e to b, axioms (28) and (70) must trade
places. This also forces the removal of b from the second
argument of the SND payload (i.e., the list of connected buffers
not able to store the value sent). As a consequence, axiom (26)
is no longer applicable and must be replaced by axiom (25).
The resulting parallel transition looks as follows, illustrating
the correct generation of an ok result despite the presence of
a full (but unconnected) buffer.

rinst(i.r, c, xs, send(p.e, v, k))
qelem(a, 2, ε) qelem(b, 2, v1:v2)

i.e!SND(v,ε)−−−−−−−→
rinst(i.r, c, xs, k(ok))

qelem(a, 2, v) qelem(b, 2, v1:v2)

V. NON-DETERMINISM

The transition relation defined in Appendix A is non-
deterministic; i.e., it may very well be that for some process p,

p
l1−→ p1 and p

l2−→ p2

are both possible. If it also holds that

p1
l2−→ q and p2

l1−→ q

are derivable, we note that process p may evolve into state q
either via an l1 step followed by l2, or by first taking the l2 step
and then l1. Such freedom of choice is commonly taken as the
definition of parallelism in the process calculus literature — if
the sequential ordering of steps l1 and l2 has no significance,
they might just as well be considered to occur in parallel [9].

However, it may also be that two possible step orderings do
not lead to identical results. That happens if, instead of the
two transitions leading to q above, we have

p1
l2−→ q1 and p2

l1−→ q2

where q1 and q2 are ”similar” but not identical states. This
non-determinism also has a concrete interpretation, either re-
flecting the non-deterministic nature of a system’s environment
(messages l1 and l2 just happen to arrive in some particular
order) or its internals (processor speed or a scheduling choice
just happens to pick l1 before l2). It is one of the primary
merits of the process calculus approach to allow the scope of
such inherent non-determinism to be precisely defined, because
although a given system state may render many different
behaviors possible, many more are not. A formal semantics
enables us to clearly draw the line between these groups of
behaviors.

The AUTOSAR specification contains a very subtle sensitivity
to this kind of non-determinism that is worth exemplifying.
Consider a queued data element a together with a runnable b
set up to trigger on data reception events for a. A scenario

where two values v1 and v2 are sent on a port element i.e
connected to a may lead to the following trace:

qelem(a, 2, ε) runnable(b, 0, idle, 0)
i.e?SND(v1,ε)−−−−−−−−→

qelem(a, 2, v1) runnable(b, 0,pending, 0)
b!NEW−−−−→

qelem(a, 2, v1) runnable(b, 0, idle, 1)
rinst(b, void, ε, code)

i.e?SND(v2,ε)−−−−−−−−→
qelem(a, 2, v1:v2) runnable(b, 0,pending, 1)

rinst(b, void, ε, code)
b!NEW−−−−→

qelem(a, 2, v1:v2) runnable(b, 0, idle, 2)
rinst(b, void, ε, code) rinst(b, void, ε, code)

That is, a resulting state where a holds the two received values
together with two concurrent instances of b ready to start
reacting upon the two reception events.

However, an alternative trace is equally valid for the same
scenario:

qelem(a, 2, ε) runnable(b, 0, idle, 0)
i.e?SND(v1,ε)−−−−−−−−→

qelem(a, 2, v1) runnable(b, 0,pending, 0)
i.e?SND(v2,ε)−−−−−−−−→

qelem(a, 2, v1:v2) runnable(b, 0,pending, 0)
b!NEW−−−−→

qelem(a, 2, v1:v2) runnable(b, 0, idle, 1)
rinst(b, void, ε, code)

Here there is only one b instance created and none is pending,
even though a correctly contains the two values received. The
reason is that by swapping the order of the first instantiation
and the second data reception steps, the system is put in a state
where its inability to count pending instantiations [3, ch. 4.2.3]
becomes fatal.

So, in an abbreviated form, both the following derivations are
possible for the same reception event sequence:

q p→ · · · → q1 p1 pinst

q p→ · · · → q1 p2 pinst pinst

That is, the system can respond by creating either one or
two runnable instances, and both behaviors are equally correct
according to the AUTOSAR semantics.

Unfortunately there is very little a programmer can do to
influence which of these two traces is taken. Giving b a
positive minimumStartInterval just guarantees that any subse-
quent events are lost during that interval. Long delays between
reception events reduce the likelihood of losses, but the choice
of when to take an instantiation step is still fully internal
to the operating system scheduler. Moreover, when messages
are produced by multiple parallel senders, maintaining control
over their time distribution may be highly impractical. Non-
concurrent runnables can work around the problem by iterating
over all received data at each invocation, but that solution is
not very attractive if concurrent processing of each received
item is desired.

One could argue that replacing the pending/idle flag of
runnables with a small counter variable would render the
AUTOSAR event triggering mechanism much more robust.

The standard explicitly excludes counting for all events but
operation invocation, though, so the possibility of event losses
is undeniably intentional [3, p. 128]. However, should this
design decision ever be revisited, the two trace alternatives
above could serve as a succinct problem characterization.

VI. AMBIGUITIES AND CLARIFICATION PROPOSALS

The formal semantics presented in this report is aimed to be
a faithful capture of the AUTOSAR specification, especially
its Software Components template and RTE specification [2],
[3]. Still, there are several areas where we have found the
specification open to interpretation, or at least in need of some
further clarification. We detail a few of these areas here, as an
illustration to the kind of design decisions that may surface as
the result of a formalization undertaking.

A. Data initialization

Unqueued data elements that are read before first written
should return the error code neverReceived [3, ch. 5.6.10].
Since no exceptions to this rule are mentioned in the specifi-
cation, our interpretation is that this holds even when a data
element possesses an initValue attribute (initial delem state in
Section IV). However, as this renders any such initial value
assignments entirely redundant, an alternative interpretation
would be to create a term

delem(i.e, false, v)

for each unqueued data element i.e, where v is the initValue
of e if it exists, and neverReceived otherwise.

Inter-runnable variables can also be read before written, al-
though here there is no special error code defined in the spec-
ification for the uninitialized case [3, ch. 5.6.26]. Section IV
sets each irv contents to void to indicate a truly non-existing
value, although an entirely reasonable alternative would be

irv(i.s, v)

where v is the initValue of s if it exists, and the error code
nodata otherwise.

B. Activation of server runnables

The specification restricts client-server connections such that a
client may not be connected to multiple servers, for the purpose
of avoiding an operation call to be handled by more than
one server runnable [3, ch. 4.2.3]. However, this restriction
does not explicitly forbid multiple OperationInvokedEvents
referring to the same client-server operation to trigger separate
runnables. Our formulation of client-server communication is
based on the assumption that this is just an oversight, as
allowing multiple events on a server operation would have
the same problem with conflicting response values as would a
one-to-many client-server connection pattern. It is actually not
easy to see what could constitute an alternative interpretation
here, without introducing a need for some new programming
mechanism for selecting among server results.

C. Interleaving of timing events

Although the AUTOSAR specification only motivates timed
runnable activation with the need to support plain periodic
execution, there is really nothing in the specification that
precludes such runnables from being triggered by additional
events as well — including other TimingEvents, perhaps even

with identical periods [2, table 7.1, ch. 7.2.3]. Our formulation
naturally supports this generality, but it should be observed
that the inability of AUTOSAR runnables to count pending
activations (see Section V) also renders the resolution of coin-
ciding timing events highly non-deterministic. As an example,
consider the event patterns of two timers with distinct periods
that occasionally coincide:

If the timers were activating two distinct runnables, the frag-
ment above would be guaranteed to result in eight instantia-
tions in total. But if directed towards a single runnable, the
number of instances created could be seven as well as eight,
with no means for the programmer to control the outcome.

This anomaly may lead to the conclusion that the AUTOSAR
specification does not really intend to allow more than one
timing event per runnable. Luckily, our formalization is also
compatible with this interpretation, as the restriction only
concerns what set of static models to expect as starting states,
not their dynamic behavior.

Closely related to the interleaving of timing events, and of
interest even if only distinct runnables are being triggered, is
the notion of initial timer offsets. That is, at what time will
each timer tick for the first time — immediately at startup
or at some other (later) time? The AUTOSAR specification
only introduces a concept of timing offsets in relation to
the operating system tasks that are expected to implement
runnables; the Software Component Template itself is totally
silent on the issue [2]. Lacking an abstract definition of
runnable offsets, we have chosen to simply fire all timers
simultaneously at 0 seconds from startup (hence the value 0 in
the initial timer term definition in Section IV). It is not hard
to see that other values may be equally reasonable, though,
like

timer(i.r, tp, tp)

which lets each timer wait one full cycle before triggering
for the first time. However, should we really want to take the
assumed task offsets into account, the initial timer state would
rather be

timer(i.r, tp, to)

for some non-negative to. One might even want to add the
condition to ≤ tp, but it must be emphasized that all these ini-
tialization options are speculative — the AUTOSAR Software
Component Template must be clarified before a sufficiently
abstract model of timed behavior can be obtained.

D. Interpretation of data reception events

Activation of runnables due to DataReceivedEvents is faith-
fully captured in the formal semantics for unqueued as well
as queued data elements (c.f. axioms (17) and (29) with [2,
ch. 7.5.1.6]). But for unqueued elements AUTOSAR also
provides an invalidation operation, whose net effect is very
similar to that of a data write (see axiom (21)). Whether data
invalidation should count as a reception event is not clear
from the specification; we have chosen not to include it as
a conservative conjecture. Revising this choice would not be
hard, though: all that is necessary is to add an axiom that
mimics (17) but matches on INV rather than WR labels.

A similar specification ambiguity concerns DataReceived-
Events in the presence of a full receiver buffer. We have chosen

to block these events from activating connected runnables
(axiom (30)), although the opposite choice could also be
justified on grounds that activation of a receiver might be even
more pressing when its buffer is overflowing. Expressing this
formally would amount to simply deleting axiom (30) together
with the last precondition of axiom (29).

E. Exclusive area nesting

The AUTOSAR specification is apparently ambiguous when
it comes to exclusive areas, stating that ”The RTE is not
required to support nested invocations of [enter/exit] for the
same exclusive area” [3, ch. 5.6.28-29]. Whether entering a
previously acquired area should succeed or not is thus left
entirely open, something we have taken as a justification
not to support it formally (axioms (9) to (12)). Still, it is
interesting to ponder what would be required to actually
allow this optional behavior. One aspect is that the referenced
exclusive areas themselves need not really be involved in the
resulting transitions; they must already be in the occupied
state they should retain. Another detail is that if a runnable
is already holding its referenced exclusive area, both the enter
and exit commands essentially turn into no-operations. Thus,
the necessary additions to the axiom set would look something
like this:

rinst(i.r, c, xs, enter(x, k)) i.r!NOP−−−−→
rinst(i.r, c, x:xs, k(void)) if x ∈ xs

rinst(i.r, c, x:xs, exit(x, k)) i.r!NOP−−−−→
rinst(i.r, c, xs, k(void)) if x ∈ xs

Another concern regarding exclusive areas is that although the
specification clearly demands that exiting is done in the reverse
order of entering, it does not provide any means for the exit
command to report detected violations of that condition [3,
ch. 5.6.29]. This means that if a runnable instance tries to
exit exclusive area x, and x is not the latest exclusive area
acquired by that instance, the operation is neither allowed to
succeed, nor able to flag an error (due to a void return type).
This leaves our transition semantics with no other option than
to indefinitely block progress for such a runnable, which is
the consequence of providing no transition alternative besides
axiom (11) to runnable instances about to execute the exit
command. Had the specification allowed for an error result,
however, the following axioms could have been added to
resolve the order violation cases:

rinst(i.r, c, y:xs, exit(x, k)) i.r!NOP−−−−→
rinst(i.r, c, y:xs, k(orderErr)) if x 6= y

rinst(i.r, c, ε, exit(x, k)) i.r!NOP−−−−→
rinst(i.r, c, ε, k(orderErr))

F. Failing runnables

A transition semantics like the one defined in this report
provides rules for deriving the correct behaviors, while leaving
the incorrect behaviors without derivation alternatives. This has
the effect that a process term which attempts to do something
illegal is assigned no meaningful remaining trace; it appears
indefinitely stuck in its current state as if it were deadlocked,
and can participate in subsequent transitions only by ignoring
what is being said.

An alternative way of handling program failures in general
is of course to throw exceptions or trigger some other non-
local error-handling mechanism. AUTOSAR actually specifies
a set of such generic error-handling approaches, but it does
so in terms of implementation artifacts like tasks and memory
partitions only, rather than the software component concepts
under study in this report [5]. Still, the presence of exceptional
errors raises a string of questions when combined with the con-
currency and communication features of software components,
and a clarification of this aspect could go a long way towards
making AUTOSAR a self-contained programming model in
its own right. We outline one possible way of formalizing the
semantics of failing runnables below.

First the code syntax needs to be extended so that failing
computations can be represented:

code ::= . . .
| return(v)
| throw

A ”throw” command has no continuation and is thus similar
to the exception generating commands of many modern pro-
gramming languages. It could be given an informative value
parameter as well, but this will not be needed in our simplistic
proposal. Throw commands can appear explicitly in the code
to indicate software-detected errors, or they can be the result
of special failure transitions, like the following alternative
resolution of an exit order violation:

rinst(i.r, c, y:xs, exit(x, k)) i.r!FAIL−−−−→
rinst(i.r, c, y:xs, throw) if x 6= y

rinst(i.r, c, ε, exit(x, k)) i.r!FAIL−−−−→
rinst(i.r, c, ε, throw)

Because a failed runnable instance now has an explicit repre-
sentation, we can specify details of how such a process should
interact with its environment. We may for example wish to
define that a special error code is returned if our runnable is a
server running on behalf of a client, and that any held exclusive
areas are automatically exited in the right order (c.f. axioms
(42) and (11)):

rinst(a, (b,m,), xs, throw)
b!RET(m,serverErr)−−−−−−−−−−−→

rinst(a, void, xs, throw)

rinst(i.r, void, x:xs, throw)
i.x!EX−−−−→

rinst(i.r, void, xs, throw)

Finally, we can ensure that the instance counter of a runnable
is properly decremented even if an instance terminates due to
a failure (in interaction with axiom (52)):

rinst(a, void, ε, throw)
a!TERM−−−−→ 0

Other design choices are of course perfectly possible, and more
elaborate rules, for example involving an explicit exception-
catching mechanism, could be considered as well. We must
emphasize, though, that the rules in this section are just
hypothetical examples; they are not based on the current
AUTOSAR specification and are only presented to illustrate
the succinctness and level of detail that can be obtained by a
formal semantics approach.

VII. LIMITATIONS

We claim that the formalized AUTOSAR semantics of this
report covers a substantial core of the Software Component
Template and Specification of RTE [2], [3]. But these two
documents alone add up to almost 2000 pages of specification
text in total, covering a wide range of features on many levels
of abstraction. We have therefore found it necessary to further
limit our scope; both by leaving out parts that have very little
to do with the concurrency and communication aspects that
are our primary interest, and by ignoring parts that to some
extent duplicate the features that we are already covering. We
discuss the chosen omissions in more detail below.

A. Out of scope

All aspects of the AUTOSAR specification that concern rep-
resentation and selection of data values are beyond the scope
of the present study. This includes

• Data types on any level of abstraction, and their associated
mappings [2, ch. 5].

• Port interface mapping and data scaling [2, ch. 4.3].
• Measurements and calibration parameters [2, ch. 2.2].
• Variant handling [2, ch. 2.4].

These modeling elements only impose restrictions and de-
mands on the values v and continuations k we reference in
our semantics, and which we, in our turn, do not constrain or
interpret in any way.

B. Minor variants

The only atomic software component type we include in our
formalization is the Application software component type.
Other atomic component types describe dynamic behaviors
that are either just minor variants of the formalized component
type (SensorActuator, ComplexDeviceDriver, Service, Servi-
ceProxy), or trivial in comparison (NvBlock, EcuAbstraction,
Parameter) [2, ch. 3.2.3].

A similar argument justifies our decision to omit port types
beyond the sender-receiver and client-server kinds [2, ch. 4.2],
as well as per instance memories [2, ch. 7.7]. A port typed by
a TriggerInterface [2, ch. 4.4.7] is essentially a sender-receiver
port with no data contents. Mode management is arguably a
much more complex concept in principle, but since the related
AUTOSAR mechanism is limited to communication of integer-
valued mode requests and acknowledgements, it can be seen
as an instance of sender-receiver communication as well [2,
ch. 4.4.6]. Per instance memories essentially duplicate the
behavior of inter-runnable variables.

Basic Software modules implement behaviors that cannot be
captured as ordinary software components due to their depen-
dency on hardware and other platform artifacts [4] [3, ch. 4.2].
However, our abstract treatment of computation dependencies
in general confines such differences to one’s choice of k
continuations, which eliminates the need to formalize Basic
Software components through any special means.

C. Left out for brevity

A few areas of the AUTOSAR SWC and RTE specifications
have been omitted for the purpose of keeping the size of
the resulting formalism at a reasonable level. These are areas
where a worked out formalization could prove interesting,
and possibly even discover new design ambiguities. However,

we also believe that the techniques required for undertaking
such an effort are already demonstrated by our current work,
and that making the resulting semantics accessible is an even
more important goal than striving for completeness. The major
omissions of this kind are:

• Implicit communication, where designated port elements
are automatically read/written at the start/end the of
runnables that access them [3, ch. 4.3.1.5].

• Category 2 runnables, which declare certain read or
receive operations as WaitPoints that block progress until
the associated events occur [2, ch. 7.2.4.4]. While this
form of event handling is fundamentally different from
the standard mechanism of activating runnables, it may
be noted that the result command that follows from calling
a synchronousServerCallPoint already defines the essence
of such a blocking WaitPoint.

• The AUTOSAR COM layer [6] and related events and
commands (DataWriteCompleted, DataSendCompleted,
DataReceiveError, the Feedback command [3, ch. 5.7.5,
5.6.8]). COM is the communication substrate between
nodes in a distributed AUTOSAR system and its limited
storage capacity introduces an element of resource com-
petition among communicating components. It also leads
to the separation of sending and reception into distinct
events, as well as additional communication errors.

• Most details found in the ComSpec annotations that
can be attached to ports (currently only initValues are
acknowledged) [2, ch. 4.5].

• The meta-programming oriented RTE Lifecycle and Call-
back APIs [3, ch. 5.8-9].

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have provided a formal specification of a
substantial core of the AUTOSAR specification. Transition
rules and axioms have been defined and linked to the AU-
TOSAR specification documents, and issues related to choices
or ambiguities in the specification have been discussed.

The next step forward for this work is to seek involvement
of the AUTOSAR community, in order to gain feedback on
our formal interpretation, stimulate clarifying discussions on
open design choices, and conceivably also arrive at a consensus
regarding the semantics of AUTOSAR as a programming
model of its own.

Another line of work is to lift more of the scope limitations
listed in Section VII. A formalization of omitted component,
port and event types is likely to present very few problems
besides an inevitable size increase, which could be mitigated
by a compartmentalization of the semantics into independent
fragments. More serious work may be required to incorporate
the COM layer and the added set of behaviors that follow
from component distribution, but the effort would also lead
to a significantly better formal coverage of the AUTOSAR
specification.

The formal semantics may furthermore provide a foundation
for tools that analyze or transform AUTOSAR models. One
such example is our AUTOSAR simulator [12], which inter-
prets AUTOSAR models entirely on basis of the transition
system, utilizing truly random scheduling and a maximum
progress assumption to select among available transitions at
each step. The benefit of this simulator is its ability to
dynamically execute AUTOSAR Software Component models
as they are, without prior commitment to a particular platform

or translation into a low level representation. A further avenue
of exploration concerns the potential of proving properties of
AUTOSAR systems on the basis of their semantics. To prepare
for this opportunity, we have defined the transition system used
in this paper as a Horn clause file readable by common theorem
provers, and, in fact, Appendix A is automatically produced
through a simple formatting translation of this file [8].

IX. ACKNOWLEDGEMENTS

This work was mainly carried out in the project “Resource
Aware Functional Programming (RAWFP)” funded by the
Swedish Foundation for Strategic Research.

REFERENCES

[1] AUTOSAR homepage (2016), www.autosar.org
[2] AUTOSAR: AUTOSAR Release 4.2.2 Software Component Template.

AUTOSAR consortium (2016)
[3] AUTOSAR: AUTOSAR Release 4.2.2 Specification of RTE. AUTOSAR

consortium (2016)
[4] AUTOSAR: Basic Software Module Description Template. AUTOSAR

consortium (2016)
[5] AUTOSAR: Explanation of Error Handling on Application Level. AU-

TOSAR consortium (2016)
[6] AUTOSAR: Specification of AUTOSAR COM. AUTOSAR consortium

(2016)
[7] Baeten, J., Middelburg, C.A., Netherlands, E.T.: Process algebra with

timing: Real time and discrete time. In: Handbook of Process Algebra.
pp. 627–684. Elsevier (2000)

[8] Chalmers AUTOSAR semantics, https://github.com/patrikja/autosar/
blob/master/sem/semantics.eprover (2016)

[9] Milner, R.: Communicating and Mobile Systems: the Pi Calculus.
Cambridge University Press, New York, NY, USA (1999)

[10] Prasad, K.: A calculus of broadcasting systems. Science of Computer
Programming 25(2), 285 – 327 (1995)

[11] Reynolds, J.C.: The discoveries of continuations. Lisp and Symbolic
Computation 6(3-4), 233–248 (1993)

[12] The Chalmers AUTOSAR simulator, https://github.com/patrikja/autosar/
tree/master/ARSim/ (2016)

www.autosar.org
https://github.com/patrikja/autosar/blob/master/sem/semantics.eprover
https://github.com/patrikja/autosar/blob/master/sem/semantics.eprover
https://github.com/patrikja/autosar/tree/master/ARSim/
https://github.com/patrikja/autosar/tree/master/ARSim/

APPENDIX

A. Parallel composition

p1 q1
a !d−−→ p2 q2 if p1

a !d−−→ p2 and q1
a?d−−→ q2 (1)

p1 q1
a !d−−→ p2 q2 if p1

a?d−−→ p2 and q1
a !d−−→ q2 (2)

p1 q1
a?d−−→ p2 q2 if p1

a?d−−→ p2 and q1
a?d−−→ q2 (3)

p1 q1
δ(t)−−→ p2 q2 if p1

δ(t)−−→ p2 and q1
δ(t)−−→ q2 (4)

B. Inter-runnable variables

rinst(i .r , c, xs, irvRead(s, k))
i .s ! IRVR(v)−−−−−−−→ rinst(i .r , c, xs, k(v)) (5)

irv(a, v)
a? IRVR(v)−−−−−−→ irv(a, v) (6)

rinst(i .r , c, xs, irvWrite(s, v , k))
i .s ! IRVW(v)−−−−−−−→ rinst(i .r , c, xs, k(void)) (7)

irv(a,)
a? IRVW(v)−−−−−−→ irv(a, v) (8)

C. Exclusive areas

rinst(i .r , c, xs, enter(x , k)) i .x !ENT−−−−→ rinst(i .r , c, x :xs, k(void)) (9)

excl(a, false) a?ENT−−−−→ excl(a, true) (10)

rinst(i .r , c, x :xs, exit(x , k)) i .x !EX−−−−→ rinst(i .r , c, xs, k(void)) (11)

excl(a, true) a?EX−−−→ excl(a, false) (12)

D. Unbuffered sending/receiving

rinst(i .r , c, xs, read(e, k))
i .e !RD(v)−−−−−−→ rinst(i .r , c, xs, k(v)) (13)

delem(a, , v)
a?RD(v)−−−−−→ delem(a, false, v) (14)

rinst(i .r , c, xs,write(e, v , k))
i .e !WR(v)−−−−−−→ rinst(i .r , c, xs, k(void)) (15)

delem(b, ,)
a?WR(v)−−−−−→ delem(b, true, v) (16)

if a ⇒ b

runnable(i .r , t , ,n)
a?WR()−−−−−→ runnable(i .r , t ,pending,n) (17)

if a ⇒ b and DataReceivedEvent(i .r , b)

rinst(i .r , c, xs, isUpdated(e, k))
i .e !UP(u)−−−−−−→ rinst(i .r , c, xs, k(u)) (18)

delem(a, u, v)
a?UP(u)−−−−−→ delem(a, u, v) (19)

rinst(i .r , c, xs, invalidate(e, k)) i .e ! INV−−−−→ rinst(i .r , c, xs, k(void)) (20)

delem(b, ,)
a? INV−−−−→ delem(b, true, invalid) (21)

if a ⇒ b

E. Buffered sending/receiving

rinst(i .r , c, xs, receive(e, k))
i .e !RCV(v)−−−−−−→ rinst(i .r , c, xs, k(v)) (22)

qelem(a,n, v :vs)
a?RCV(v)−−−−−−→ qelem(a,n, vs) (23)

qelem(a,n, ε)
a?RCV(nodata)−−−−−−−−−→ qelem(a,n, ε) (24)

rinst(i .r , c, xs, send(e, v , k))
i .e !SND(v ,ε)−−−−−−−→ rinst(i .r , c, xs, k(ok)) (25)

rinst(i .r , c, xs, send(e, v , k))
i .e !SND(v ,as)−−−−−−−−→ rinst(i .r , c, xs, k(limit)) (26)

if as 6= ε and i .e ⇒ a for all a ∈ as

qelem(b,n, vs)
a?SND(v ,as)−−−−−−−−→ qelem(b,n, vs:v) (27)

if a ⇒ b and |vs| < n and b /∈ as

qelem(b,n, vs)
a?SND(,as)−−−−−−−→ qelem(b,n, vs) (28)

if a ⇒ b and |vs| = n and b ∈ as

runnable(i .r , t , ,n)
a?SND(,as)−−−−−−−→ runnable(i .r , t ,pending,n) (29)

if a ⇒ b and DataReceivedEvent(i .r , b) and b /∈ as

runnable(i .r , t , act ,n)
a?SND(,as)−−−−−−−→ runnable(i .r , t , act ,n) (30)

if a ⇒ b and DataReceivedEvent(i .r , b) and b ∈ as

F. Calling a server

rinst(i .r , c, xs, call(o, v , k))
i .o !CALL(,v)−−−−−−−−→ rinst(i .r , c, xs, result(o, k)) (31)

if synchronousServerCallPoint(i .r , i .o)

rinst(i .r , c, xs, call(o, v , k))
i .o !CALL(,v)−−−−−−−−→ rinst(i .r , c, xs, k(ok)) (32)

if asynchronousServerCallPoint(i .r , i .o)

oper(a,m,done())
a?CALL(m,v)−−−−−−−−→ oper(a,m, calling(t)) (33)

if serverCallPointTimeout(a, t)

runnable(i .r , t , cs,n)
a?CALL(m,v)−−−−−−−−→ runnable(i .r , t , cs:(a,m, v),n) (34)

if OperationInvokedEvent(i .r , b) and b ⇒ a

rinst(i .r , c, xs, call(o, v , k)) i .o !BUSY−−−−−→ rinst(i .r , c, xs, k(limit)) (35)

oper(a,m, calling(t)) a?BUSY−−−−→ oper(a,m, calling(t)) (36)

runnable(i .r , t , cs,n) a?BUSY−−−−→ runnable(i .r , t , cs,n) (37)
if OperationInvokedEvent(i .r , b) and b ⇒ a

G. Passing back a server result

rinst(i .r , c, xs, result(o, k))
i .o !RES(v)−−−−−−→ rinst(i .r , c, xs, k(v)) (38)

if synchronousServerCallPoint(i .r , i .o)

and v 6= nodata

rinst(i .r , c, xs, result(o, k))
i .o !RES(v)−−−−−−→ rinst(i .r , c, xs, k(v)) (39)

if asynchronousServerCallPoint(i .r , i .o)

oper(a,m, calling(t))
a?RES(nodata)−−−−−−−−→ oper(a,m, calling(t)) (40)

oper(a,m,done(v))
a?RES(v)−−−−−−→ oper(a,m,done(v)) (41)

rinst(a, (b,m,), xs, return(v))
b !RET(m,v)−−−−−−−→ rinst(a, void, xs, return(void)) (42)

oper(a,m, calling())
a?RET(m,v)−−−−−−−→ oper(a,m + 1,done(v)) (43)

oper(a,m, calling(0))
a !RET(m,timeout)−−−−−−−−−−→ oper(a,m + 1,done(timeout)) (44)

runnable(i .r , t , ,n)
a?RET(,)−−−−−−→ runnable(i .r , t ,pending,n) (45)

if asynchronousServerCallReturnsEvent(i .r , a)

rinst(a, (b,m,), xs, return(v))
b !SKIP(m)−−−−−−→ rinst(a, void, xs, return(v)) (46)

oper(a,m, srv)
a?SKIP(n)−−−−−−→ oper(a,m, srv) (47)

if m 6= n

runnable(i .r , t , act ,n)
a?SKIP()−−−−−−→ runnable(i .r , t , act ,n) (48)

if asynchronousServerCallReturnsEvent(i .r , a)

H. Spawning and terminating

runnable(a, 0,pending,n) a !NEW−−−−→ runnable(a, t , idle,n + 1) rinst(a, void, ε, k(void)) (49)
if (n = 0 ∨ canBeInvokedConcurrently(a))

and minimumStartInterval(a, t)

and implementation(a, k)

runnable(a, 0, (b,m, v):cs,n) a !NEW−−−−→ runnable(a, t , cs,n + 1) rinst(a, (b,m, v), ε, k(v)) (50)
if (n = 0 ∨ canBeInvokedConcurrently(a))

and minimumStartInterval(a, t)

and implementation(a, k)

rinst(a, void, ε, return())
a !TERM−−−−→ 0 (51)

runnable(a, t , act ,n) a?TERM−−−−−→ runnable(a, t , act ,n − 1) (52)

I. Passing time

rinst(a, c, xs, code)
δ()−−→ rinst(a, c, xs, code) (53)

excl(a, v)
δ()−−→ excl(a, v) (54)

irv(a, v)
δ()−−→ irv(a, v) (55)

qelem(a,n, vs)
δ()−−→ qelem(a,n, vs) (56)

delem(a, u, v)
δ()−−→ delem(a, u, v) (57)

oper(a,m,done(v))
δ()−−→ oper(a,m,done(v)) (58)

oper(a,m, calling(v))
δ(t)−−→ oper(a,m, calling(v − t)) (59)

if t ≤ v

runnable(a, v , act ,n)
δ(t)−−→ runnable(a, v − t , act ,n) (60)

if t ≤ v

runnable(a, 0, act ,n)
δ()−−→ runnable(a, 0, act ,n) (61)

timer(a, tp , v)
δ(t)−−→ timer(a, tp , v − t) (62)

if t ≤ v

timer(a, tp , 0)
a !TICK−−−−→ timer(a, tp , tp) (63)

runnable(a, t , ,n) a?TICK−−−−→ runnable(a, t ,pending,n) (64)

J. Ignoring broadcasts

rinst(a, c, xs, k) ?−−→ rinst(a, c, xs, k) (65)

timer(a, tp , t)
?−−→ timer(a, tp , t) (66)

excl(b, v) a?−−→ excl(b, v) (67)
if a 6= b

irv(b, v) a?−−→ irv(b, v) (68)
if a 6= b

oper(b,m, srv) a?−−→ oper(b,m, srv) (69)
if a 6= b

qelem(b,n, vs)
a?−−→ qelem(b,n, vs) (70)

if a 6= b

and a ; b

delem(b, u, v)
a?−−→ delem(b, u, v) (71)

if a 6= b

and a ; b

runnable(i .r , t , act ,n) a?−−→ runnable(i .r , t , act ,n) (72)
if a 6= i .r

and ¬(a ⇒ b ∧ DataReceivedEvent(i .r , b))

and ¬(OperationInvokedEvent(i .r , b) ∧ b ⇒ a)

and ¬(asynchronousServerCallReturnsEvent(i .r , a))

	Introduction
	AUTOSAR
	Syntax and preliminaries
	Semantics
	Inter-runnable variables
	Exclusive areas
	Unbuffered sending/receiving
	Buffered sending/receiving
	Calling a server
	Passing back a server result
	Spawning and terminating
	Passing time
	Ignoring broadcasts

	Non-determinism
	Ambiguities and clarification proposals
	Data initialization
	Activation of server runnables
	Interleaving of timing events
	Interpretation of data reception events
	Exclusive area nesting
	Failing runnables

	Limitations
	Out of scope
	Minor variants
	Left out for brevity

	Conclusions and Future Work
	Acknowledgements
	References
	Appendix
	Parallel composition
	Inter-runnable variables
	Exclusive areas
	Unbuffered sending/receiving
	Buffered sending/receiving
	Calling a server
	Passing back a server result
	Spawning and terminating
	Passing time
	Ignoring broadcasts

