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Abstract

We present the starting elements of a mathematical theory of policy advice and avoidability. More
specifically, we formalise a cluster of notions related to policy advice, such as policy, viability,
reachability, and propose a novel approach for assisting decision making, based on the concept of
avoidability. We formalise avoidability as a relation between current and future states, investigate
under which conditions this relation is decidable and propose a generic procedure for assessing avoid-
ability. The formalisation is constructive and makes extensive use of the correspondence between
dependent types and logical propositions, decidable judgements are obtained through computations.
Thus, we aim for a computational theory, and emphasise the role that computer science can play in
global system science.

1 Introduction

This paper is a result of inter-disciplinary activities carried out in the framework of several
EU-financed projects1 in the context of Global Systems Science (GSS). It shows that
dependently-typed programming languages can be a useful vehicle for communication be-
tween computer scientists and scientists from other disciplines, for formalising computable
theories, and, of course, for writing provably correct software. It hopefully also points to the
fact that the main role of computer science is not confined to the execution of arithmetical
operations or sending data over networks, but is rather to be found in the formulation of
concepts, identification and resolution of ambiguities, and, above all, in making our ideas
clear.

1.1 The need for a theory of policy advice

Scientists involved in fields related to GSS, such as the study of climate change impacts,
global finance, epidemics, or international policy, are often faced with the requirement

1 Global Systems Dynamics and Policy GSDP (2010), Global Systems Rapid Assessment Tools
through Constraint Functional Languages GRACeFUL (2015), Centre of Excellence for Global
Systems Science CoeGSS (2015)
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of acting as advisors to policy makers. For example, they are asked to contribute to the
design of international emission reduction agreements (Holtsmark and Sommervoll, 2012;
Carbone et al., 2009; Holtsmark and Midttømme, 2013; Heitzig, 2012), to the introduction
of a financial transaction tax at EU level (EU-FTT), to programs for the eradication of con-
tagious diseases, (Sandler and G. Arce M., 2002), or to efforts in combating international
terrorism (Sandler and Enders, 2004).

In all these application domains, policy making is in need of rigorous scientific advice.
At the moment, however, we are lacking an established theory of policy advice. More
specifically, we identify three major gaps:

1) The terms used to phrase specific, concrete decision problems – for example sustain-
ability, avoidability, policy – are devoid of precise, well established technical meanings.
They are used in an informal, vague manner or in a normative sense. The decision problems
themselves are often affected by different kinds of uncertainties and tackled with different
approaches.

2) There are no accountable contracts between advisors and decision makers. The lat-
ter do not precisely know what kind of outcomes and guarantees they can expect from
implementing the advice received.

3) The proper content of policy advice is unclear. When can decision makers expect
to receive advice in the form of simple sequences of actions (“do this, then that, then
the other”)? When do they have to expect full fledged “action rules” (“if the situation
at time t satisfies conditions C1 and C2, then do action A1, otherwise do action A2”)?
These questions are essential, especially for problems in which the temporal scales of
the underlying decision process are not well separated from the typical times required
for implementing decisions (as in the case, for example, of designing policies for emission
reduction).

Our main contributions are towards filling the first gap. But the theory presented in
section 3 also provides some understanding of the theoretical and practical limitations of
policy advice and of the kind of guarantees that decision makers can expect from advisors.
And we do provide a tentative answer to the question of what the proper content of policy
advice can be.

1.2 Sequential decision problems and policy advice

The main contribution of this paper is the formalisation of a cluster of concepts required for
a theory of policy advice. The formalisation is rooted in optimal control theory, specifically
in the study of sequential decision problems and their solutions by dynamic programming.

Sequential decision problems and methods for computing optimal policy sequences are
at the core of many applications in economics, logistics and computing science and are,
in principle, well understood (Bellman, 1957; De Moor, 1995, 1999; Gnesi et al., 1981;
Botta et al., 2013a, 2017). For example, sequential decision problems appear in integrated
assessment models (Research Domain III, PIK, 2013; Bauer et al., 2011) in models of
international environmental agreements (Finus et al., 2003; Helm, 2003; Bauer et al., 2011;
Heitzig, 2012) and in agent-based models of economic systems (Gintis, 2006, 2007; Botta
et al., 2013b; Mandel et al., 2009).
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The problems addressed by optimal control theory involve the control of a system evolv-
ing in time, in order to optimise a reward function over time. In sequential decision prob-
lems, time is discrete, and the controls are represented by decisions taken at each time step
(hence “sequential”).

In the case in which the system to be controlled is deterministic and the intial state of
the system can be measured exactly, the solution of a sequential decision problem can be
represented in a particularly simple form as a list of successive controls.

Most cases relevant for decision making, however, are fraught with uncertainties, both
regarding the transitions of the system and the initial state. In such cases, the solution
consists not of a sequence of controls, but of policies.

Informally, a policy is a function from states to controls: it tells which control to select
when in a given state. Thus, for selecting controls over n steps, a decision maker needs
a sequence of n policies, one for each step. We will give a precise definition of policy
sequences and of optimal policy sequences in section 3 but, conceptually, optimal policy
sequences are sequences of policies which cannot be improved by associating different
controls to current and future states.

Optimal policy sequences (or, perhaps almost optimal policy sequences) are, for a spe-
cific decision problem, the most tangible content that policy advice can deliver for decision
making. Thus, it is important that advisors make sure that stakeholders fully understand
the difference between controls and policies and, therefore, between control sequences
and policy sequences2. To illustrate this difference, advisors can turn to stylized SDPs
(knapsack, production lines, traffic, etc.). Traffic problems are particularly useful in this
respect (the sequence of controls, “first turn left, then right, stop ten seconds at traffic light,
then turn right” is liable to lead to accidents) and to exemplify the notions of state and
control space. Further, it is important that both advisors and decision makers understand
that, in general, policy advice cannot (and should not try to) provide, optimal sequences
of controls (“optimal action plans”, “optimal courses of action”, etc.), because no such
optimal control sequence can be computed at the time decisions have to be taken and
implemented.

What can be computed at the time decisions have to be taken and implemented, however,
are optimal policy sequences. A provably optimal policy sequence for a specific problem
provides the decision maker with a (usually time-dependent) rule for decision making
and with a guarantee that, for that particular problem and at any given time, there is
no better way of making decisions given what is known (at that time) about the current
state and the future. Again, advisors can take advantage of variations of elementary SDPs
(with randomly moving obstacles, random production line failures, etc.) to illustrate the
differences between deterministic and non-deterministic sequential decision problems.

1.3 The notion of “avoidability”

For many of the SDP problems we cited above, the state and the control spaces can
be defined fairly rigorously. Minimal models of international agreements on greenhouse

2 One of the most important papers in economics, arguing for “rules versus discretionary measures”
(Kydland and Prescott, 1977), can be interpreted in terms of this distinction.
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gas emissions, for instance, can be described in terms of a few state variables – such as
greenhouse gas concentrations and certain gross domestic product measures – and of a few
controls – e.g., greenhouse gas abatements and investments.

The transition function – the “dynamics” of the system underlying the decision process
– can be affected by different kinds of uncertainty (e.g., about model parameters, empirical
closures, etc.) and is often non-deterministic, stochastic or fuzzy. The framework presented
in Botta et al. (2017) for monadic sequential decision problems allows one to treat all these
(and other) cases seamlessly. Thus, at least conceptually, uncertainties are not a serious
obstacle towards a rigorous control theoretical approach for decision making in climate
impact research.

But reward functions (the functions that are to be optimised) are: in most practical cases,
it is not obvious how they should be defined. This is a limitation to the applicability of both
control and game-theoretical approaches to climate impact research3.

A common way (Finus et al., 2003; Helm, 2003) of defining reward functions is that
of deriving some estimate of the costs and of the benefits associated with the particular
decision process under consideration and define rewards on the basis of a cost-benefits
analysis. But there are both pragmatical and ethical concerns towards this approach, see
for instance Aldred (2009). These difficulties have led a number of authors to argue that,
instead of basing decision making on cost-benefits analyses, it would be more sensible to
focus on policies that try to avoid future possible states which are known to be potentially
harmful. This is the approach exemplified in (Raven et al., 2007) but also in (Schellnhuber,
1998) where the notion of avoidability is implicit in the idea of “tolerable windows”.

Some idea of avoidability is also subsumed in the notions of mitigation (“A human
intervention to reduce the sources or enhance the sinks of greenhouse gases”, (Allwood
et al., 2014)) and adaptation (“The process of adjustment to actual or expected climate
and its effects . . . to moderate harm or exploit beneficial opportunities”, (Allwood et al.,
2014)) which are at the core of IPCC’s Working Group III research: avoidability of levels
of greenhouse gases reckoned to be potentially harmful for a specific human system in
the case of mitigation and avoidability (realizability) of the potential harm (opportunities)
from climate in the case of adaptation.
But what does it precisely mean for possible future states to be avoidable? And under
which conditions is it possible to decide whether a state is avoidable or not?

If we had well understood and widely accepted notions of avoidability and a decision
procedure to discriminate between avoidable and non avoidable states, policies that avoid
certain future states could be computed as optimal sequences of sequential decision prob-
lems with ad-hoc reward functions. For example, one could define rewards to be zero for
states which should be avoided and one elsewhere and take advantage of the framework

3 Traditionally, control-theoretical approaches focus on the temporal dimension of decision
processes from the perspective of an individual decision maker. They do not explicitly account for
decision problems faced by multiple players, in particular in a competitive setup. These problems
are in the focus of game-theoretical approaches. The border between game-theory, control-theory
and evolutionary decision making is a subject of academic research (Ellison, 1993; Peyton Young,
1993; Ellison, 1995; Peyton Young, 2001).
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presented in (Botta et al., 2017) to compute policies that provably keep the system in a
tolerable subset of the state space.

Moreover, unambiguous notions of avoidability could help clarifying the notions of
mitigation and adaptation. And a computational theory of avoidability could be a first step
towards a computational theory of mitigation and adaptation.

Further, a theory of avoidability and, in particular, a generic decision procedure for
assessing avoidability, could be useful in many GSS-related fields. In financial markets,
even after two decades of Financial Stability Reviews, for instance, unambiguous notions
(let apart operational tests) of stability are still elusive (Goodhart, 2004). Here it seems
sensible to take a complementary approach and start asking in which sense and whether
certain future conditions which are considered or perceived to be potentially dangerous
– for instance, where significant amounts of risk are pooled and transferred through long
chains of contracts – are avoidable.

1.4 Outline

The paper is organized as follows: in section 2 we motivate and explain the basic notation
adopted throughout this paper.

In section 3 we present our theory of SDPs and policy advice. We introduce decision pro-
cesses and give examples of different kinds of uncertainty affecting decision processes and
decision making. We derive the core theory and discuss the main results presented in (Botta
et al., 2013a, 2017) from the perspective of policy advice. In particular, we introduce the
notions of policy and policy sequence, we discuss which aspects of decision making under
uncertainty need to be accounted for and how different principles of decision making – e.g.,
precautionary principles and expectation-based principles – can lead to different measures.
In this section we also derive a generic procedure for computing provably optimal policy
sequences under different kinds of uncertainty.

In section 4 we extend the theory of SDPs and policy advice to decision problems for
which a reward function is not obviously available. Further, we explain how avoidability
measures could be applied in climate impact research, e.g., to operationalize notions of
levity (Otto and Levermann, 2011), mitigation and adaptation. In section 5 we draw some
preliminary conclusions and in section 6 we outline future work.

2 Preliminaries

In this paper we assume the reader knows functional programming and has some familiarity
with dependent types. We use Idris (Brady, 2013) as the implementation language and in
this section (starting with Fig. 1) we provide a few examples of the syntax to get readers
used to Agda or Coq up to speed. Idris provides a built in infix operator (∗∗) for dependent
pairs: (a ∗∗ b) : Sigma A B if a : A and b : B a. The same operator is also overloaded so
that (a : A∗∗B a) can be used instead of Sigma A B for the pair type.

In our development later, most functions will be polymorphic, using a combination of
explicit and implicit type arguments. In addition to type parameters, we will also make our
development generic in a number of function parameters (like step, reward, etc.). To avoid
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data N : Type where
Z : N
S : N → N

data Vect : N → Type → Type where
Nil : Vect Z a
Cons : (x : a) → (xs : Vect n a) → Vect (S n) a

head : {n : N} → {A : Type} → Vect (S n) A → A
head (Cons x xs) = x

postulate A : Type
postulate Sorted : Vect n A → Type
postulate sort : Vect n A → Vect n A

SortSpec : Type -- a specificatation of sort
SortSpec = (n : N) → (xs : Vect n A) → Sorted (sort xs)

sortLemma : SortSpec
sortLemma = { a proof that sort satisfies the specification }
data Exists : {A : Type} → (A → Type) → Type where

Evidence : (wit : A) → (pro : P wit) → Exists P

Fig. 1. Idris syntax examples.

passing around the full set of parameters to all functions we will introduce these parameters
as we go along and then collect them at the end.

2.1 Equality and equational reasoning

Idris has a built in heterogeneous equality type written (a = b) where a : A and b : B. The
only constructor is Refl : (a = a) and if we have in our hands a value r : (a = b) we know
that a and b are equal (and therefore also that A and B are equal). Here are two examples
of using the equality type to postulate some desired properties about multiplication:

postulate unitMult : (y : Double) → 1∗ y = y
postulate assocMult : (x,y,z : Double) → (x∗ y)∗ z = x∗ (y∗ z)

Idris has a special syntax for equational reasoning: you can string together a chain of
reasoning steps to a full proof. If p1 shows that a1 = a2 and p2 shows that a2 = a3 then
(a1 ={ p1 }= a2 ={ p2 }= a3 QED) is a proof of a1 = a3.

As an example we show a lemma about exponentiation: x ↑m ∗ x ↑ n = x ↑ (m + n).
We prove the lemma using induction over m which means we need to implement three
definitions of the following types:

expLemma : (x : Double) → (m : N) → (n : N) → ( x↑m ∗ x↑n = x↑ (m+n))
baseCase : (x : Double) → (n : N) → ( x↑Z ∗ x↑n = x↑ (Z +n))
stepCase : (x : Double) → (m : N) → (n : N) → (ih : x↑m ∗ x↑n = x↑ (m+n)) →

( x↑ (S m)∗ x↑n = x↑ ((S m)+n))
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Note that the last argument ih to the step case is the induction hypothesis. The main lemma
just uses the base case for zero and the step case for successor and passes a recursive call
to expLemma as the induction hypothesis.

expLemma x Z n = baseCase x n
expLemma x (S m) n = stepCase x m n (expLemma x m n)

With this skeleton in place the proof of the base case is easy:

baseCase x n =
(x↑Z ∗ x↑n)

={ Refl }= -- By definition of (↑)
(1∗ x↑n)

={ unitMult (x↑n) }= -- Use 1∗ y = y for y = x↑n
(x↑n)

={ Refl }= -- By definition of (+)
(x↑ (Z +n))

QED

and the step case is only slightly longer:

stepCase x m n ih =
(x↑ (S m)∗ x↑n )

={ Refl }= -- By definition of (↑)
((x∗ x↑m)∗ x↑n)

={ assocMult x (x↑m) (x↑n) }= -- Associativity of multiplication
(x∗ (x↑m∗ x↑n))

={ cong ih }= -- Use the ind. hyp.: ih = expLemma x m n
(x∗ x↑ (m+n) )

={ Refl }= -- By definition of (↑) (backwards)
(x↑ (S (m+n)) )

={ Refl }= -- By definition of (+)
(x↑ (S m+n) )

QED

Here we used cong to apply the induction hypothesis “inside” the context x∗ .
For early examples of using the equality proof notation (in Idris’ sister language Agda),

see (Mu et al., 2009).

2.2 Programs and proofs

We have seen that we can represent properties as types and in this view proofs are just
values of these types. We sum up the correspondence between Idris and logic in Table 1.
We use logic-inspired notation ∃ for the existential quantifier datatype.

The code from sections 3 and 4 is available on the source code-sharing site GitHub:
https://github.com/nicolabotta/SeqDecProbs/tree/master/manuscripts/2015.

JFP/code. It type checks with Idris version 0.9.20.1-git:fe3b1a3. The complete framework
for specifying and solving sequential decision problems is available at https://github.
com/nicolabotta/SeqDecProbs/tree/master/frameworks/14-.

https://github.com/nicolabotta/SeqDecProbs/tree/master/manuscripts/2015.JFP/code
https://github.com/nicolabotta/SeqDecProbs/tree/master/manuscripts/2015.JFP/code
https://github.com/nicolabotta/SeqDecProbs/tree/master/frameworks/14-
https://github.com/nicolabotta/SeqDecProbs/tree/master/frameworks/14-
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Idris Logic

p : P p is a proof of P
FALSE (empty type) False
non-empty type True
P → Q P implies Q
∃ {A} P there exists a wit such that P (wit) holds
(x : A) → P x forall x of type A, P x holds

Table 1. Curry-Howard correspondence relating Idris and logic.

3 Monadic sequential decision problems and policy advice

3.1 Deterministic decision processes

In the introduction we have argued that, if a decision process is deterministic and the intial
state can be measured exactly, solutions of the corresponding decision problem can be
represented in a particularly simple form as lists of successive controls. In this section, we
formalize the notion of deterministic decision processes.

States A deterministic decision process starts in an initial state x0 at an initial discrete
time t0. Without loss of generality, we can take t0 : N.

The type of x0 – the state space at t0 or, in other words, the set of possible initial values
– represents all information available to the decision maker at t0. In a decision process like
those underlying models of international environmental agreements, x0 could just be a tuple
of real numbers representing some estimate of the greenhouse gas (GHG) concentration in
the atmosphere (and, perhaps, in other earth system components), some measure of the
gross domestic product, and possibly other model variables.

In the example of figure 2, the state space at time t0 is simply the set X0 = {a,b,c,d,e}
and the starting state x0 = b. In most decision processes, the state space depends on time.
Again, in the example of figure 2, the state space at time t 6 2, t = 4, t = 5 and t > 7
consists of X0 – the five columns a to e. But at t = 3 the state space is just column e and at
t = 6 only columns a, b and c constitute the state space. In general, a decision process is
characterized by a function

X : (t : N) → Type

defining the (time dependent) state space and X t represents the state space at time t. In
the signature of X we see a first application of dependent types. In a language in which
types were not allowed to be predicated on values, it would not be possible to express the
obvious property that the state space – the type X t – depends on the value t!

The notion of a state space is elementary, but identifying a suitable space for a particular
application can require careful analysis and interactions between advisors and decision
makers. Sometimes it is necessary to extend an initial characterization of the state space to
encompass statistical data about the decision process itself. This allows decision makers to
update the data while decisions are taken and to exploit the knowledge accumulated during
previous decision steps.
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Fig. 2. Possible evolution starting from b (left), states with limited viability (middle) and
unreachable states (right).

Controls In a sequential decision process, the decision maker is required to select a control
(action, option, choice, etc.) at each decision step. In many applications, controls represent
some rate of consumption (of resources which might be limited), some production or
investment rate or perhaps just different energy options.

In models of international environmental agreements of the kind discussed in (Finus
et al., 2003), for instance, decision makers could select some rates of abatement of CO2

emissions or, perhaps, emission caps. In the model presented in (Heitzig, 2012), controls
could be requests for entering or exiting a coalition or a market.

In the example of figure 2, the controls are, for all but the first and the last column, L to
move to the left of the current column, A to stay at the current column and R to move to the
right of the current column. In the first column only A and R belong to the control space
and in the last column the control space only consists of A and L.

In defining the control space for a particular decision process, it is important to carefully
identify which options the decision makers have at their disposal.4 In general, the set of
controls available to the decision maker at a given time depends both on that time and on
the particular state of the process at that time. Thus, the control space can, in general, be
described by a function

Y : (t : N) → (x : X t) → Type

In the signature of Y we see another application of dependent types. The control space –
the type of controls available at time t in x, Y t x – depends on the values t and x.

4 And, we should add, “want” to dispose of. It is easy to imagine decision problems – typical
examples are steering problems or negotiations problems – in which decision makers consciously
decide to exclude certain control options, e.g. to avoid potentially unmanageable states.
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Transition functions In deterministic decision processes, the current state and the control
selected at the current state together determine the next state. Thus, a deterministic decision
process is characterized by a function

step : (t : N) → (x : X t) → (y : Y t x) → X (S t)

and step t x y is the state obtained by selecting control y in state x at time t. Notice, again
the type dependencies: the type of x depends on the value t; the type of y depends on t and
on x. Finally, step returns a value in X (S t) which is the state space at time S t = 1+ t.5

Rewards We have mentioned in the introduction that, in SDPs, the decision maker seeks
controls that maximize a reward function. This is expressed as a sum of rewards, one for
each decision step6. The reward obtained in a single decision step depends, in general, on
the current state, on the selected reward and on the next state. In models of international
environmental agreements, for instance, rewards are computed on the basis of abatement
costs and of avoided climate impact damages. Abatement costs certainly depend on the
abatement level and, e.g., when the state space also represents available technologies, on
the current state. Avoided damages might depend both on the current state and on the next
state. In general, a decision process is characterized by a function

reward : (t : N) → (x : X t) → (y : Y t x) → (x′ : X (S t)) → Double

The return type of reward does not actually need to be Double. As we will see later in
this section, for our theory it is enough for the return type of reward to be an ordered
monoid. On the other hand, the kind of generalization that can be achieved by a proper
specification of the return type of reward is not our focus in this paper. For the rest of this
article, we will trade generality for terseness of expressions and take the return type of
reward to be Double. But we keep in mind that, here, a generalization is possible and, in
fact, straightforward.

Before moving to the next section, let us summarize the results obtained so far for
deterministic decision processes. We have seen that specifying one such processes requires
defining four functions: X, Y , step and reward. The first two functions define the types of
the state and of the control spaces. The function step defines the “dynamics” of the process
and reward its valuation.

Depending on the specific decision process, defining X, Y , step and reward might be
trivial or challenging. We do not have enough experience in policy advice to discuss
general methods for the specification of decision processes. In climate impact research,
it is probably safe to assume that the specification of X and Y cannot be meaningfully
delegated to decision makers and requires a close collaboration between these, domain
experts and perhaps modelers.

5 More precisely, at step 1+ t. Throughout this paper, we use the term “time” to simply denote a
number of steps, not any “physical” (or maybe “social”?) time. Thus, t0, t1, t2, etc. are just the first,
the second, the third, etc. number of decision steps. The intuition that justifies calling the number
of steps “time” is that, as implicitly coded in the signature of step, transitions can only increase
this number.

6 The notion of “sum” should be understood in a broad sense: at it will turn out, every binary operator
that satisfies a simple monotonicity condition is suitable for definining a reward function.



ZU064-05-FPR main 26 September 2017 14:10

Contributions to a computational theory of policy advice and avoidability 11

3.2 Non-deterministic decision processes

The difference between deterministic and non-deterministic decision processes is that, in
the second case, selecting a control y : Y t x when in a state x : X t at time t : N does not
yield a unique next state x′ : X (S t) but a whole set of possible next states. For instance, a
non-deterministic process similar to the one sketched on the left of figure 2 could be one
that, when selecting a control RR (move somewhere to the right) in b at the initial time,
yields a move to c or to d or perhaps e.

Non-deterministic decision processes account for uncertainties in the decision process
(”fat-finger” errors in trading games, uncertainty about the effectiveness of controls, etc.),
in the transition function (uncertainties about modeling assumptions, empirical closures,
observations, etc.) or in the reward function.

There are many ways to account for these and other kinds of uncertainty in the formal-
ization of sequential decision processes but one that has turned out to be particularly simple
and effective (Ionescu, 2009) is to have step return a list of values instead of a single value:

step : (t : N) → (x : X t) → (y : Y t x) → List (X (S t))

Because List is a functor, we have a higher-order function fmap which propagates uncer-
tainty on the outcome of step to rewards:

rewards : (t : N) → (x : X t) → (y : Y t x) → List Double
rewards t x y = fmap (reward t x y) (step t x y)

In other words, for each possible next state we have, through reward t x y, a corresponding
possible reward. Therefore, for every t : N, x : X t and y : Y t x, we have a unique list of
possible rewards. Before further discussing the formalization of non-deterministic decision
processes, let’s move to the stochastic case.

3.3 Stochastic decision processes

The difference between non-deterministic and stochastic decision processes is that, in the
second case and for a given t : N, x : X t and y : Y t x we do not only know the possible
next states but also their probabilities. Building upon the non-deterministic case discussed
above, we can easily formalize the stochastic case by replacing

step : (t : N) → (x : X t) → (y : Y t x) → List (X (S t))

with

step : (t : N) → (x : X t) → (y : Y t x) → Prob (X (S t))

Here Prob A represents a probability distribution on A: a value of type Prob A consists of
a vector of elements of type A of arbitrary length, a vector of elements of type Double of
the same length and a proof that the latter satisfies the norming condition for probability
distributions:

data Prob : Type → Type where
MkProb : {A : Type} → (as : Vect n A) → (ps : Vect n Double) →

((i : Fin n) → So (index i ps > 0.0)) → (sum ps = 1.0) →
Prob A

Notice that, just like List, and Vect n, Prob is a functor. Its fmap function
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fmap : {A,B : Type} → (A → B) → Prob A → Prob B
fmap f (MkProb as ps p q) = MkProb (map f as) ps p q

transforms a probability distribution on A into a probability distribution on B, by applying
a function that transforms elements of A into elements of B. It is easy to see that fmap
preserves identity and function composition. As in the non-deterministic case, step induces,
via fmap, a probability distribution on rewards

rewards : (t : N) → (x : X t) → (y : Y t x) → Prob Double
rewards t x y = fmap (reward t x y) (step t x y)

3.4 Monadic decision processes

In the previous two subsections, we have seen two representations of uncertainty:

• when we only know the possible results of a transition with values in A, we can
represent this by a list of elements of A, i.e., an element of List A, and
• when we also have information about the probabilities of the results, we can repre-

sent this by a simple probability distribution on A, i.e., an element of Prob A.

Other representations of uncertainty are possible. For example, we might want to describe
the quality of possible results of a transition, by using fuzzy sets (e.g., we might want to
talk about “big increases in global temperature”, “satisfactory economic growth”, and so
on). Or we might want to combine various representations of uncertainty: say, fuzziness in
one dimension with non-determinism in another.

In all these cases, we represent uncertainty of outcomes of type A by some structure of
type M A, that combines possible results with some information about the uncertainty. In
the case of non-determinism we have M = List (no additional information), in the case of
stochastic uncertainty we have M = Prob (elements with probabilities), and so on.

In all these cases, we can find a function fmap which transforms representations of
uncertainty of outcomes of type A to representations of uncertainty of outcomes of type
B by using a function at the element level

fmap : {A,B : Type} → (A → B) → M A → M B

in a way which preserves identities and compositions. In other words, the structures with
which we represent uncertainty are functorial.

Moreover, in all these cases, we have a way of expressing that an outcome is certain. In
the case of non-determinism, we do this by wrapping the outcome as a singleton list:

certain : {A : Type} → A → List A
certain a = [a]

In the case of stochastic uncertainty, we use a concentrated probability distribution, etc.
The transition functions we use to represent uncertain outcomes all have the form

step : (t : N) → (x : X t) → (y : Y t x) → M (X (S t))

It is clear how to make a transition from a given x and y at a given t: the next state will be
step t x y. But, as opposed to the deterministic case, we now have a collection of states, and
we cannot just apply step to it again. Via fmap we can apply step to the elements inside the
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structure, but then we end up with a “second-order” uncertainty: we obtain a structure of
structures of states. We appear to have lost the basic operation of a discrete system, namely
the ability to iterate the transition function in a uniform fashion.

In fact, however, in all the cases we have seen so far we can reduce a “second-order”
representation of uncertainty to a “first-order” one. For example, in the case of lists:

reduce : {A : Type} → List (List A) → List A
reduce = concat

Similarly, we reduce probabilities of probabilities on A to just probabilities on A, fuzzy sets
of fuzzy sets to just fuzzy sets, and so on. In all cases, the reduction satisfies some simple
laws, such as, for all ma : M A

reduce (certain ma) = ma

This can be paraphrased as: certainty about an uncertain representation (denoted by ma)
can be reduced to just the uncertain representation.

In all the cases we have seen so far, and in many others, uncertainty about outcomes of
type A is represented by a structure of type M A, where the type constructor M : Type →
Type satisfies:

• it is a functor (i.e., we have a function fmap lifting functions from elements to
functions on M-structures)

• we have a way of representing certain outcomes (certain : A → M A)
• we have a way of reducing “second-order” uncertainty (reduce : M (M A) → M A)
• these items are related by a small number of simple equations.

In short, we can describe different kinds of uncertainty (possibly due to different causes) in
a seamless way by introducing the notion of monadic sequential decision problem. Thus,
certain and reduce are just domain-specific names for return and join and bind

(>>=) : {A,B : Type} → M A → (A → M B) → M B
ma>>= f = join (fmap f ma)

is the combinator that allows us to iterate the transition function of our decision processes.
A final remark: in decision problems, it is useful to recover certainty as a limiting case of
uncertainty and deterministic systems as special instances of monadic systems. Our formal-
ization handles that gracefully: for M = Id we have fmap = id, certain x = x, reduce x = x
and the bind combinator is, as expected, just function (flipped) application.

3.5 Decision problems

Consider again a non-deterministic decision process (M = List) starting in

x0 : X t0

at an initial time t0 : N. The set of controls available to the decision maker in x0 at time t0
is Y t0 x0. The set of states that can follow after selecting y0 : Y t0 x0 is

step t0 x0 y0 : List (X (S t0))

Each of the states in step t0 x0 y0 represents a possible next state and for each of these states
we have a corresponding possible reward:
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fmap (reward t0 x0 y0) (step t0 x0 y0) : List Double

If we are to take one single step, and if we have a means of measuring the value of the
possible rewards obtained by selecting a specific control:

meas : List Double → Double

then, at least conceptually, the problem of making an optimal decision can be solved
straightforwardly: for every control in Y t0 x0, we measure the value of the possible rewards
for that control and select the one that yields the highest value7.

But what if we are to take decisions for two or more steps? What does it mean for a
decision in step 2 to be “optimal”?

The problem we face is that, even if we were able to select an optimal control y∗0 at step
1 (whatever this means!) we would not be able to even precisely state which controls are
available at step 2, let alone which ones are optimal! This is because, for each possible
outcome in step t0 x0 y∗0 we would have potentially different sets of controls and potentially
different optimal choices.

The argument shows that, except for the deterministic case where a decision (optimal
or not) at step 1 implies a unique next state, it does not make sense to ask for a specific
decision (let alone an “optimal” decision) at step 2 without knowing the outcome of step 1:
what is optimal at step 2 very much depends on which of the possible states actually occurs
in a particular realization.

Decision making that takes into account the facts as they unfold during a particular real-
ization of the decision process is not only much more flexible than decision making based
on some fixed control plan. In general, taking advantage of the information that becomes
available during a particular decision process allows one to achieve higher rewards. This is
particularly obvious if one considers decision processes like those underlying activities
such as driving, lecturing, playing a competitive game or negotiating a price. No one
would seriously consider tackling such activities by blindly following some fixed, a-priory
computed “action plan”. What is required here are, on one hand, the capability to recognize
which situations or states actually occur and, on the other hand, rules that tell one which
actions to take for every possible situation or state.

But, if policy advice cannot be about recommending static decision plans and delivering
scenarios according to such plans what should then be the content of policy advice? The
answer is both obvious and compelling: consider again, the two-step decision process
outlined above. As we have seen, we cannot say which decision should be taken at step 2
without having performed step 1. But we certainly can compute (again, in principle and
with the same caveats mentioned for the case of step 1) an optimal control for every
possible outcome of step one. That is, we can compute a function that associates an optimal
control for step 2 to every state in X t1 = X (S t0) which can be obtained by selecting y∗0 in
step 1.

In fact, we can compute a function that associates to every x1 : X t1 an optimal control
y∗1 : Y t1 x1. In control theory such functions are called policies and we argue that the main

7 Clearly, this approach cannot, in general, be applied straightforwardly. But it surely works for
finite Y t0 x0 and this is particularly relevant for applications.
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content of policy advice – what advisors are to provide to decision makers – are policies,
perhaps, in practice, policy “explanations” or narratives. More precisely, if a decision
process unfolds over n steps what is required for decision making under uncertainty are
n policies, one for each decision step. Formally:

Policy : (t : N) → Type
Policy t = (x : X t) → Y t x

data PolicySeq : (t : N) → (n : N) → Type where
Nil : PolicySeq t Z
(::) : Policy t → PolicySeq (S t) n → PolicySeq t (S n)

Notice that a policy sequence is a dependent vector which is parameterized by two indexes.
The first index t : N represents the time at which the first decision has to be taken. The
second index n : N gives the length of the policy sequence or, equivalently, the number of
policies of the sequence. Thus, a policy sequence of length n assists decision making over
n steps.

These notions of policy and policy sequence are conceptually correct but, as we will
see in the next sections, too simplistic. In order to derive a generic method for computing
optimal policies, we will have to refine these notions. This is done in section 3.9. In the next
two sections we formalize optimality and introduce two fundamental notions: reachability
and viability. These will be the basis for the notion of avoidability presented in section 4.

We conclude this section with three remarks. The first one is that, if we have a policy
sequence of length n and a measure meas for the value of the possible rewards, we can
compute the value – in terms of the sum of measures of possible rewards – of making n
decision steps according to that sequence.8 Therefore, the decision problem – maximizing
the sum of the rewards obtained over n decision steps – can be phrased as the problem of
finding a policy sequence of length n whose value is at least as good as the value of every
other possible policy sequence.

The second remark follows directly from the first one: a particular decision problem
is characterized, among others, by a monad M and by a measure meas : M Double →
Double. The monad characterizes the kind of uncertainties inherent in the decision process.
If there are no uncertainties, M is simply Id, the identity monad. The measure meas char-
acterizes how the decision maker values such uncertainties. In many textbooks on dynamic
programming, it is implicitly assumed that M = Prob and meas is the expected value
measure. Often, this is a sensible assumption. But other measures are possible. In decision
problems in climate impact research, for instance, one might want to apply measures
which are informed by other guidelines than the maximization of the expected value.
Typical examples are max-min measures, or, in game-theoretical terms, “safety” strategies.
Measures of possible rewards have to satisfy a monotonicity condition, see section 3.10.
It is a responsibility of advisors to clarify the role of measures in non deterministic SDPs
and to make sure that decision makers understand the implications of adopting different
principles of measurement on the outcome of a decision process.

8 Notice, however, that such computation is not completely straightforward: at the m-th decision
step, the value of applying the n−m policies left after m decision steps has to be computed for
every possible “next” state! This generates a M-structure of values which has to be measured with
meas. We discuss such computation in detail in sections 3.6 and 3.9.
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The third remark is that SDPs which are not deterministic cannot, in general, be recon-
ducted to “equivalent” deterministic problems. Consider a specific decision process that
is, assume that M, X, Y , and step are given. We can easily transform this process into a
“deterministic” one

mstep : (t : N) → (mx : MX t) → (p : ((x : X t) → Y t x)) → MX (S t)
mstep t mx p = join (fmap (λx⇒ step t x (p x)) mx)

by introducing an “equivalent” state space

MX : (t : N) → Type
MX t = M (X t)

This is possible because M is a monad and therefore has a join transformation. But notice
that, in the new formulation, the third argument of mstep are values of type (x : X t) →
Y t x. Thus, the policies of the original problem play the role of controls in its deterministic
formulation! This is not arbitrary or accidental: in order to apply the step function of the
original problem9 to the states in mx, we have to compute a control (of the original process)
for each such state. Therefore we need a policy. The transformation has not brought any
practical advantage over the original formulation. Even worse, it has brought the obligation
of answering two questions: what does it mean for mstep to be “equivalent” to step and how
to introduce an “equivalent” decision problem by means of a suitable mreward function.

Fortunately, there is no need to reformulate monadic decision problems. As we will see
in the next section, the notion of policy is strong enough to allow all monadic problems –
deterministic, non-deterministic, stochastic, etc. – to be tackled with a uniform, seamless
approach. This allows decision makers to select controls on the basis of whatever states
will occur in actual realizations in a provably optimal way and according to a notion of
optimality which is intuitively understandable and computationally compelling.

3.6 Optimal policies

What is the value – in terms of rewards – of making n decision steps from some initial
state x : X t by applying the policy sequence ps : PolicySeq t n? More formally: how do
we compute val : (x : X t) → (ps : PolicySeq t n) → Double? If n = 0 that is, we take
zero steps, then we will collect no rewards10 and the answer is simply zero:

val {t} {n = Z} x ps = 0

What if n is greater than zero? In this case n = S m for some m : N and the policy sequence
consists of a first policy – say p – and of a possibly empty tail. We can make a first decision
by applying the policy p to the initial value x. This yields a control y : Y t x and an M-
structure of possible next states step t x y : M (X (S t)). This is just a single next state
for M = Id (deterministic case), a list of states for M = List (non-deterministic case) and
a probability distribution on states for M = Prob (stochastic case). In any case we know
that M is a functor. Thus, we can compute, for every x′ : X (S t) in step t x y the sum of

9 There is little else we can do except for applying step if the new process has to be, in some
meaningful sense, “equivalent” to the original one.

10 In this case ps is an empty policy sequence that is, there is no policy to apply!
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reward t x y x′ : Double and of the value of making m decision steps from x′ by applying the
rest of the policy sequence. This yield an M-structure of Doubles, one for every possible
next state in step t x y. As discussed in the previous section, the value of such a structure is
measured by a function meas : M Double → Double:

val {t} {n = S m} x (p :: ps) = meas (fmap f mx′) where
y : Y t x
y = p x
mx′ : M (X (S t))
mx′ = step t x y
f : X (S t) → Double
f x′ = reward t x y x′+ val x′ ps

In the introduction, we argued that an optimal policy sequence is, informally, a policy
sequence that cannot be further improved. We can now formalize this intuition. Consider a
policy sequence ps for n decision steps, the first one at time t. We say that ps : PolicySeq t n
is optimal iff for every ps′ : PolicySeq t n and for every x : X t, applying ps′ for n decision
steps from x does not yield a better value than applying ps:

OptPolicySeq : PolicySeq t n → Type
OptPolicySeq {t} {n} ps = (ps′ : PolicySeq t n) → (x : X t) → So (val x ps′ 6 val x ps)

Notice that, since 0 6 0, the empty policy sequence (there is only one) is optimal:

nilOptPolicySeq : OptPolicySeq Nil
nilOptPolicySeq ps′ x = reflexiveDoubleLTE 0

This is a trivial but important observation. It is a consistency check for the notion of
optimality introduced above and, as we will see in section 3.10, the base case for a generic
form of backwards induction for computing optimal policy sequences.

3.7 Viability and reachability (deterministic case)

The notions of policy and policy sequence introduced in section 3.5 are conceptually
correct but, for practical purposes, of little use.

Let’s consider again the decision problem sketched in figure 2. For concreteness, assume
that the transition function step is deterministic and defined such that it simply effects the
selected command: selecting L at time 0 in b yields a, selecting A yields b and selecting R
yields c and so on. Also, assume that states like a, b and c at time 2 and e at time 5 are truly
“dead-ends” or, in other words, that there are no controls for these states (at time 2 and 5,
respectively).

Consider the head of a policy sequence p :: ps of length n = S m > 3 for this problem.
According to the notions of policy and policy sequence introduced in section 3.5, the types
of p and ps are Policy 0 and PolicySeq 1 m. Thus, p is a function that associates a control
to each of the initial states a, b, c, d and e. There is nothing preventing p to choose L in b

p b = L

But a policy which is the head of a sequence of policies for 3 or more steps cannot select a
move to the left for the initial state b! This would lead – for step defined as outlined above
– to a at t = 1 and, from there, to a dead-end no matter what ps at step 2 prescribes. In other
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words, such a policy sequence would not allow, in general, to take more than 2 steps. To
avoid such situations, policies which are elements of policy sequences have to fulfill two
additional constraints. The first constraint is that

Property 1
The m-th policy of a policy sequence of length n>m has to select controls that yield next
states from which at least further n−S m steps can be taken.

The above rule requires p (the 0-th policy of p :: ps) to select R in b.11 But what shall p
select in a? There is no control in a that leads to next states from which at least two more
steps can be taken!

The point is simply that a cannot belong to the domain of p. This leads us to the second
constraint that policies which are elements of sequences supporting a given number of
decision steps have to fulfill. This is a logical consequence of the first one: if the m-th
policy of a policy sequence of length n has to select controls that yield next states from
which further n−S m steps can be taken, its domain has to consist of states from which at
least n−m steps can be taken:

Property 2
The domain of the m-th policy of a policy sequence of length n>m has to consist of states
from which at least n−m steps can be taken.

Viability Can we formulate these two constraints generically that is, independently of the
particular decision problem at stake?12 Maybe surprisingly, the answer is positive.13

Let’s consider, first, the deterministic case M = Id. Properties 1 and 2 express constraints
for the co-domain and for the domain of policies. These constraints are specified in terms
of particular subsets of the state space: in 1 we consider – at the S m-th decision step at
time t = m – next states at time t = S m from which at least further n− S m steps can be
taken. In 2 we consider states at time t = m from which at least n−m steps can be taken.
In both cases, we use a property of states – to allow a given number of further steps – to
select certain subsets of the state space.

We call this property viability. We say that a state x : X t is viable for k steps if it is
possible – by selecting suitable controls – to take at least k further steps starting from x.

In the middle of figure 2 we have represented states which are viable for less then three
steps in gray. For instance, a at time 0 is viable for at most 2 steps. At time 1, a and b are
viable for 1 step and, at time 2, a, b and c are dead-ends: they are viable for 0 steps. A state
which is viable for S k steps is obviously viable for k steps: who can do more, can do less.
Clearly, we can define the notion of viability recursively

Definition 1 (Viability)

11 And A or R in c, L, A or R in d, etc.
12 That is, again, for arbitrary X, Y , step and reward of type (t : N) → Type, (t : N) → (x : X t) →

Type, (t : N) → (x : X t) → (y : Y t x) → M (X (S t)) and (t : N) → (x : X t) → (y : Y t x) →
(x′ : X (S t)) → Double, respectively.

13 We will see that a generic formulation of these two constraints is crucial for deriving a generic
theory of decision making but also for formalizing the notion of avoidability.
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Every state is viable for zero steps. A state x : X t is viable S m steps iff there is a control
y : Y t x such that step t x y is viable m steps.

A formalization of viability following this definition is straightforward:

Viable : (n : N) → X t → Type
Viable {t} Z = ()
Viable {t} (S m) x = ∃ (λy⇒ Viable m (step t x y))

Policies revisited With the notion of viability in place, we can refine the formalization
of policy and policy sequence introduced in section 3.5 to account for the constraints
expressed in 1 and 2:

Policy : (t : N) → (n : N) → Type
Policy t Z = ()
Policy t (S m) = (x : X t) → Viable (S m) x → (y : Y t x∗∗Viable m (step t x y))

data PolicySeq : (t : N) → (n : N) → Type where
Nil : PolicySeq t Z
(::) : Policy t (S n) → PolicySeq (S t) n → PolicySeq t (S n)

A policy is now parameterized on two indexes: a time t and a number of steps n. We read
p : Policy t n as p is a policy to make a decision at time t that supports n decision steps.

On a policy for 0 steps we have no requirements: we can take Policy t Z to be the
singleton type.14 But we require a policy for making a decision at time t that supports
m further decision steps to associate to every state x in X t which is viable for S m steps a
control in Y t x such that step t x y is viable for m steps.

Notice that, in contrast to the notion of policy from section 3.5, we have now a constraint
on the domain (the second argument taken by Policy) and one on the co-domain of policies.
The first constraint formalizes 1. The latter formalizes 2 and is expressed by the second
element of the dependent pair returned by a policy. This consists of a control and of a
proof (a guarantee for the decision maker) that that control yields a next state from which
a suitable number of further steps can be taken.

As we will see in section 4, the notion of viability is crucial not only for building a sound
theory of decision making. When considering policies that avoid potentially harmful future
states, one has to be careful not to trade serendipity for viability: from a sustainability
perspective it make little sense to avoid certain future states if the alternative implies dead-
ends.

Reachability In the beginning of this section, we have argued that the notions of policy
and policy sequence introduced in section 3.5 were conceptually correct but that – in order
to be useful – three problems had to be solved. We have formulated two of them through the
constraints 1 and 2 for the deterministic case. We have seen that addressing these problems
is mandatory to make sure that policies for n decision steps do not lead to dead-ends. We
have solved these problems for the deterministic case and derived a notion of viability
which, if decidable, allows advisors to make precise statements about the capability of

14 In Idris the singleton type is denoted by (). It contains a single element, perhaps confusingly also
denoted by ().



ZU064-05-FPR main 26 September 2017 14:10

20 Botta, Jansson and Ionescu

states (current or future) to sustain future decision steps. We now turn our attention to the
third problem.

Consider, again, the decision process sketched in figure 2. On the right-hand side of the
figure we have grayed those states which, under the assumptions made in discussing the
notion of viability, are not reachable. Consider, for instance, c at time 4. This state is not
reachable no matter which initial state we start from. This is because from e – the only
state in X 3 – we can only reach, at time 4, d (with a left move) but not a, b or c.

Computing policies for subsets of the state space that cannot be reached in a decision
process can imply a significant waste of resources. Consider, for instance, the decision
problem sketched in Fig. 3. The idea here is that all columns are valid and there are no
dead-ends. But the set of controls available to the decision maker is more limited than in
the example of figure 2. In a and e, the only control available to the decision maker is A. In
b and d, the decision maker can only select L and R, respectively. The only state in which
the decision maker truly faces a decision problem is c. Here, it can move to the left or to
the right. In other words, the decision maker faces at time zero and in c a dilemma but has
otherwise no choices.

a b c d e

0
1
2
3
4
5
6
7

... ...

n

Fig. 3. Bifurcation.

The decision problem models a bifurcation: for t > 1, the
system is either in a or in e no matter what the initial condition
was. Thus, there is a wedge of states – marked in gray in figure 3
– that can never be reached. As the number of columns increases,
the fraction of the state space that cannot be reached becomes
bigger and bigger. Computing controls (optimal controls, in
particular) for such states would be a waste of resources. The
intuition is that (policy) advice should focus on future states
which actually can happen, not on those which are unreachable.
We can achieve this goal by putting forward another constraint on
the domain of policies:

Property 3
The domain of the m-th policy of a policy sequence starting at
time t has to consist of states in X (t+m) which are reachable.

We can easily formalize reachability if we specify what
it means for a state to be the successor (or, conversely, the
predecessor) of another state. For the deterministic case, this is
straightforward: for every time t : N, x : X t is a predecessor of x′ : X (S t) iff there exists
a control y : Y t x that – under step – brings x to x′:

Pred : X t → X (S t) → Type
Pred {t} x x′ = ∃ (λy⇒ x′ = step t x y)

The notion of reachability is in a certain sense dual to the notion of viability: the intuition
– again in the deterministic case – is that every state at the initial time is reachable and that
a state x′ : S t is reachable iff it has a reachable predecessor and there exists a control that
allows the decision maker to move from there to x′:

Reachable : X t′ → Type
Reachable {t′ = Z} = ()
Reachable {t′ = S t} x′ = ∃ (λx⇒ (Reachable x,x ‘Pred‘ x′))
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Policies revisited again We can now further refine our notion of policy by requiring it to
take values in reachable subsets of the state space:

Policy t (S m) = (x : X t) → Reachable x → Viable (S m) x →
(y : Y t x∗∗Viable m (step t x y))

We conclude this section by noting that, in the deterministic case, we have been able to
express the notions of viability and reachability and the constraints 1, 2 and 3 generically.
An immediate consequence is that we can apply the framework presented in (Botta et al.,
2017) to compute provably correct optimal policies for arbitrary decision problems.

In the next section we show how to extend the notions of reachability and viability (and
the corresponding notions of policy and policy sequence) to the general, monadic case.

3.8 Viability and reachability: monadic case

Consider again the monads for the deterministic case, for the non-deterministic case and
for the stochastic case: Id, List and Prob. These are not just monads but container monads.
A monadic container M has, in addition to the monadic interface, a membership predicate

Elem : {A : Type} → A → M A → Type

and a “for all” predicate

All : {A : Type} → (P : A → Type) → M A → Type
All {A} P ma = (a : A) → a ‘Elem‘ ma → P a

A value of type a ‘Elem‘ ma represents a proof that a is contained in ma. We require Elem
to be consistent with the monadic interface of section 3.4 in the sense that

containerMonadSpec1 : a ‘Elem‘ (ret a)
containerMonadSpec2 : {A : Type} → (a : A) → (ma : M A) → (mma : M (M A)) →

a ‘Elem‘ ma → ma ‘Elem‘ mma → a ‘Elem‘ (join mma)

All formalizes the idea that all element in the container fulfill a given property. In other
words, All P ma implies P a for every a ‘Elem‘ ma.

A key property of monadic containers is that if we map a function f : A → B over
a container ma, f will only be used on values in the subset of A which are in ma. We
model the subset as (a : A∗∗a ‘Elem‘ ma) and we formalize the key property by requiring
a function tagElem which takes any a : A in the container into the subset:

tagElem : {A : Type} → (ma : M A) → M (a : A∗∗a ‘Elem‘ ma)
tagElemSpec : {A : Type} → (ma : M A) → fmap outl (tagElem ma) = ma

The specification requires tagElem to be a tagged identity function. For the monads Id, List
and Prob, tagElem and tagElemSpec are easily implemented.

Viability and reachability The notion of viability for the deterministic case expressed
necessary and sufficient conditions for being able to perform a given number of steps from
a given state. We extend this notion to the monadic case by defining a state x : X t to be
viable S m steps iff there is a control in Y t x which allows the decision maker to take m
further steps no matter which state will follow after selecting y:
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Viable : (n : N) → X t → Type
Viable {t} Z = ()
Viable {t} (S m) x = ∃ (λy⇒ All (Viable m) (step t x y))

We read the implementation of Viable for the non-trivial case as: “a state x at time t is
viable for S m steps if there is a control in Y t x such that all states in step t x y are viable
for m steps”. With the notion of monadic container, it is straightforward to formalize the
predecessor relation in the monadic case

Pred : X t → X (S t) → Type
Pred {t} x x′ = ∃ (λy⇒ x′ ‘Elem‘ step t x y)

With this definition, reachability is defined exactly as in the deterministic case.

3.9 Policies and policy sequences revisited

With viability and reachability in place, formalizing the notions of policy, policy sequence
and value of policy sequences for the general, monadic case is almost straightforward:

Policy : (t : N) → (n : N) → Type
Policy t Z = ()
Policy t (S m) = (x : X t) → Reachable x → Viable (S m) x →

(y : Y t x∗∗All (Viable m) (step t x y))

data PolicySeq : (t : N) → (n : N) → Type where
Nil : PolicySeq t Z
(::) : Policy t (S n) → PolicySeq (S t) n → PolicySeq t (S n)

val : (x : X t) → Reachable x → Viable n x → PolicySeq t n → Double
val {t} {n = Z} x r v ps = 0
val {t} {n = S m} x r v (p :: ps) = meas (fmap f (tagElem mx′)) where

y : Y t x
y = outl (p x r v)
mx′ : M (X (S t))
mx′ = step t x y
av : All (Viable m) mx′

av = outr (p x r v)
f : (x′ : X (S t)∗∗ x′ ‘Elem‘ mx′) → Double
f = mkf x r v y av ps

As in section 3.6, we first apply the policy p and compute a control y and an M-structure
of possible new states mx′. But here the application of p also yields a proof that all states
in mx′ are viable m steps. As we will see, this proof is crucial for computing f , the function
to be mapped on tagElem mx′. The computation of f is delegated to a function mkf :

mkf : (x : X t) → (r : Reachable x) → (v : Viable (S m) x) →
(y : Y t x) → (av : All (Viable m) (step t x y)) →
(ps : PolicySeq (S t) m) → (x′ : X (S t)∗∗ x′ ‘Elem‘ (step t x y)) → Double

mkf {t} {m} x r v y av ps (x′ ∗∗ x′estep) = reward t x y x′+ val x′ r′ v′ ps where
xpx′ : x ‘Pred‘ x′

xpx′ = Evidence y x′estep
r′ : Reachable x′

r′ = Evidence x (r,xpx′)
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v′ : Viable m x′

v′ = av x′ x′estep

As in section 3.6, f is a function that associates to states x′ in mx′ the sum of the reward
of the transition from x to x′ and of the value of making m further decision steps from x′

according to the tail of the policy sequence p ::ps. But in order to compute these two values
for a given x′, we need to provide evidences that x′ is reachable and viable m steps. These
proofs are coded in r′ and v′. We prove that x′ is reachable by providing two pieces of
evidence: that x is reachable and that it is a predecessor of x′.

The first piece of evidence is for free: it is one of the arguments of val and the second
argument of mkf , r. To construct the second piece of evidence, we need to know that x′ is
in step t x y and that all states in step t x y are viable m steps. We have an evidence of the
latter in av. And we compute proofs that all states in mx′ are indeed in mx′ by applying
tagElem to mx′. Here is where we exploit the assumption that M is not just a monad but a
monadic container.

3.10 A framework for monadic sequential decision problems

In this section we introduce the computational core of our theory: first, we formalize the
notion of optimality for policy sequences. Then we formulate Bellman’s original principle
of optimality. Finally, we derive a generic method for computing optimal policy sequences
and show that the method yields optimal policies for arbitrary sequential decision prob-
lems.

The section is a summary of the results derived in (Botta et al., 2013a, 2017). We refer
to the appendix for technical details and focus on the main results from an applicational
perspective.

Optimality of policy sequences In the previous section we have expressed a value in
terms of the sum of the possible rewards over n decision steps of taking decisions according
to a policy sequence ps : PolicySeq t n through val.

The emphasis here is on a value and possible. As explained at the end of section 3.5,
in order to compute the value of ps, the decision maker has to adopt a measure meas for
estimating the rewards associated to the possible outcomes of the decision steps. Decision
makers who are measuring chances according to a precautionary principle might end up
taking very different decisions from decision makers that measure chances according to
their expected value.

The responsibility of adopting a measure is a crucial one and decision makers – be
they single individuals, institutions or public stakeholders – cannot be freed from such
responsibility. In turn, it is a responsibility of the policy advisors to make stakeholders
aware of the importance of consciously adopting a measure, to provide alternatives, and to
explain the consequences of adopting different criteria.

But, given a decision problem15 and a measure, val x r v ps gives the value – in terms of
rewards – of taking n decisions starting from a state x : X t which is reachable and viable

15 That is, given M, X, Y , step and reward of suitable types.
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for n steps and following the policy sequence ps : PolicySeq t n. Under these premises, it
is clear what it means for ps to be optimal:

OptPolicySeq : PolicySeq t n → Type
OptPolicySeq {t} {n} ps = (ps′ : PolicySeq t n) → (x : X t) → (r : Reachable x) →

(v : Viable n x) → So (val x r v ps′ 6 val x r v ps)

We read this formalization of optimality for policy sequences as follows: “a policy se-
quence ps for making n decision steps starting from a state in X t is optimal iff for every
policy sequence ps′ (of the same type as ps) and for every state in X t which is reachable
and viable for n steps, the value of ps is at least as high as the value of ps′”. Just as for our
simple-minded formalization of policy sequence from section 3.6, also here we can prove
that the empty policy sequence is optimal:

nilOptPolicySeq : {t : N} → OptPolicySeq {t = t} {n = Z} Nil
nilOptPolicySeq {t} ps′ x r v = reflexiveDoubleLTE 0

Bellman’s optimality principle Bellman’s optimality principle (Bellman, 1957) can be
expressed through the notion of optimal extension. Being an optimal extension is a property
of a policy. It is relative to a policy sequence. The idea is that a policy p for a decision step
at time t is an optimal extension of a policy sequence ps for n further decision steps iff for
every policy p′, the value of p :: ps is at least as high as the value of p′ :: ps:

OptExt : PolicySeq (S t) m → Policy t (S m) → Type
OptExt {t} {m} ps p = (p′ : Policy t (S m)) → (x : X t) → (r : Reachable x) →

(v : Viable (S m) x) → So (val x r v (p′ :: ps)6 val x r v (p :: ps))

In other words, if p is an optimal extension of ps we know (for sure, no matter whether
the decision process is deterministic, non-deterministic, stochastic, etc.) that there is no
better way of making a decision now than the one indicated by p, given that we will
make decisions in the future according to ps. The last conditional is crucial for expressing
Bellman’s principle. This can be stated as:

Bellman : (ps : PolicySeq (S t) m) → OptPolicySeq ps →
(p : Policy t (S m)) → OptExt ps p → OptPolicySeq (p :: ps)

We read Bellman’s principle as follows: for every policy sequence ps and policy p, if ps is
an optimal policy sequence and p an optimal extension of ps, then p :: ps is optimal.

Bellman’s principle is particularly important because it embodies an obvious algorithm
for constructing optimal policy sequences: start with the empty policy sequence – we have
seen above that this is optimal – compute an optimal extension and proceed from there.
This algorithm is called backwards induction and we derive a generic and provably correct
implementation in the next section.

For the moment, it is important to understand that Bellman’s principle reduces the
problem of computing optimal policy sequences for n steps to the problem of comput-
ing n optimal extensions. This is a crucial because of two reasons. The first one is that
computing optimal extensions is, in principle, straightforward. We discuss this problem at
the end of this section. The second reason is that Bellman’s principle suggests that – if we
can compute optimal extensions with complexity independent of the length of the policy
sequence to be extended – the complexity of computing optimal policy sequences is linear
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in the number of steps. This is important because it makes a rigorous approach towards
policy advice applicable to real problems.

But does Bellman’s principle hold? The answer is positive and, in principle, known
since 1957. Here, we implement a machine checkable proof. Proving that the policy se-
quence (p :: ps) is optimal, given that ps is optimal and that p is an optimal extension of
ps, means implementing a function that, for every p′ :: ps′ (with p′ and ps′ of the same type
as p and ps, respectively) and for every x : X t, r : Reachable x and v : Viable (S m) x,
computes a value of type

So (val x r v (p′ :: ps′)6 val x r v (p :: ps))

The idea is to first prove that

val x r v (p′ :: ps) 6 val x r v (p :: ps)
val x r v (p′ :: ps′)6 val x r v (p′ :: ps)

and then apply transitivity of 6 to deduce the result. A proof that p′ :: ps is not better – in
terms of val – than p :: ps can be immediately computed from the assumption that p is an
optimal extension of ps. A proof that p′ :: ps′ is not better than p′ :: ps can be derived from
optimality of ps and from the definition of val. The definition of val implies that

val x r v (p′ :: ps′)6 val x r v (p′ :: ps)

follows from

meas (fmap f ′ (tagElem mx′))6 meas (fmap f (tagElem mx′))

where f ′, f : (x′ : X (S t)∗∗ x′ ‘Elem‘ mx′) → Double and mx′ : M (X (S t)) are

f ′ = (mkf x r v y′ av′) ps′

f = (mkf x r v y′ av′) ps
mx′ = step t x y

and mkf is the function defined in section 3.9.
In the above expressions, the control y and prf – a proof that all states in mx′ are viable m
steps – are obtained by applying the policy p′ to x, r and v:

y = outl (p x r v)
prf = outr (p x r v)

It is easy to see that f ′ is point-wise not greater than f that is f ′ z 6 f z for all z. This follows
from the definitions of f ′, f , from the optimality of ps, that is

val x′ r′ v′ ps′ 6 val x′ r′ v′ ps

and from the fact that + is monotone on Double that is y 6 z → x+ y 6 x+ z for all
x,y,z : Double. But in order to deduce

meas (fmap f ′ (tagElem mx′))6 meas (fmap f (tagElem mx′))

from f ′ 6 f , we have to assume that meas fulfills

measMon : {A : Type} →
(f : A → Double) → (g : A → Double) → ((a : A) → So (f a 6 g a)) →
(ma : M A) → So (meas (fmap f ma)6 meas (fmap g ma))
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This monotonicity condition16 is a natural condition that all meaningful measures should
satisfy. It is easy to see that the expected value measure and “worst case” measures sat-
isfy this condition. As for other specifications of the monadic container interface already
discussed, measMon is only required to hold for

A = (x′ : X (S t)∗∗ x′ ‘Elem‘ mx′)

for Bellman to hold. In appendix A, we give a machine checkable proof of Bellman’s
principle for a generic M, that is, independently of whether the decision problem is deter-
ministic, stochastic, non-deterministic or something else.

Backwards induction Assume that we have a procedure for computing an optimal exten-
sion of a policy sequence:

optExt : PolicySeq (S t) n → Policy t (S n)
postulate optExtLemma : (ps : PolicySeq (S t) n) → OptExt ps (optExt ps)

Then a generic backwards induction procedure for computing optimal policy sequences
can be implemented as follows:

bi : (t : N) → (n : N) → PolicySeq t n
bi t Z = Nil
bi t (S n) = (optExt ps :: ps) where

ps : PolicySeq (S t) n
ps = bi (S t) n

It is easy to see that bi t n yields optimal policy sequences for every time step t and number
of decision steps n. It surely does so for n equal to zero because, as seen above, the
empty policy sequence is optimal. Assume ps : PolicySeq (S t) n is optimal. Bellman’s
optimality principle shows that (optExt ps :: ps) : PolicySeq t (S n) is also optimal. A
machine checkable proof can be implemented easily:

biLemma : (t : N) → (n : N) → OptPolicySeq (bi t n)
biLemma t Z = nilOptPolicySeq {t}
biLemma t (S n) = Bellman ps ops p oep where

ps : PolicySeq (S t) n
ps = bi (S t) n
ops : OptPolicySeq ps
ops = biLemma (S t) n
p : Policy t (S n)
p = optExt ps
oep : OptExt ps p
oep = optExtLemma ps

Notice how the induction hypothesis – optimality of ps – is obtained through a recursive
call to biLemma. The lemma shows that, in order to implement a provably correct, generic
procedure for computing optimal policy sequences, two ingredients are crucial: Bellman’s
optimality principle and the capability of computing optimal extensions of arbitrary policy

16 Originally introduced by C. Ionescu Ionescu (2009) in a different context: that of formalizing the
notion of “vulnerability” as a measure of possible future harm.
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sequences. We have given a machine checkable proof of Bellman’s principle in appendix A.
In the next section we derive a generic procedure for computing optimal extensions.

Can we compute optimal extensions? Conceptually, computing an optimal extension p
of a policy sequence ps is straightforward. We can define the policy p by computing, for
every state x (which is reachable and viable for S n steps), a “best” value in the co-domain
of p:

optExt : PolicySeq (S t) n → Policy t (S n)
optExt {t} {n} ps = p where

p : Policy t (S n)
p x r v = argmax g where

g : (y : Y t x∗∗All (Viable n) (step t x y)) → Double
g (y∗∗av) = meas (fmap f (tagElem (step t x y))) where

f : (x′ : X (S t)∗∗ x′ ‘Elem‘ (step t x y)) → Double
f = mkf x r v y av ps

In the implementation above, a best “feasible control” – a value in the co-domain of p,
(y : Y t x ∗∗All (Viable n) (step t x y)) – is obtained by maximizing the function g. For
a feasible control (y ∗∗ av), g (y ∗∗ av) yields the value (measured by meas) of making a
single step with y and taking n further decision steps according to the policy sequence ps.

Thus, the computation of an optimal extension always implies solving a maximization
problem. The theories for solving such problems constitute an important sub-domain of
numerical analysis, combinatorics and interval arithmetic. They go well beyond the scope
of the theory presented here. We formalize the requirements needed for computing optimal
extensions of arbitrary policy sequences in terms of the following specification:

max : {A : Type} → (f : A → Double) → Double
argmax : {A : Type} → (f : A → Double) → A
maxSpec : {A : Type} → (f : A → Double) → (a : A) → So (f a 6 max f )
argmaxSpec : {A : Type} → (f : A → Double) → max f = f (argmax f )

As usual, for optExt to actually compute an optimal extension p of an arbitrary policy
sequence ps that is, for optExtLemma to be implementable, we only need the above speci-
fication to hold for A equal to the co-domain of p. Depending on the specific application,
implementing max, argmax, maxSpec and argmaxSpec can be quite difficult or even im-
possible. It is certainly straightforward for the case in which the set of feasible controls is
finite. We give a machine checkable proof of optExtLemma in appendix B.

3.11 Sequential decision problems and policy advice

In the previous section we have presented a theory for specifying and solving sequential
decision problems under different kinds of uncertainty. In this theory, a decision problem
is specified by giving five entities:

• A monadic container M specifying the kind of uncertainty affecting the decision
problem. For problems with no uncertainties M = Id.
• A function X : (t : N) → Type specifying the state space – what the decision maker

can observe – for every time t : N.
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• A function Y : (t : N) → (x : X t) → Type specifying the control space – the
options available to the decision maker – for every time t : N and for every state
x : X t.
• A transition function step : (t : N) → (x : X t) → (y : Y t x) → M (X (S t))

specifying the consequences of selecting a control in a given state and at a given
time for every time t : N, for every state x : X t and for every control y : Y t x.
• A reward function reward : (t : N) → (x : X t) → (y : Y t x) → (x′ : X (S t)) →

Double specifying the reward obtained by entering a new state upon selecing a
control in a given state and at a given time, for every time t : N, for every state
x : X t, for every control y : Y t x and for every new state x′ : X (S t).

The theory only requires M to be a monadic container and does not impose any restric-
tion (or implicit assumption) on X, Y , step and reward except for those implicit in their
signature.

The theory supports a disciplined, accountable approach towards policy advice: First,
it explains what decision makers and advisors have to specify for policy advice to be
accountable. Second, it explains what it means for policy sequences to be optimal and
which guarantees decision makers can expect from implementing optimal policies. Third
the theory provides a backwards induction procedure for computing provably optimal
policies.

The last result holds under two additional assumptions: that decision makers and advi-
sors agree on a monotone measure meas : M Double → Double for estimating the value
of uncertain rewards and that they provide max and argmax methods for solving local
maximization problems that fulfill the maxSpec and argmaxSpec specification given in the
last section17.

While backwards induction – since Bellman’s original contribution in 1957– has been
routinely implemented and applied to a vast number of decision problems in, among oth-
ers, economics, bioinformatics and computing science, our theory is, to the best of our
knowledge, the first one that entails a generic, machine checkable implementation. A new
theory raises two obvious question:

1. Can the theory deliver more given the specification of a decision problem?
2. Can the theory demand less for the specification of a decision problem?

The answer to the first question is positive: given a decision problem, we can provide
more than optimal policy sequences. In particular, we can provide different notions of
monadic trajectories and methods for computing the possible future evolutions resulting
from selecting controls according to a given sequence of policies, optimal or not.

These notions are extremely useful for assisting decision making. They can be applied to
refine – give precise meanings to – the idea of “scenario”. The related methods allow advi-
sors to automatically generate consistent and provably complete samples of possible future
evolutions. In decision problems with a limited number of options and severe uncertainties,

17 The latter is, in principle, a strong assumptions. But it cannot be avoided and decision theories that
do not explicitely mention this assumption, most likely sweep it under the rug. For example the
finiteness assumption is introduced in many applications through a discretization of the control
space.
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optimal policy sequences can be expected not to be unique. For these problems, decision
makers can take advantage from consistent and complete scenarios, e.g. to estimate the
impact of different optimal policies according to criteria which are not captured by the
notion of optimality characterizing the decision problem.18

A comprehensive theory of trajectories and scenarios and computational methods for
generating such trajectories and scenarios and for combining systems characterized by
different kinds of uncertainty have been originally proposed by C. Ionescu and we refer
the interested reader to (Ionescu, 2009).

Here, we just outline a generic procedure for computing an M-structure of (all) possible
future evolutions under a given policy sequence. To this end, it is important to recognize
that a policy sequence naturally generates an M-structure of state-control pairs. But what
are sequences of state-control pairs? These can be introduced in a similar way as policy
sequences:

data StateCtrlSeq : (t : N) → (n : N) → Type where
Nil : (x : X t) → StateCtrlSeq t Z
(::) : (x : X t ∗∗Y t x) → StateCtrlSeq (S t) n → StateCtrlSeq t (S n)

The idea is that, if we are given a sequence of policies ps for n steps and some initial
state x, we can construct an M-structure of possible state-control sequences of length n.
For example, for M = Prob, we obtain a probability distribution of state-control sequences
representing all possible evolutions of the system given the controls implied by ps and
starting from x:

stateCtrlTrj : (x : X t) → (r : Reachable x) → (v : Viable n x) →
(ps : PolicySeq t n) → M (StateCtrlSeq t n)

We give an implementation of stateCtrlTrj in appendix C. The answer to the second ques-
tion raised above – whether the theory can demand less for the specification of a decision
problem – is also positive. The key idea lies in the notion of avoidability and is the subject
of the second part of this work.

4 Policy advice and avoidability

The major weakness of the theory presented in the previous section is that it relies on a
reward function:

reward : (t : N) → (x : X t) → (y : Y t x) → (x′ : X (S t)) → Double

In order to specify a decision problem, reward has to be defined for every time t : N, for
every state x : X t, for every control y : Y t x and for every “possible” next state x′ : X (S t).
The idea is that reward t x y x′ gives the value of selecting y in x at time t and then entering
state x′.

18 A decision maker might not be able (or allowed) to modify the notion of optimality underlying
the decision process but still have preferences on optimal policy sequences. He could for instance
prefer an optimal policy sequence in which the highest rewards come immediately after the first
decision steps to an optimal policy sequence in which the highest rewards come towards the end
of the decision procedure, e.g., to increase his chances at being re-elected.
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We could try to be a little bit more precise and only require reward to be defined for
states which are reachable and viable for a given numebr of steps. We could also try to
constrain x′ to take values in the support of step t x y.19 But still, reward has to be defined
for a decision problem to be specified.

In many application domains – in particular in climate impact research – it is not very
difficult to specify the state spaces X, the control spaces Y and the transition function step
of a particular decision process. But the notion of rewards (payoffs, utility, etc.) is more
problematic. We do not want to discuss here the reasons of such difficulties. As mentioned
in the introduction, they can be practical, ethical or perhaps just operational.

Instead, we ask ourselves whether a theory of policy advice and decision making can be
built without relying on the notion of rewards.20

4.1 Policy advice and avoidability

Consider, for concreteness, the problem of designing abatement policies for GHG emis-
sions. Here, the first and foremost concern is to envisage sequences of policies that avoid
certain future states which are considered to be potentially harmful.21

If we knew that a policy sequence provably avoids (or provably avoids with a probability
above a given threshold) these potentially harmful states and if such a policy sequence was
implementable at “low” costs, it would be foolish not to adopt it.

The argument suggests that, in many decision problems, avoidability is a relevant notion
which could be fruitfully applied to inform policy advice.

But what does it mean for a future possible state to be avoidable? The question is crucial
because, in absence of a clear understanding of what it means for a state to be avoidable,
one very first concern of policy advice – namely that of avoiding potentially harmful future
states – is void of meaning.

Before attempting a formalization of the notion of avoidability, it is useful to fix a few
intuitions: First notice that – in contrast to the notions of reachability and viability put
forward in the previous sections – the notion of avoidability is necessarily a relative one.
Whether a future state, say a state that can possibly occur in 10 decision steps from now is
avoidable or not certainly depends on the current state.

Thus, avoidability is a relation between states. More precisely, it is a relation between
states at a given time and states at some later times. Another remark is that we are interested
in the avoidability of “possible” future states. We do not care what it means for states
that are not reachable to be avoidable. The other way round: we are interested in the
avoidability of states which are reachable from a given (e.g., current) state. The latter notion
of reachability is again a relative one.

A third remark is that the notion of avoidability entails the notion of an alternative.
Consider again figure 2: for all initial states from which at least three steps can be made

19 The x′ : X (S t) such that x′ ‘Elem‘ step t x y.
20 A way of re-formulating this question is to ask whether rewards could be defined in terms of

something less questionable.
21 For instance, because – in these states – certain “climate” variables or certain “socio-economic”

variables exceed critical thresholds.
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(these are, under the assumption that the decision maker can only move to the left, ahead
or to the right, columns b, c, d and e), column e at time 3 is unavoidable. This is simply
because column e has no alternative: is is the only state that can happen at time 3.

Finally consider, again in figure 2, columns c and d at time 5. Are these states avoidable?
There are certainly alternatives: a, b and e. Columns a and b, however, are not reachable
from any initial state. Column e is reachable but is a dead-end: it is only viable for zero
steps. Should we conclude that columns c or d are unavoidable? We think that – at least for
one notion of avoidability – this should be the case: alternatives shall be at least as viable
as the state to be avoided.

4.2 Reachability from a state

We have argued that, in order to formalize a notion of avoidability, we need to explain what
it means for a state to be reachable from a given state. Consider two states x′′ : X t′′ and
x : X t. We explain what it means for x′′ to be reachable from x by considering two cases:

ReachableFrom : X t′′ → X t → Type
ReachableFrom {t′′ = Z} {t} x′′ x = (t = Z,x = x′′)
ReachableFrom {t′′ = S t′} { t} x′′ x =

Either (t = S t′,x = x′′) (∃ (λx′⇒ (x′ ‘ReachableFrom‘ x,x′ ‘Pred‘ x′′)))

The first case is one in which t′′ is equal to zero. In this case t also has to be equal to zero22

and x has to be equal to x′′. This formalizes the intuition that a state at a given time is
reachable from a state at the same time if and only if the two states are equal, for time zero.

The second case explains what it means for x′′ to be reachable from x for the case in
which t′′ is not zero. In this case, t′′ is the successor of a time t′ and we have two cases:
either t = t′′ and x = x′′ or x′′ has a predecessor which is reachable from x.

It is easy to show that the above definition is consistent with our intuition that, if x′′ : X t′′

is reachable from x : X t, then it is the case that t′′ > t:

reachableFromLemma : (x′′ : X t′′) → (x : X t) → x′′ ‘ReachableFrom‘ x → t′′ ‘GTE‘ t

We prove reachableFromLemma in appendix D.

4.3 Avoidability

We are now ready to formalize the notion of avoidability discussed in section 4.1: a state
x′ : X t′ which is reachable from a state x : X t and viable for n steps is avoidable from x
if there exists an alternative state x′′ : X t′ which is also reachable from x and viable for n
steps:

Alternative : (x : X t) → (m : N) → (x′ : X t′) → (x′′ : X t′) → Type
Alternative x m x′ x′′ = (x′′ ‘ReachableFrom‘ x,Viable m x′′,Not (x′′ = x′))

AvoidableFrom : (x′ : X t′) → (x : X t) → x′ ‘ReachableFrom‘ x → Viable n x′ → Type
AvoidableFrom {t′} {n} x′ x r v = ∃ (Alternative x n x′)

22 Remember that we are formalizing a notion of reachability in the future, not in the past. Therefore
t′′ cannot be smaller than t: t′′ > t. For t′′ = Z, t′′ > t implies t = Z.
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The above formalization explains what it means for a state x′ to be avoidable given a
“current” state x. It is a more or less word-by-word translation of the informal notion
discussed in section 4.1. It requires, for x′ to be avoidable, the existence of an alternative
state x′′ which is at least as good – in viability terms – as x′.23

The viability constraint in this notion of avoidability is essential, for instance for policy
advice which has to be informed by sustainability principles. In developing the theory
presented in this paper, we have consciously refrained from using, in the formal framework,
terms which are prominently used in specific application domains, in particular in climate
impact research.24 Thus, we have denoted the capability of a state to support a certain
number of future evolution steps with “viability” and not with “sustainability”.

The rationale behind our approach is that it is in a domain specific theory that domain
specific notions, for instance the notion of sustainability in climate impact decision prob-
lems, are to be given a meaning. This is done in terms of domain-independent notions (for
instance, those proposed here) and the translation is usually referred to as a domain-specific
language (DSL).

Our work has been inspired by climate impact research, but our main goal has been to
provide a framework of domain-independent notions. It is a responsability of the develop-
ers of a DSL for climate impact research – a team that necessarily has to include climate
scientists and decision makers – to give meaning to notions like sustainability in a suitable
DSL.

But we have to ask ourselves whether our domain-independent notions are flexible
enough to support such a DSL. And since our main motivation comes from climate impact
research, our notions should be at least able to support a DSL for this domain.

From this angle, the notion of avoidability outlined above is perhaps too narrow. Con-
sider, again, the problem of designing abatement policies for GHG emissions. Here it
seems natural for a decision maker to raise the question whether a future state x′ which is
considered to be particulary bad from the point of view of sustainability can be avoided.25.
In this case the property of x′ being unsustainable could be expressed – in a suitable DSL
– by the property of x′ being viable only for a limited number of steps. Perhaps x′ is to be
avoided because it is only viable for zero steps like for instance states a, b and c at time 2
in figure 2. In this case the intuition is that a meaningful alternative to x′ should be more
viable than x′. We can capture this idea by dropping the requirement that the alternative
state has to be as viable as x′:

AvoidableFrom : (x′ : X t′) → (x : X t) → x′ ‘ReachableFrom‘ x → (m : N) → Type
AvoidableFrom {t′} x′ x r m = ∃ (Alternative x m x′)

The generalization introduces a family of avoidability notions through the additional pa-
rameter m. For m = n we recover the original notion. The parameter m allows one to

23 Obviously, the requirement does not prevent x′′ to be better than x′: a state which is viable for more
than n steps is certainly viable for n steps.

24 The most obvious exception to this rule has probably been the usage of the term “policy” which is
widely used in a number of application domains. We feel that its usage here is justified: policy is
a standard notion in control theory and our notion of policy – though refined – is consistent with
that usage.

25 Given a (factual or hypothetical) “current” state x, given that x′ is reachable from x, etc.
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strenghten or to weaken the viability requirements the alternative state has to fulfill. This
gives advisors more flexibility to adapt the notion of avoidability to the specific decision
problem. For a given decision problem, it allows stakeholders to investigate the conse-
quences of weaker and stronger notions of avoidability.

4.4 Decidability of avoidability

Beside formalizing notions of avoidability, an avoidability theory has to answer the ques-
tion of whether such notions are decidable. This is crucial for applications.

Knowing what it means for future states to be avoidable is essential to give content to
notions that built upon avoidability. In climate impact research, for instance, mitigation
and adaptation (Allwood et al., 2014) depend on the notion of avoidability. They take on
different meanings as the underlying notion of avoidability changes. Another notion that
depends on that of avoidability is levity (Otto and Levermann, 2011). In a nutshell, the idea
is that a future state that is potentially very harmful and easily avoidable (perhaps because
there are many alternative states) has a high levity. The rationale behind this notion is
normative: policies should try to avoid states with high levity values. Obviously, different
notions of avoidability imply different notions of levity.

For applications, however, it is often important to be able to assess whether a given future
state x′26 is avoidable or not. In other words, it is important to have a decision procedure
which allows one to discriminate between states which are avoidable and states which are
not avoidable.

Decidability does not, in general, come for free. A typical example is that of equality.
We have a very clear notion of what it means for two functions to be equal: they have to
have the same value at every point. But, in general, we do not have a decision procedure
for equality of functions. For functions on real numbers, for instance, we do not have a
decision procedure even if we restrict ourselves to equality on a closed interval.

The example makes clear that, if we do not introduce additional requirements, there is
little hope for avoidability to be decidable: nothing so far prevents X t from being functions
of real variables! A minimal requirement is that equality on states is decidable

decEqX : (x : X t) → (x′ : X t′) → Dec (x = x′)

and we expect most practical applications to fulfill this requirement: if states cannot be
distinguished from each other, decision makers will have a very hard time implementing
no matter which policy! In the specification above, Dec is simply

data Dec : Type → Type where
Yes : {P : Type} → (prf : P) → Dec P
No : {P : Type} → (contra : P → Void) → Dec P

The idea is that if a predicate p : A → Type is decidable, then we have, for every
a : A either an evidence for p a – this is just a value of type p a wrapped by Yes – or a
demonstration that an evidence for p a yields a contradiction. This is a function of type
p a → Void wrapped by No.

26 Again, given a current state x, etc.
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Thus, our notion of avoidability is decidable if we can implement a function that returns
a value of type Dec (AvoidableFrom x′ x r m) for every x′, x, r, and m of the appropriate
types. This is – because of our definition of avoidability – a value of type

Dec (∃ (Alternative x m x′))

In the next section we discuss under which conditions we can implement such a function
and provide an implementation. We conclude this section with two remarks.

An important consequence of decidability is that one can implement a Boolean test.
Thus, if avoidability is decidable, decision makers could rely on a test that provably returns
True if a state x′ is avoidable from x and False if x′ is not avoidable. This could be very
useful, for instance in negotiations.

A second implication of avoidability being decidable is that one could easily derive
avoidability orderings and use these to compute provably optimal precautionary policies.
For instance, one could say that a state x is more avoidable than y if x has a richer set of
alternative states. Such orderings could be combined with measures of possible harm to
construct specific reward function, e.g., ones that assign low rewards to states which are
highly avoidable and are possibly very harmful. This would support a more disciplined
and more transparent approach towards policy advice, in particular for decision problems
in which realistic estimates of costs and benefits are lacking or for whatever reason ques-
tionable.

In a nutshell, decidability could allow scientific advisors to apply in an accountable fash-
ion principles (of levity, avoidance, safety) that – for instance in climate impact research –
are considered to be relevant but that, to the best of our knowledge, have not so far been
operationalized.

4.5 Finite types and decidability

Consider again the notion of avoidability introduced in the last section:

AvoidableFrom : (x′ : X t′) → (x : X t) → x′ ‘ReachableFrom‘ x → (m : N) → Type
AvoidableFrom {t′} x′ x r m = ∃ (Alternative x m x′)

This notion explains x′ : X t′ to be avoidable from x : X t if there exists a state x′′ : X t′

such that Alternative x m x′ x′′. Thus, a decision procedure for avoidability has to provide,
for every x′, x, r and m either a value of type ∃ (Alternative x m x′) or a contradiction.27 A
value of type ∃ (Alternative x m x′) is just a state x′′ in X t′ together with a proof that x′′ is
an alternative to x′. This is a value of type Alternative x m x′ x′′. Thus, a minimal condition
for avoidability to be decidable is that Alternative x m x′ x′′ is decidable.28 The intuition is
that decidability of Alternative x m x′ x′′ is also sufficient if X t′ is finite.

This intuition is correct and certainly does not depend on anything specific to X. We can
afford to be a little bit more general and formulate

finiteDecLemma : {A : Type} → {P : A → Type} → Finite A → Dec1 P → Dec (∃ P)

27 A function that, give one such values, produces a value of type Void.
28 For every x, m, etc.
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We read the lemma as follows: if A is a finite type and P : A → Type is decidable, then
∃ P is decidable. We have to explain what it means for a type A to be finite. The idea is that
A is finite if there exists a natural number n such that A is isomorphic to Fin n

Finite : Type → Type
Finite A = ∃ (λn⇒ Iso A (Fin n))

We do not detail here the notions of an isomorphism and of Fin. These would introduce
technicalities that add little to the theory proposed here. In the same spirit, we do not
provide a formal proof of finiteDecLemma here but the idea is obvious: a finite type A of
cardinality n can be represented by a value of type Vect n A and the question of whether
there exists a value in A which fullfills a decidable predicate can be answered by linear
search on a vector representation of A.

4.6 Decidability of avoidability, continued

In the last section we have shown that, if Alternative x m x′ x′′ is decidable for every x′′ : X t′

and X t′ is finite, then avoidability of x′ is decidable.
The next and last step is to discuss under which conditions Alternative x m x′ x′′ is

decidable. This is pretty straightforward: Alternative x m x′ x′′ is just a synonym for three
conditions:

Alternative x m x′ x′′ = (x′′ ‘ReachableFrom‘ x,Viable m x′′,Not (x′′ = x′))

Thus, we have to understand under which conditions x′′ ‘ReachableFrom‘ x, Viable m x′′

and Not (x′′ = x′) are decidable.
A necessary and sufficient condition for Not (x′′ = x′) to be decidable is that equality

in X t′ (both x′′ and x′ are states in X t′) is decidable. As already mentioned, this is a very
natural assumption, posited via decEqX. What about reachability and viability? Let’s look
at viability first. We have introduced Viable in section 3.8:

Viable : (n : N) → X t → Type
Viable {t} Z = ()
Viable {t} (S m) x = ∃ (λy⇒ All (Viable m) (step t x y))

Thus, a decision procedure for Viable n x is a function that computes a value of type
Dec (Viable n x) for every n : N, t : N and x : X t:

decViable : (n : N) → (x : X t) → Dec (Viable n x)

Can we implement such a function? The case n equal to zero is trivial: by definition, every
state is viable for zero steps:

decViable Z x = Yes ()

For n = S m we have decidability of an existential type. Provided Y t x is finite and we
have a decision procedure for All P as for an arbitrary M-structure as and for a decidable
predicate P

decAll : {A : Type} → (P : A → Type) → Dec1 P → (as : M A) → Dec (All P as)
finY : (t : N) → (x : X t) → Finite (Y t x)

we can complete the implementation and obtain decidability of Viable:
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decViable {t} (S m) x = finiteDecLemma fY dAll where
fY : Finite (Y t x)
fY = finY t x
dAll : Dec1 (λy⇒ All (Viable m) (step t x y))
dAll y = decAll (Viable m) (decViable m) (step t x y)

A similar argument shows that, if, again, Y t x is finite and we have a decision procedure
for a ‘Elem‘ as for arbitrary a and as

decElem : {A : Type} → (a : A) → (as : M A) → Dec (a ‘Elem‘ as)

then Pred is decidable:

decPred : (x : X t) → (x′ : X (S t)) → Dec (x ‘Pred‘ x′)
decPred {t} x x′ = finiteDecLemma fY dElem where

fY : Finite (Y t x)
fY = finY t x
dElem : Dec1 (λy⇒ x′ ‘Elem‘ (step t x y))
dElem y = decElem x′ (step t x y)

From here and using decidability of conjunctions and disjunctions

decPair : {P,Q : Type} → Dec P → Dec Q → Dec (P,Q)
decEither : {P,Q : Type} → Dec P → Dec Q → Dec (Either P Q)

it is easy to see that ReachableFrom is decidable, too:

decReachableFrom : (x′′ : X t′′) → (x : X t) → Dec (x′′ ‘ReachableFrom‘ x)
decReachableFrom {t′′ = Z} { t} x′′ x = decPair dp dq where

dp : Dec (t = Z)
dp = decEqNat t Z
dq : Dec (x = x′′)
dq = decEqX x x′′

decReachableFrom {t′′ = S t′} { t} x′′ x = decEither dp dq where
dp : Dec (t = S t′,x = x′′)
dp = decPair (decEqNat t (S t′)) (decEqX x x′′)
dq : Dec (∃ (λx′⇒ (x′ ‘ReachableFrom‘ x,x′ ‘Pred‘ x′′)))
dq = finiteDecLemma fX dRP where

fX : Finite (X t′)
fX = finX t′

dRP : Dec1 (λx′⇒ (x′ ‘ReachableFrom‘ x,x′ ‘Pred‘ x′′))
dRP x′ = decPair drf dpred where

drf : Dec (x′ ‘ReachableFrom‘ x)
drf = decReachableFrom x′ x
dpred : Dec (x′ ‘Pred‘ x′′)
dpred = decPred x′ x′′

We can summarize the results of this section in the following result: for finite state and
control spaces, if equality on states and the monadic container queries Elem and All are
decidable, then Viable, Pred, ReachableFrom are decidable and therefore avoidability is
decidable.
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5 Conclusions

In the first part of this paper, we have outlined a theory of decision making for sequential
decision problems.

The theory is motivated by decision problems in climate impact research but can ob-
viously be applied to other domains. It supports a disciplined, accountable approach to-
wards policy advice and a rigorous treatment of decision problems under different kinds
of uncertainty. These encompass – but are not limited to – deterministic (no uncertainty),
non-deterministic and stochastic uncertainty.

The theory requires decision problems to be specified in terms of four entities: a state
space, a decision space, a transition function and a reward function. It gives precise mean-
ing(s) to notions which, in informal approaches towards policy advice and decision making
are often unclear. In particular, the theory explains the notions of decision process, decision
problem, policy, policy sequence and optimality of policy sequences. It also provides de-
cision makers with a generic procedure for computing provably optimal policy sequences.
Thus, the theory makes an accountable approach toward policy advice possible.

In the second part of our paper, we have worked towards extending our theory to decision
problems for which a reward function is not obviously available or for which notions of
optimality based on costs-benefits analyses are questionable.29 The extension is based
on the idea of avoidability. We have proposed a family of avoidability notions and a
tentative formalization of sustainability. In the last section, we have discussed under which
conditions avoidability is decidable. We have also sketched how decidable notions of
avoidability could be used to derive avoidability measures.

Avoidability measures could be applied in climate impact research, e.g., to operational-
ize notions of levity, mitigation and adaptation. These notions are considered to be crucial
in policy advice but, to the best of our knowledge, have not so far been formalized. We
consider our theory as a first step in this direction.

6 Future work

In section 3.1 we noted that “In climate impact research, it is probably safe to assume
that the specification of X and Y cannot be meaningfully delegated to decision makers
and requires a close collaboration between these, domain experts and perhaps modelers”.
As future work we would like to develop a Domain Specific Language to support the
specification of Sequential Decision Problems (SDPs). The aim would be to A) make it
easier for domain experts to describe a problem in a way that fits the theory developed here
and B) develop a collection of simple examples and reusable combinators to build more
complex SDPs.

Our algorithms for solving SDPs are based on computable policies. In section 3.5 we
wrote “In control theory such functions are called policies and we argue that the main
content of policy advice – what advisors are to provide to decision makers – are policies,

29 Be this because such analyses are considered to be too simplistic or because of methodological
reasons.
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perhaps, in practice, policy “explanations” or narratives”. Future work includes investigat-
ing how to provide (or even parse) “text approximations” of policies using natural language
technology.

A Bellman’s principle

For completeness this section describes the proof elided from section 3.10. Proving Bellman
is almost straightforward:

Bellman : (ps : PolicySeq (S t) m) → OptPolicySeq ps →
(p : Policy t (S m)) → OptExt ps p → OptPolicySeq (p :: ps)

Bellman {t} {m} ps ops p oep = opps where
opps : OptPolicySeq (p :: ps)
opps (p′ :: ps′) x r v = transitiveDoubleLTE s4 s5 where

y′ : Y t x
y′ = outl (p′ x r v)
mx′ : M (X (S t))
mx′ = step t x y′

av′ : All (Viable m) mx′

av′ = outr (p′ x r v)
f ′ : (x′ : X (S t)∗∗ x′ ‘Elem‘ mx′) → Double
f ′ = mkf x r v y′ av′ ps′

f : (x′ : X (S t)∗∗ x′ ‘Elem‘ mx′) → Double
f = mkf x r v y′ av′ ps
s1 : (x′ : X (S t)) → (r′ : Reachable x′) → (v′ : Viable m x′) →

So (val x′ r′ v′ ps′ 6 val x′ r′ v′ ps)
s1 x′ r′ v′ = ops ps′ x′ r′ v′

s2 : (z : (x′ : X (S t)∗∗ x′ ‘Elem‘ mx′)) → So (f ′ z 6 f z)
s2 (x′ ∗∗ x′emx′) = monotoneDoublePlusLTE (reward t x y′ x′) (s1 x′ r′ v′) where

xpx′ : x ‘Pred‘ x′

xpx′ = Evidence y′ x′emx′

r′ : Reachable x′

r′ = Evidence x (r,xpx′)
v′ : Viable m x′

v′ = av′ x′ x′emx′

s3 : So (meas (fmap f ′ (tagElem mx′))6 meas (fmap f (tagElem mx′)))
s3 = measMon f ′ f s2 (tagElem mx′)
s4 : So (val x r v (p′ :: ps′)6 val x r v (p′ :: ps))
s4 = s3
s5 : So (val x r v (p′ :: ps) 6 val x r v (p :: ps))
s5 = oep p′ x r v

In the above implementation we construct a function opps that returns a value of type

So (val x r v (p′ :: ps′)6 val x r v (p :: ps))

for arbitrary p′ :: ps′, x, r and v. This is finally done by applying transitivity of 6 to s4
and s5. The computation of s5 is trivial and follows directly from the fourth argument of
Bellman, oep. This is a proof that p is an optimal extension of ps.

In order to compute s4, we proceed as outlined in section 3.9: we first apply optimality
of ps to deduce that

So (val x′ r′ v′ ps′ 6 val x′ r′ v′ ps)
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for arbitrary x′ : X (S t) which are reachable and viable m steps. This is done in s1. Then
we show that f ′ is point-wise smaller than f by applying monotonicity of + w.r.t. 6. This is
encoded in s2. Finally we apply the monotonicity of meas to compute s3 which is equal to
s4 by definition of val. Notice that, in the implementation of Bellman, mkf is the function
defined as in section 3.9.

B Optimal extensions

In order to give an implementation of optExtLemma, it is useful to slightly rewrite the
implementation of optExt given in section 3.10. In particular, it is useful to rewrite the
local definition of g in

optExt : PolicySeq (S t) n → Policy t (S n)
optExt {t} {n} ps = p where

p : Policy t (S n)
p x r v = argmax g where

g : (y : Y t x∗∗All (Viable n) (step t x y)) → Double
g (y∗∗av) = meas (fmap f (tagElem (step t x y))) where

f : (x′ : X (S t)∗∗ x′ ‘Elem‘ (step t x y)) → Double
f = mkf x r v y av ps

through a call to an auxiliary global function mkg:

mkg : (x : X t) → (r : Reachable x) → (v : Viable (S n) x) →
(ps : PolicySeq (S t) n) → (y : Y t x∗∗All (Viable n) (step t x y)) → Double

mkg {t} {n} x r v ps yav = meas (fmap f (tagElem (step t x (outl yav)))) where
f : (x′ : X (S t)∗∗ x′ ‘Elem‘ (step t x (outl yav))) → Double
f = mkf x r v (outl yav) (outr yav) ps

where, in the definition of mkg, we have again used the definition of mkf introduced in
section 3.9. With mkg, the implementation of optExt becomes:

optExt : PolicySeq (S t) n → Policy t (S n)
optExt {t} {n} ps = p where

p : Policy t (S n)
p x r v = argmax g where

g : (y : Y t x∗∗All (Viable n) (step t x y)) → Double
g = mkg x r v ps

Proving optExtLemma is now almost trivial. We have to show that, for every policy se-
quence ps : PolicySeq (S t) n, the policy p = optExt ps : Policy t (S n) is an optimal exten-
sion of ps. This means showing that, for every p′ : Policy t (S n), x : X t, r : Reachable x
and v : Viable (S n) x, one has

val x r v (p′ :: ps)6 val x r v (p :: ps)

This immediately follows from the definition of optExt and from the specification of max
and argmax. From maxSpec, we know that, for every feasible control yav, g yav 6 max g.
This holds, in particular, for yav = p′ x r v:

g (p′ x r v)6 max g

From argmaxSpec, we know that max g = g (argmax g). Therefore
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g (p′ x r v)6 g (argmax g)

But, by definition of optExt, argmax g is just p x r v. Therefore

g (p′ x r v)6 g (p x r v)

The result follows from the definition of g. In the implementation of optExtLemma, s3 to s6
are trivial consequences of s2. They are written explicitly here to improve understandability
but we could as well define optExtLemma {t} {n} ps p′ x r v to be equal to s2 and erase
the last 8 lines of the program:

optExtLemma : (ps : PolicySeq (S t) n) → OptExt ps (optExt ps)
optExtLemma {t} {n} ps p′ x r v = s2 where

p : Policy t (S n)
p = optExt ps
yav : (y : Y t x∗∗All (Viable n) (step t x y))
yav = p x r v
y : Y t x
y = outl yav
av : All (Viable n) (step t x y)
av = outr yav
yav′ : (y : Y t x∗∗All (Viable n) (step t x y))
yav′ = p′ x r v
y′ : Y t x
y′ = outl yav′

av′ : All (Viable n) (step t x y′)
av′ = outr yav′

g : (y : Y t x∗∗All (Viable n) (step t x y)) → Double
g = mkg x r v ps
f : (x′ : X (S t)∗∗ x′ ‘Elem‘ (step t x y)) → Double
f = mkf x r v y av ps
f ′ : (x′ : X (S t)∗∗ x′ ‘Elem‘ (step t x y′)) → Double
f ′ = mkf x r v y′ av′ ps
s1 : So (g yav′ 6 max g)
s1 = maxSpec g yav′

s2 : So (g yav′ 6 g (argmax g))
s2 = replace {P = λ z⇒ So (g yav′ 6 z)} (argmaxSpec g) s1
s3 : So (g yav′ 6 g yav)
s3 = s2
s4 : So (mkg x r v ps yav′ 6 mkg x r v ps yav)
s4 = s3
s5 : So (meas (fmap f ′ (tagElem (step t x y′)))6 meas (fmap f (tagElem (step t x y))))
s5 = s4
s6 : So (val x r v (p′ :: ps)6 val x r v (p :: ps))
s6 = s5

C State-control trajectories

This section describes the implementation of stateCtrlTrj elided from section 3.10.

stateCtrlTrj : (x : X t) → (r : Reachable x) → (v : Viable n x) →
(ps : PolicySeq t n) → M (StateCtrlSeq t n)

stateCtrlTrj {t} {n = Z} x r v Nil = ret (Nil x)
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stateCtrlTrj {t} {n = S m} x r v (p :: ps′) =
fmap g (bind (tagElem mx′) f ) where

y : Y t x
y = outl (p x r v)
mx′ : M (X (S t))
mx′ = step t x y
av : All (Viable m) mx′

av = outr (p x r v)
g : StateCtrlSeq (S t) n → StateCtrlSeq t (S n)
g = ((x∗∗ y)::)
f : (x′ : X (S t)∗∗ x′ ‘Elem‘ mx′) → M (StateCtrlSeq (S t) m)
f (x′ ∗∗ x′estep) = stateCtrlTrj {n = m} x′ r′ v′ ps′ where

xpx′ : x ‘Pred‘ x′

xpx′ = Evidence y x′estep
r′ : Reachable x′

r′ = Evidence x (r,xpx′)
v′ : Viable m x′

v′ = av x′ x′estep

D Reachability from a given state

Finally we define the reachableFromLemma from section 4.2:

reachableFromLemma : (x′′ : X t′′) → (x : X t) → x′′ ‘ReachableFrom‘ x → t′′ ‘GTE‘ t
reachableFromLemma {t′′ = Z} {t = Z} x′′ x prf = LTEZero
reachableFromLemma {t′′ = S t′} { t = Z} x′′ x prf = LTEZero
reachableFromLemma {t′′ = Z} {t = S m} x′′ x (prf1,prf2) = void (uninhabited (sym prf1))
reachableFromLemma {t′′ = S t′} { t = S t′} x′′ x (Left (Refl,prf2)) = eqInLTE (S t′) (S t′) Refl
reachableFromLemma {t′′ = S t′} { t = t} x′′ x

(Right (Evidence x′ (prf1,prf2))) = s2 where
s1 : t′ ‘GTE‘ t
s1 = reachableFromLemma x′ x prf1
s2 : S t′ ‘GTE‘ t
s2 = idSuccPreservesLTE t t′ s1
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