
VisPar: Visualising Data�ow Graphs from the Par Monad
Maximilian Algehed

Chalmers University of Technology, Sweden
algehed@chalmers.se

Patrik Jansson
Chalmers University of Technology, Sweden

patrikj@chalmers.se

fib 3: new fib 3: forkC
fib 2: newF

fib 3: new
C

fib 2: forkC

fib 3: forkC
fib 1: put

F

fib 3: get
C

fib 3: getG
C

fib 3: doneC

fib 1: put
F

fib 2: newC

fib 2: get
G

fib 2: forkC
fib 0: put

F

C
fib 2: getG

C
fib 2: putC G

Figure 1. A teaser: the extended data�ow graph of the call �b 3

Abstract
We present a work in progress tool (VisPar) for visualising com-
putations in the Par monad in Haskell. Our contribution is not a
revolutionary new idea but rather a modest addition to the set of
tools available for making sense of parallel programs. We hope to
show that VisPar can be useful as a teaching tool by providing vi-
sualisations of a few examples from a course on parallel functional
programming.

CCSConcepts •Computingmethodologies→ Parallel program-
ming languages; •Human-centered computing→ Graph draw-
ings; •So�ware and its engineering→Domain speci�c languages;

Keywords Functional Programming, Parallel Programming, Visu-
alization, �reads
ACM Reference format:
Maximilian Algehed and Patrik Jansson. 2017. VisPar: Visualising Data�ow
Graphs from the Par Monad. In Proceedings of FHPC’17, Oxford, United
Kingdom, September 7, 2017, 6 pages.
DOI: 10.1145/3122948.3122953

1 Introduction
Writing parallel programs is di�cult and achieving good perfor-
mance o�en requires expert knowledge. One reason why this is
the case is that the behaviour of a parallel program is more di�cult
to predict and analyse than that of a conventional sequential pro-
gram. �ere is a clear need for good tools for understanding and
debugging parallel programs both in education and elsewhere.

�e Par monad [18] provides an interface for writing determinis-
tic task-parallel programs in Haskell [11]. �e need for visualisation
of Par monad code was noted by Marlow in his book [17, p. 60]:

Unfortunately, right now there’s no way to generate
a visual representation of the data �ow graph from
some Par monad code, but hopefully in the future
someone will write a tool to do that.

Code wri�en in the Par monad builds an explicit data�ow graph
where results of parallel computations are communicated between
nodes in the graph using I-Structures [2], called IVars in the Par
monad. In this paper we present a prototype tool we call VisPar
which provides visualisation of Par computations in terms of these

FHPC’17, Oxford, United Kingdom
© 2017 ACM. �is is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. �e de�nitive Version of Record was published in
Proceedings of FHPC’17, September 7, 2017 , h�p://dx.doi.org/10.1145/3122948.3122953.

data�ow graphs. More precisely, we make the following contribu-
tions:
• We present a tool for providing a data�ow graph as output

from executing code wri�en in the Par monad (Sections 3
and 6).

• We present two ways of visualising these graphs in an un-
derstandable way (Sections 3 and 5.1).

• We present a way to estimate the performance characteris-
tics of Par computations from the data�ow graphs (Section
4).

• We show how the above contributions make it possible
to analyse the parallel behaviour of programs and apply
it to an example from an exam in a Parallel Functional
Programming course at Chalmers (Section 5.2).

2 �e Par Monad
�e Par monad provides a small interface for explicit task paral-
lelism.

fork :: Par () → Par ()
new :: Par (IVar a)
put :: NFData a⇒ IVar a→ a→ Par a
get :: IVar a→ Par a

-- Derived operation
spawn :: NFData a⇒ Par a→ Par (IVar a)

• �e fork primitive takes a Par computation and runs it
in parallel with the rest of the program as a light-weight
“thread”. Note that the return type of fork :: Par () → Par ()
ensures that results from the new thread must be commu-
nicated through other means (using IVars, as we will see
below).

• �e new primitive returns a new IVar , which can be used
to communicate results of parallel computations between
threads using the put and get primitives.

• �e put primitive evaluates a value and puts it in an IVar .
�e NFData a constraint means that values of type a can be
strictly evaluated to normal form (the kind of normal form
is decided by the instance of NFData for a).

• �e get primitive takes an IVar and blocks until a result is
put into it by another thread.

�e put and get operations can be performed on an IVar from
anywhere in the Par computation. However, each IVar may only

http://dx.doi.org/10.1145/3122948.3122953

FHPC’17, September 7, 2017, Oxford, United Kingdom Maximilian Algehed and Patrik Jansson

be put into once. Performing multiple puts into the same IVar will
result in a runtime error.

Finally, the derived spawn operation abstracts a common pa�ern
found in many programs wri�en in the Par monad: forking a Par
program and communicating the result through an IVar .

spawn :: NFData a⇒ Par a→ Par (IVar a)
spawn p = do

v ← new
fork (p >>= put v)
return v

�e run function for Par monad computations is a scheduler
runPar :: NFData a ⇒ Par a → a which we later (in Section 6)
explain and extend to also produce graphs.

fib 5

fib 4

F

fib 3

FG

fib 3

F

fib 2

F

G

fib 2

F

fib 1

FG

fib 1

F

fib 0

F

G

G G

G

fib 2

F

fib 1

F

G

fib 1

F

fib 0

FG GG

fib 1

F

fib 0

F

G

G G

Figure 2. �e simple data�ow graph for �b 5

As an example of a Par program consider the �b function given
below, which computes the nth Fibonacci number in the Par monad.
�b :: Int → Par Int
�b n | n < 2 = return 1

| otherwise = do
lv ← spawn $ �b (n − 1)
rv ← spawn $ �b (n − 2)
l ← get lv
r ← get rv
return (l + r)

In the case where n > 2 we spawn two threads which will compute
�b (n − 1) and �b (n − 2) in parallel and put their results in the
IVars lv and rv. We then obtain the results of the two recursive
calls from lv and rv respectively. Finally we return the sum of the
result of �b (n − 1) and �b (n − 2).

3 Visualisation
In order to provide informative visualisation we extend the Par
monad interface with a function forkNamed :: String → Par () →
Par (). �is makes it possible to give forked threads names, as

tiny :: Par Int
tiny = do

ivar ← new
fork (put ivar 5)
get ivar

(a) Source code of tiny.

0

1

F G

(b) �e simple data�ow graph

0: new

0: fork

C

1: put

F

0: get

C

G

0: done

C

(c) �e extended data�ow graph.

Figure 3. A tiny program (a) with its data�ow graphs (b), (c)

can be seen in the graph for the �b function in Figures 1 and 2.
�e default name is a thread ID (a counter starting from 0). Using
forkNamed we also implement spawnNamed :: String → Par a→
Par (IVar a) in a way very similar to the implementation of spawn,
only using forkNamed instead of fork. We also found it useful to
have a function withLocalName :: String → Par a→ Par a which
locally changes the name of a thread without forking. To produce
the visualisation of �b in Figures 1 and 2 we modify the de�nition
of �b in Section 2 to use spawnNamed instead of spawn:

�b :: Int → Par Int
�b n | n < 2 = return 1

| otherwise = do
lv ← spawnNamed ("fib " ++ show (n − 1)) $ �b (n − 1)
rv ← spawnNamed ("fib " ++ show (n − 2)) $ �b (n − 2)
l ← get lv
r ← get rv
return (l + r)

�e graphs in this paper are one way of visualising parallel
computations and other ways are certainly possible. Each node
represents an event in the computation and is labeled with its
thread identi�er and event type. Each event corresponds to an
invocation of one of the functions from the Par interface: fork, new,
put, and get. An edge from a source event to a target event denotes
a relationship between the corresponding threads:
• An F means the source thread forked the target thread.
• A C means that the target is the continuation of the source;

the target event occurs a�er the source event in the same
thread.

• A G means that the target event depends on the result of a
get from an IVar �lled by the source event.

VisPar: Visualising Dataflow Graphs from the Par Monad FHPC’17, September 7, 2017, Oxford, United Kingdom

Using our extended scheduler to run the code for tiny in Figure
3a gives the graph in Figure 3c. We refer to these graphs as ex-
tended data�ow graphs as they contain detailed information about
the execution of the program. However, as evidenced by Figure
1, the graphs for simple parallel computations like �b 3 quickly
become large. We therefore also provide a way to obtain simpler
data�ow graphs like the one for tiny in Figure 3b. �e “simple”
graph only contains F and G edges, omi�ing the precise structure
of the computation and events.

4 Work, Depth, and VisPar Graphs
�is section brie�y covers how some properties of VisPar graphs
relate to the notions of work and depth, in turn related to the
running time, of the program from which the graph was generated.
Work,W , is de�ned as the total number of operations performed
in a parallel computation. Depth, D, is de�ned as the length of the
longest sequential chain of dependencies in the computation [4].
�e following inequalities, due to Brent [5], relate running time, T ,
on P processors to work and depth:

max(W
P
,D) 6 T <

W

P
+ D (1)

Similarly, we have that the maximum speedup, S , available by
parallelisation is bounded above by [6]:

S 6
W

D
(2)

Using the graphs produced by VisPar we can compute lower
bounds for both work and depth for an execution of a Par program.
�e work for a particular run of a Par program is bounded below
by the number of nodes (w) in the VisPar graph. Similarly, depth
is bounded below by the length (d) of the longest path from the
initial (indegree zero) node to the terminal (outdegree zero) node
in the graph. While this measure is only a crude approximation,
it ignores the fact that a single node in the graph may represent
an arbitrary, unbounded, amount of work, it does provide some
insight into the behaviour of our program. Speci�cally, it gives
a lower bound on the running time, max(wP ,d), by equation (1).
Bearing this simple connection in mind can help be�er understand
and estimate bounds for parallel algorithms (see Section 5.2).

5 Case Studies
In this section we present two case studies which show VisPar in
action.

5.1 Visualising Merge Sort
�e following code for mergeSort implements a parallel version of
the merge sort algorithm using the Par monad:
mergeSort :: (NFData a,Ord a) ⇒ Int → [a] → Par [a]
mergeSort 0 xs = return (sort xs)
mergeSort d xs
| length xs 6 1 = return xs
| otherwise = do
let (ls, rs) = splitAt (length xs ‘div‘ 2) xs
lv ← spawn (mergeSort (d − 1) ls)
rv ← spawn (mergeSort (d − 1) rs)
lr ← get lv
rr ← get rv
return (merge lr rr)

0: new

0: fork

C

1: new

F

0: new

C

1: fork

C

0: fork

C

2: new

F

0: get

C

2: fork

C

0: get

C

0: done

C

3: put

F

2: new

C

2: get

G 2: fork

C

4: put

FC

2: get

GC

2: put

C

G

5: put

F

1: new

C

1: get

G 1: fork

C

6: put

FC

1: get

GC

1: put

C

G

Figure 4. �e extended data�ow graph for mergeSort 2 xs

�e �rst argument controls the “depth of parallelism”, giving
control over granularity, mergeSort d xs will only spawn parallel
computations to a depth of d (thus a maximum of 2d threads). In
the base case (at depth zero) mergeSort resorts to the sequential
sort function from the Haskell base libraries [11]. Otherwise, at
non-zero depth, the empty and singleton lists are both already
sorted and can be returned as is. In the �nal case the list is �rst
split into two halves, ls and rs, and sorted in parallel by spawning
two recursive calls to mergeSort using spawn. (Note the decreasing
argument d). Finally, the results of the two recursive calls, lr and rr ,
are obtained from the IVars lv and rv and combined using merge,
which merges two sorted lists into a sorted list. Figures 4 and 5
show how VisPar renders the extended and simple data�ow graphs
for mergeSort 2 xs with a long list xs.

While the simple graph hides a lot of the information about the
implementation of mergeSort present in the extended graph (as it
omits the ordering of operations like new and put), it makes explicit
the divide and conquer nature of the merge sort algorithm in a way
which is more di�cult to see in the extended graph.

FHPC’17, September 7, 2017, Oxford, United Kingdom Maximilian Algehed and Patrik Jansson

0

1

F

2

FG

5

F

6

F

G

3

F

4

FG GG G

Figure 5. Merge sort data�ow graph for depth 2

5.2 Debugging reduce

We now turn our a�ention to how VisPar visualisations can in-
crease understanding, and ease debugging of parallel programs.
We brie�y cover the use of VisPar to tackle a recent exam ques-
tion in a course on parallel functional programming at Chalmers
University of Technology [21]. �e original problem featured an
underperforming version of the parallel reduce function wri�en
in Erlang [1] and has been translated to the following Par monad
code for this paper:

reduce :: NFData a⇒ (a→ a→ a) → [a] → Par a
reduce f [x] = return x
reduce f xs = do

let (ls, rs) = splitAt (length xs ‘div‘ 2) xs
rv ← spawn (reduce f rs)
r ← get rv
l ← reduce f ls
return (f l r)

�is implementation correctly computes the reduction of a list
using an associative binary operation. However, benchmarking
this function will reveal that it runs slowly, never utilising more
than one core at a time. �e task is to suggest a simple �x which
will make the program perform well. Figure 6a shows the simple
data�ow graph for the buggy version of reduce. From this graph
alone it is certainly not obvious why the code runs slowly.

However, the extended data�ow graph in Figure 7a provides a
detailed trace allowing us to study the behaviour which gives rise to
the poor performance. From the graph it is evident that the entire
computation is sequential, in spite of using fork to create a new
thread, something which is not evident in Figure 6a. Recall from the
discussion in Section 4 that the work and depth of this particular run
of reduce can be approximated from this extended data�ow graph.
In this case the approximation is remarkably accurate; assuming
the work in the call f l r is constant, both the work and depth can
be computed to be 21 from the graph in Figure 7a. By equation (2)
we can compute that there is no available speedup, S 6 W

D = 1,
making our intuition from looking at the graph precise.

�e problem is that the line r ← get rv comes directly a�er the
line l ← reduce f ls. �is means that only one thread is active
at a time while its parent thread waits for it to �nish executing
before continuing with the rest of the code. Fixing this error by
swapping the two lines instead gives rise to the simple data�ow
graph in Figure 6b. �e tree shape is identical which makes it hard
to see that the parallelism has increased. If we instead turn to the

extended data�ow graph in Figure 7b, it clearly shows that useful
parallel work can be done a�er the code has been �xed. �e depth
is now only 12 and computing the maximum speedup now gives a
more encouraging upper bound S 6 1.75. While the upper bound
for the buggy version of reduce will be 1 regardless of the length of
the input, the bound for the correct version will di�er depending
on the length of the input.

0

1

F

4

FG

2

FG

3

F G

G

5

F G

(a) Slow reduce

0

1

F

2

FG

4

F

G

3

F GG

5

F G

(b) Correct reduce

Figure 6. Simple data�ow graph of a slow (a) and correct (b) reduce
on a list of length six. Here it is hard to see the improvement.

6 �e Implementation of VisPar
�is section gives a brief overview of the implementation of the
visualisation presented in this paper. (�e code of VisPar can be
found online at h�ps://github.com/MaximilianAlgehed/VisPar.)

We begin with recap of the implementation of the Par monad
by Marlow et al. It is implemented in continuation passing style
by the type newtype Par a = Par ((a → Trace) → Trace) where
the Trace type is shown below. �e function runPar is by default
implemented using a work-stealing scheduler, but as Marlow et al.
point out, other schedulers can be implemented without changing
the core implementation of Par .

data Trace where
Get :: IVar a→ (a→ Trace) → Trace
Put :: IVar a→ a→ Trace
New :: (IVar a→ Trace) → Trace
Fork :: Trace→ Trace→ Trace
Done :: Trace

-- Our added primitives
SetName :: String → Trace→ Trace
GetName :: (String → Trace) → Trace

�e implementation of the visualisation using numbers as names
for threads is a straightforward instance of this idea. It is imple-
mented as an extension of the work-stealing scheduler provided
by Marlow et al. In this sense the visualisation is an example of
the modularity of the Par monad. However, to implement the

https://github.com/MaximilianAlgehed/VisPar

VisPar: Visualising Dataflow Graphs from the Par Monad FHPC’17, September 7, 2017, Oxford, United Kingdom

0: new

0: fork

C

1: new

F

0: get

C

1: fork

C

0: new

C

0: fork

C

2: new

F

1: get

C

2: fork

C

1: put

C

G

3: put

F

2: get

C

G

2: put

C

G

4: new

F

0: get

C

4: fork

C

0: done

C

5: put

F

4: get

C

G

4: put

C

G

(a) Slow reduce: S 6 1

0: new

0: fork

C

1: new

F

0: new

C

1: fork

C

0: fork

C

2: new

F

0: get

C

2: fork

C

0: get

C

0: done

C

3: put

F

2: get

C

G

2: put

C

G

4: new

F

1: get

C

4: fork

C

1: put

C

G

5: put

F

4: get

C

G

4: put

C

G

(b) Correct reduce: S 6 1.75

Figure 7. Extended data�ow graph of a slow (a) and correct (b)
reduce on a list of length six. Note the increase in parallelism.

forkNamed and withLocalName primitives a small change needs
to be made to the implementation of the Trace data type. We
add two constructors SetName :: String → Trace → Trace and
GetName :: (String → Trace) → Trace which are used to implement
the primitives setName :: String → Par () and getName :: Par String.
We do not expose the getName primitive to the programmer as it
would provide a method for introspection into the behaviour of
the scheduler by observing the thread name. �is could be used to
break determinism and referential transparency when used with
a non-deterministic scheduler. Using getName and setName we
can implement withLocalName and forkNamed as seen below. �e
implementation of forkNamed forks a thread which �rst sets its
name and then executes normally. Similarly, the withLocalName
primitive �rst obtains the current name, sets its name to the pro-
vided name, runs the computation p, sets the name to the original
name, and �nally returns the result of p.

forkNamed :: String → Par () → Par ()
forkNamed s p = fork (setName s >> p)
withLocalName :: String → Par a→ Par a
withLocalName name p = do

old ← getName
setName name
a← p
setName old
return a

We use Erwig’s functional graph library [8] to construct the
data�ow graph as the computation is run. Finally we use graphviz
[9] to render the graph (currently as a PDF).

7 Related Work
�e Eden Trace Viewer [3] is a tool to visualize parallel func-
tional program execution in the Haskell extension Eden. �e
ThreadScope tool [12] provides an interface for visualising the
resource consumption of parallel programs in Haskell. VisualStu-
dio 2010 provides similar functionality to ThreadScope [20]. In the
functional programming domain the percept tool [15] for Erlang
provides functionality similar to that of ThreadScope. Tools like
these are very useful for debugging the resource consumption of
parallel programs. However they do not provide a comfortable
interface for visualising concrete behaviour. As such VisPar may
be used by Haskell programmers as a complementary tool along-
side other tools like ThreadScope. We also remark that these tools
work by tracing the computation rather than relying on modifying
the code (and library) being visualised. However, our technique
can also be used with the standard Par monad to produce graphs
without named threads like the one in Figure 4, provided the source
code does not make use of the forkNamed and related primitives.

�e high performance computing community has a long his-
tory of development tools for visualising and analysing parallel
computations. Score-P [14] is a performance measurement run-
time infrastructure that works with several HPC tools (Vampir,
Periscope, Scalasca, TAU, etc.). As an example, the Vampir tool
set [13], is widely used in the HPC community for visualising and
analysing MPI traces. Most of these tools focus on tracing actual
executions while our tool (VisPar) uses a custom interpretation (of
the Par monad API) instead.

FHPC’17, September 7, 2017, Oxford, United Kingdom Maximilian Algehed and Patrik Jansson

�e gotracer and gothree.js tools [7] allow Go [10] program-
mers to visualise concurrent and parallel computations as inter-
active three dimensional animations. While we believe it would
be possible to visualise our graphs in a similar way, the graphics
presented in this paper are our initial experiments and providing
more intuitive views is part of our ongoing work in this domain.

8 Conclusions and Future Work
�e work presented in this paper is a �rst step towards providing vi-
sual aids for building parallel programs in Haskell. We have shown
how a small extension to the Par monad allows us to provide useful
visualisation of the data�ow graphs of parallel programs. Di�erent
visualisations of the same data�ow graph provide information and
insight about di�erent aspects of the computation. A detailed view
of a graph helps us understand the �ne-grained dynamic behaviour
of parallel programs while a more simple view lets us clearly see
the overall structure of the algorithm used. �e �nal goal is to
develop more comprehensive tools for multiple parallel program-
ming models, possibly including approaches like Strategies [19]
and Repa [16], for use by students in a course on parallel functional
programming at Chalmers University of Technology. �is goal
provides multiple interesting avenues for future work.

While the visualisation technique presented in this paper pro-
vides an understanding of the behaviour of a parallel algorithm
there is certainly room for experimentation with alternative tech-
niques. For example, having display options for grouping several
nodes into one could enable visualisation of larger graphs. Simi-
larly, having an interactive visual environment for exploring the
graphs produced by the tool could provide programmers with more
in-depth understanding of the behaviour of their programs. Finally,
the interface presented in this paper contains only the three primi-
tives forkNamed, withLocalName, and setName. It is possible that
there are other useful primitives that could be incorporated to give
programmers more sophisticated debugging tools. For example,
providing primitives that allow the programmer to estimate the
amount of work at a node, giving more accurate estimates for the
total work and depth of the program.

A di�erent direction of future work would be to explore what
the graphs can tell about Par-monad laws and semantics. Swap-
ping the order of two adjacent spawn or of two adjacent get (in
the implementation of mergeSort for example) should preserve the
graph and the thread semantics.

Acknowledgments
�is work was partially supported by the projects GRACeFUL (grant
agreement No 640954) and CoeGSS (grant agreement No 676547),
which have received funding from the European Union’s Horizon
2020 research and innovation programme

�e authors would also like to thank the anonymous reviewers
for their valuable comments and helpful suggestions.

References
[1] Joe Armstrong, Robert Virding, Claes Wikstrom, and Mike Williams. 1996. Con-

current Programming in ERLANG (2nd Ed.) (2 ed.). Prentice Hall PTR.
[2] Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. 1989. I-structures: Data

Structures for Parallel Computing. ACM Trans. Program. Lang. Syst. 11, 4 (Oct.
1989), 598–632. DOI:h�p://dx.doi.org/10.1145/69558.69562

[3] Jost Berthold and Rita Loogen. 2007. Visualizing parallel functional program
runs: Case studies with the Eden trace viewer. Parallel Computing: Architectures,
Algorithms and Applications. Advances in Parallel Computing 15 (2007), 121–128.

[4] Guy E Blelloch. 1996. Programming parallel algorithms. Commun. ACM 39, 3
(1996), 85–97.

[5] Richard P Brent. 1973. �e parallel evaluation of arithmetic expressions in
logarithmic time. Complexity of Sequential and Parallel Numerical Algorithms,
Academic Press, New York (1973), 83–102.

[6] Henri Casanova, Arnaud Legrand, and Yves Robert. 2008. Parallel algorithms.
CRC Press.

[7] Ivan Daniluk. 2016. Visualizing Concurrency in Go. (2016). Blog post about
Interactive WebGL visualisation of Go traces. Available from h�p://divan.github.
io/posts/go concurrency visualize/.

[8] Martin Erwig. 2001. Inductive graphs and functional graph algorithms. Journal
of Functional Programming 11, 05 (2001), 467–492.

[9] Emden R. Gansner and Stephen C. North. 2000. An open graph visualization
system and its applications to so�ware engineering. SOFTWARE - PRACTICE
AND EXPERIENCE 30, 11 (2000), 1203–1233.

[10] Robert Griesemer, Rob Pike, and Ken �ompson. 2015. �e Go programming
language. (2015). Available from h�ps://golang.org/.

[11] Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbairn,
Joseph Fasel, Marı́a M Guzmán, Kevin Hammond, John Hughes, �omas Johns-
son, and others. 1992. Report on the programming language Haskell: a non-strict,
purely functional language version 1.2. ACM SigPlan notices 27, 5 (1992), 1–164.

[12] Don Jones Jr., Simon Marlow, and Satnam Singh. 2009. Parallel Performance
Tuning for Haskell. In Proceedings of the 2nd ACM SIGPLAN Symposium onHaskell
(Haskell ’09). ACM, 81–92. DOI:h�p://dx.doi.org/10.1145/1596638.1596649

[13] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Ma�hias Jurenz, Ma�hias
Lieber, Holger Mickler, Ma�hias S. Müller, and Wolfgang E. Nagel. 2008. �e
Vampir Performance Analysis Tool-Set. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 139–155. DOI:h�p://dx.doi.org/10.1007/978-3-540-68564-7 9

[14] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Sco� Biersdor�, Kai Diethelm,
Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen Mal-
ony, Wolfgang E. Nagel, Yury Oleynik, Peter Philippen, Pavel Saviankou, Dirk
Schmidl, Sameer Shende, Ronny Tschüter, Michael Wagner, Bert Wesarg, and
Felix Wolf. 2012. Score-P: A Joint Performance Measurement Run-Time Infrastruc-
ture for Periscope,Scalasca, TAU, and Vampir. Springer Berlin Heidelberg, Berlin,
Heidelberg, 79–91. DOI:h�p://dx.doi.org/10.1007/978-3-642-31476-6 7

[15] Huiqing Li and Simon �ompson. 2013. Multicore Pro�ling for Erlang Programs
Using Percept2. In Proceedings of the Twel�h ACM SIGPLAN Workshop on Erlang
(Erlang ’13). ACM, New York, NY, USA, 33–42. DOI:h�p://dx.doi.org/10.1145/
2505305.2505311

[16] Ben Lippmeier, Manuel Chakravarty, Gabriele Keller, and Simon Peyton Jones.
2012. Guiding Parallel Array Fusion with Indexed Types. In Proceedings of the
2012 Haskell Symposium (Haskell ’12). ACM, New York, NY, USA, 25–36. DOI:
h�p://dx.doi.org/10.1145/2364506.2364511

[17] Simon Marlow. 2012. Parallel and Concurrent Programming in Haskell. Springer
Berlin Heidelberg, Berlin, Heidelberg, 339–401. DOI:h�p://dx.doi.org/10.1007/
978-3-642-32096-5 7

[18] Simon Marlow, Ryan Newton, and Simon Peyton Jones. 2011. A Monad for
Deterministic Parallelism. In Proceedings of the 4th ACM Symposium on Haskell
(Haskell ’11). ACM, 71–82. DOI:h�p://dx.doi.org/10.1145/2034675.2034685

[19] Simon Marlow, Simon Peyton Jones, and Satnam Singh. 2009. Runtime Support
for Multicore Haskell. In Proceedings of the 14th ACM SIGPLAN International
Conference on Functional Programming (ICFP ’09). ACM, New York, NY, USA,
65–78. DOI:h�p://dx.doi.org/10.1145/1596550.1596563

[20] Microso�. 2015. �e Visual Studio Concurrency Visualizer. (2015).
Available from h�ps://docs.microso�.com/en-us/visualstudio/profiling/
concurrency-visualizer.

[21] Mary Sheeran and John Hughes. 2017. Parallel Functional Programming. (2017).
Course web page for the PFP course at Chalmers U. of Tech.. Available from h�p://
www.cse.chalmers.se/edu/course/DAT280 Parallel Functional Programming/.

http://dx.doi.org/10.1145/69558.69562
http://divan.github.io/posts/go_concurrency_visualize/
http://divan.github.io/posts/go_concurrency_visualize/
https://golang.org/
http://dx.doi.org/10.1145/1596638.1596649
http://dx.doi.org/10.1007/978-3-540-68564-7_9
http://dx.doi.org/10.1007/978-3-642-31476-6_7
http://dx.doi.org/10.1145/2505305.2505311
http://dx.doi.org/10.1145/2505305.2505311
http://dx.doi.org/10.1145/2364506.2364511
http://dx.doi.org/10.1007/978-3-642-32096-5_7
http://dx.doi.org/10.1007/978-3-642-32096-5_7
http://dx.doi.org/10.1145/2034675.2034685
http://dx.doi.org/10.1145/1596550.1596563
https://docs.microsoft.com/en-us/visualstudio/profiling/concurrency-visualizer
https://docs.microsoft.com/en-us/visualstudio/profiling/concurrency-visualizer
http://www.cse.chalmers.se/edu/course/DAT280_Parallel_Functional_Programming/
http://www.cse.chalmers.se/edu/course/DAT280_Parallel_Functional_Programming/

	Abstract
	1 Introduction
	2 The Par Monad
	3 Visualisation
	4 Work, Depth, and VisPar Graphs
	5 Case Studies
	5.1 Visualising Merge Sort
	5.2 Debugging reduce

	6 The Implementation of VisPar
	7 Related Work
	8 Conclusions and Future Work
	Acknowledgments
	References

