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Figure 1. A teaser: the extended data�ow graph of the call �b 3

Abstract
We present a work in progress tool (VisPar) for visualising com-
putations in the Par monad in Haskell. Our contribution is not a
revolutionary new idea but rather a modest addition to the set of
tools available for making sense of Par-monad computations. We
hope to show that it can be useful as a teaching tool by providing vi-
sualisations of a few examples from a course on parallel functional
programming.
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1 Introduction
Writing parallel programs is di�cult and achieving good perfor-
mance o�en requires expert knowledge. One reason why this is
the case is that the behaviour of a parallel program is more di�cult
to predict and analyse than that of a conventional sequential pro-
gram. �ere is a clear need for good tools for understanding and
debugging parallel programs both in education and elsewhere.

�e Par monad [12] provides an interface for writing determin-
istic task-parallel programs in Haskell [7]. Code wri�en in the Par
monad builds an explicit data�ow graph where results of parallel
computations are communicated between nodes in the graph using
I-Structures [2], called IVars in the Par monad.

�e need for visualisation of Par monad code was noted by
Marlow in his book [11, p. 60]:

Unfortunately, right now there’s no way to generate
a visual representation of the data �ow graph from
some Par monad code, but hopefully in the future
someone will write a tool to do that.

In this paper we present a prototype tool we call VisPar which
helps �ll this gap. More precisely, we make the following contribu-
tions
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• We present a tool for providing a data�ow graph as output
from computations in the Par monad (Sections 3 and 6).

• We present two ways of visualising these graphs in an un-
derstandable way (Sections 3 and 4).

• We show how the above two contributions make it possible
to analyse the parallel behaviour of programs and apply it
to an example from an exam in a course Parallel Functional
Programming course at Chalmers (Section 5).

2 �e Par monad
�e Par monad provides a small interface for explicit task paral-
lelism.

fork :: Par () → Par ()
new :: Par (IVar a)
put :: NFData a⇒ IVar a→ a→ Par a
get :: IVar a→ Par a

-- Derived operation
spawn :: NFData a⇒ Par a→ Par (IVar a)

• �e fork primitive takes a Par computation and runs it
in parallel with the rest of the program as a light-weight
“thread”. Note that the return type of fork :: Par () → Par ()
ensures that results from the new thread must be commu-
nicated through other means (using IVars, as we will see
below).

• �e new primitive returns a new IVar , which can used
to communicate results of parallel computations between
threads using the put and get primitives.

• �e put primitive evaluates a value and puts it in an IVar ,
the NFData a constraint means that values of type a can
be strictly evaluated to some normal form (decided by the
instance of NFData for a).

• �e get primitive takes an IVar and blocks until a result is
put into it by another thread.

�e put and get operations can be performed on an IVar from
anywhere in the Par computation. However, each IVar may only be
put to once, multiple puts to the same IVar will result in a runtime
error.

Finally, the derived spawn operation abstracts a common pa�ern
found in many programs wri�en in the Par monad, forking a Par
program with a single result and communicating it through an IVar .
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spawn :: NFData a⇒ Par a→ Par (IVar a)
spawn p = do

v ← new
fork (p >>= put v)
return v

�e run function for Par monad computations is a scheduler
runPar :: NFData a ⇒ Par a → a which we later (in Section 6)
explain and extend to also produce graphs.
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Figure 2. �e simple data�ow graph for �b 5

As an example of a Par program consider the �b function given
below, which computes the nth Fibonacci number in the Par monad.
�b :: Int → Par Int
�b n | n < 2 = return 1

| otherwise = do
lv ← spawn $ �b (n − 1)
rv ← spawn $ �b (n − 2)
l ← get lv
r ← get rv
return (l + r)

In the case where n is greater than 1 we spawn two threads which
will compute �b (n − 1) and �b (n − 2) in parallel and put their
results in the lv and rv IVars. We then obtain the results from lv and
rv respectively. Finally we return the sum of the result of �b (n− 1)
and �b (n − 2).

3 Visualisation
In order to provide informative visualisation we extend the Par
monad interface with a function forkNamed :: String → Par () →
Par (). �is makes it possible to give forked threads names, as
can be seen in the graph for the �b function in Figures 1 and 2.
�e default name is a thread ID (a counter starting from 0). Using
forkNamed we also implement spawnNamed :: String → Par a→
Par (IVar a) in a way very similar to the implementation of spawn,
only using forkNamed instead of fork. We also found it useful to
have a function withLocalName :: String → Par a→ Par a which

tiny :: Par Int
tiny = do

ivar ← new
fork (put ivar 5)
get ivar

(a) Source code of tiny.
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Figure 3. A tiny program (a) with its data�ow graphs (b), (c)

locally changes the name of a thread without forking. To produce
the visualisation of �b in Figures 1 and 2 we modify the de�nition
of �b in Section 2 to use spawnNamed instead of spawn.

�e graphs in this paper are one way of visualising parallel
computations. Each node represents an event in the computation
and is labeled with its thread identi�er and event type. �e edges
between nodes denote the relationship between events:
• An F means the “parent” forked the “child”
• A C means that the “child” is the continuation of the “par-

ent”, the “child” event occur a�er the “parent” event.
• A G means that the “child” depends on the result of a get

from an IVar �lled by the “parent”
Here the “parent” thread corresponds to the label on the source
node and the “child” thread corresponds to the label on the target
node.

Using our extended scheduler to run the code for tiny in Figure
3a gives the graph in Figure 3c. We refer to these graphs as ex-
tended data�ow graphs as they contain detailed information about
the execution of the program. However, as evidenced by Figure
1, the graphs for simple parallel computations like �b 3 quickly
become large. We therefore also provide a way to obtain simpler
data�ow graphs like the one for tiny in Figure 3b which only con-
tain information about what thread forked and got from what other
thread.
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4 Visualising Merge Sort
�e following implementation of mergeSort implements the parallel
merge sort algorithm using the Par monad:

mergeSort :: (NFData a,Ord a) ⇒ Int → [a] → Par [a]
mergeSort 0 xs = return (sort xs)
mergeSort d xs = case xs of
[ ] → return [ ]
[x ] → return [x ]
xs → do

let (ls, rs) = splitAt (length xs ‘div‘ 2) xs
lv ← spawn (mergeSort (d − 1) ls)
rv ← spawn (mergeSort (d − 1) rs)
lr ← get lv
rr ← get rv
return (merge lr rr)

�e �rst argument controls the “depth of parallelism”, giving
control over granularity, mergeSort d xs will only spawn parallel
computations to a depth of d (thus a maximum of 2d threads). In
the base case (at depth zero) mergeSort resorts to the sequential sort
function from the Haskell base libraries [7]. Otherwise, at non-zero
depth, the empty and singleton lists are both already sorted and
can be returned as is. In the �nal case the list is �rst split in two
halves, ls and rs, and sorted in parallel by spawning two recursive
calls to mergeSort using spawn, note the decreasing d argument.
Finally, the results of the two recursive calls, lr and rr , are obtained
from the IVars lv and rv and combined using merge, which merges
two sorted lists into a sorted list. Figures 4 and 5 show how VisPar
renders the extended and simple data�ow graphs for mergeSort 2 xs
with a large list xs.

While the simple graph hides a lot of the information about
the implementation of mergeSort present in the extended graph, it
omits the ordering of operations like new and put, it makes explicit
the divide and conquer nature of the merge sort algorithm in a way
which is more di�cult to see in the extended graph.

5 Debugging reduce
In this section we show how our visualisations can help debug in
understanding the behaviour of parallel programs. It brie�y covers
the use of our visualisation tool to tackle a recent exam question in a
course on parallel functional programming at Chalmers University
of Technology [15]. �e original problem featured an underper-
forming version of the parallel reduce function wri�en in Erlang
[1] and has been translated to the following Par monad for this
paper:

reduce :: NFData a⇒ (a→ a→ a) → [a] → Par a
reduce f [x ] = return x
reduce f xs = do

let (ls, rs) = splitAt (length xs ‘div‘ 2) xs
rv ← spawn (reduce f rs)
r ← get rv
l ← reduce f ls
return (f l r)

�is implementation correctly computes the reduction of a list
using a binary function. However, benchmarking this function will
reveal that it runs slowly, never utilising more than one core at
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Figure 4. �e extended data�ow graph for mergeSort 2 xs
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Figure 5. Merge sort data�ow graph for depth 2

a time. �e task is to suggest a simple �x which will make the
program perform well. Figure 6a shows the simple data�ow graph
for the buggy version of reduce. From this graph alone it is certainly
not obvious why the code runs slowly. However, the extended
data�ow graph in Figure 7a provides a detailed trace allowing us to
study the behaviour which gives rise to the poor performance. From
the graph it is evident that the entire computation is sequential,
in spite of using fork to create a new thread, something which is
not evident in Figure 6a. �e problem is that the line r ← get rv
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comes directly a�er the line l ← reduce f ls, this means that only
one thread is active at a time while its parent waits for it to �nish
executing before continuing with the rest of the code. Fixing this
error by swapping the two lines instead gives rise to the simple
data�ow graph in Figure 6b. More interestingly it also gives rise to
the extended data�ow graph in Figure 7b which clearly shows that
useful parallel work can be done a�er the code has been �xed.
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Figure 6. Simple data�ow graph of a slow (a) and correct (b) reduce
on a list of length six

6 �e implementation of VisPar
�is section gives a brief overview of the implementation of the
visualisation presented in this paper. (�e code of VisPar can be
found online at h�ps://github.com/MaximilianAlgehed/VisPar.)

We begin with recap of the implementation of the Par monad
by Marlow et al. It is implemented in continuation passing style
by the type newtype Par a = Par ((a → Trace) → Trace) where
the Trace type is shown below. �e function runPar is by default
implemented using a work-stealing scheduler, but as Marlow et al.
point out, other schedulers can be implemented without changing
the core implementation of Par .

data Trace where
Get :: IVar a→ (a→ Trace) → Trace
Put :: IVar a→ a→ Trace
New :: (IVar a→ Trace) → Trace
Fork :: Trace→ Trace→ Trace
Done :: Trace

-- Our added primitives
SetName :: String → Trace→ Trace
GetName :: (String → Trace) → Trace

�e implementation of the visualisation using numbers as names
for threads is a straightforward instance of this idea. It is imple-
mented as an extension of the work-stealing scheduler provided
by Marlow et al. In this sense the visualisation is an example of
the modularity of the Par monad. However, to implement the
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Figure 7. Extended data�ow graph of a slow (a) and correct (b)
reduce on a list of length six

https://github.com/MaximilianAlgehed/VisPar


VisPar: Visualising dataflow graphs from the Par monad FHPC’17, September, 2017, Oxford, UK

forkNamed and withLocalName primitives a small change needs
to be made to the implementation of the Trace data type. We
add two constructors SetName :: String → Trace → Trace and
GetName :: (String → Trace) → Trace which are used to implement
the primitives setName :: String → Par () and getName :: Par String.
We do not expose the getName primitive to the programmer as it
would provide a method for introspection into the behaviour of
the scheduler by observing the thread name. �is could be used to
brake determinism and referential transparency. Using getName
and setName we can implement withLocalName and forkNamed
as seen below. �e implementation of forkNamed forks a thread
which �rst sets its name and then executes normally. Similarly,
the withLocalName primitive �rst obtains the current name, sets
its name to the provided name, runs the computation p, sets the
name to the original name, and �nally returns the result of p.

forkNamed :: String → Par () → Par ()
forkNamed s p = fork (setName s >> p)
withLocalName :: String → Par a→ Par a
withLocalName name p = do

old ← getName
setName name
a← p
setName old
return a

We use Erwig’s functional graph library [4] to construct the
data�ow graph as the computation is run. Finally we use graphviz
[5] to render the graph (currently as a PDF).

7 Related Work
�e ThreadScope tool [8] provides an interface for visualising the
resource consumption of parallel programs in Haskell. VisualStudio
2010 provides similar functionality to ThreadScope [14]. In the
functional programming domain the percept tool [9] for Erlang
provides functionality similar to that of ThreadScope. Tools like
these are very useful for debugging the resource consumption of
parallel programs. However they do not provide a comfortable
interface for visualising concrete behaviour.

�e gotracer and gothree.js tools [3] allow Go [6] program-
mers to visualise concurrent and parallel computations as interac-
tive three dimensional animations. We believe it would be possible
to visualise our graphs in a similar way, the graphics presented in
this paper are our initial experiments and providing more intuitive
views is part of our ongoing work in this domain.

8 Conclusions and Future Work
�e work presented in this paper is a �rst step towards providing vi-
sual aids for building parallel programs in Haskell. We have shown
how a small extension to the Par monad allows us to provide useful
visualisation of the data�ow graphs of parallel programs. Di�erent
visualisations of the same data�ow graph provide information and
insight about di�erent aspects of the computation. A detailed view
of a graph helps us understand the �ne-grained dynamic behaviour
of parallel programs while a more simple view lets us clearly see
the overall structure of the algorithm used. �e �nal goal is to
develop more comprehensive tools for multiple parallel program-
ming models, possibly including approaches like Strategies [13]
and Repa [10], for use by students in a course on parallel functional

programming at Chalmers University of Technology. �is goal
provides multiple interesting avenues for future work.

While the visualisation technique presented in this paper pro-
vides an understanding of the behaviour of a parallel algorithm
there is certainly room for experimentation with alternative tech-
niques. Having an interactive visual environment for exploring
the graphs produced by the tool could provide programmers with
more in-depth understanding of the behaviour of their programs.
Finally, the interface presented in this paper contains only the three
primitives forkNamed, withLocalName, and setName. It is possible
that there are other useful primitives that could be incorporated to
give programmers more sophisticated debugging tools.

A di�erent direction of future work would be to explore what
the graphs can tell about Par-monad laws and semantics. Swap-
ping the order of two adjacent spawn or of two adjacent get (in
the implementation of mergeSort for example) should preserve the
graph and the thread semantics.
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