
Libraries You Can Trust:
High-level Specifications and Correct Implementations via Dependent Types

1 Purpose and aims

Our long term goal is to create systems (theories, programming languages, libraries and
tools) which make it easy to develop software components and matching specifications.
In this research project, we aim to leverage the power of languages with strong types to
create libraries of components which can express functional specifications in a natural
way, and, simultaneously, implementations which satisfy those specifications. The ideal
we aim for is not merely correct programs, nor even proven correct programs; we want
proof done against a specification that is naturally expressed for a domain expert.

Concretely, we aim to identify common patterns in the specification of programs, and
capture those in libraries. At the same time, the patterns of implementations of these
specifications will also be captured in the library, such that the development of software
will go hand-in-hand with proofs of its functional correctness. As case-studies we will
work in two areas: the Algebra of Parallel Programming (inspired by the Algebra of Pro-
gramming [Bird and de Moor, 1997]) and Domain-specific modelling of global systems.

Case AoPP: We want to tackle one of the key problems confronting the computing
world today: that of correctly implementing scalable parallel computations. At the core
of this problem is divide&conquer: divide a workload (recursively) into parallel tasks
and combine the results. We focus on the algebraic structure of this core and develop
libraries for correct-by-construction parallel programming.

Case DSM: Climate impact researchers heavily depend on computer models to simu-
late the co-evolution of climate and society under different scenarios. There is currently
a large gap between the mathematical models of the researchers and the codes they
run and this makes it really hard to distinguish between an implementation error and a
successful climate policy. We focus on formalising the key concepts in a domain specific
language for correct-by-construction Global Systems Simulations (GSS).

Note that what we call “software” or “program” in this proposal is not just “a sequence
of instructions, written to perform a specified task with a computer ” [Wikipedia, Com-
puter Program]. In our terminology a “program” is a more high-level description of what
a computer should compute (perhaps closer to the meaning of “algorithm”) or even, in
the case of domain-specific modelling, a high-level description of a problem or a solution
in a particular application domain (be it financial contracts, partial differential equations
or formal proofs). This means that the iterative process of coming up with a “program”
matching a “specification” is not limited to traditional programming, but it is also a way of
exploring and understanding a domain. A resulting library of specifications can be seen
as a collection of building-blocks for describing (problems in) the domain and a library
of implementations can be seen as computer aided methodologies for computing with,
or solving problems within, that domain.
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2 Research area overview

Abstraction. The ability to name and reuse parts of algorithms is one of the cor-
nerstones of computer science. Abstracting out common patterns enables separa-
tion of concerns, both in the small (variables, functions) and in the large (modules,
libraries). Conversely, lack of abstraction may force the implementation to contain mul-
tiple instances of a single pattern. This process of replication is not only tedious, but
error-prone, because the risk of software error is directly correlated with the size of the
program. Hence, one important trend in the evolution of new programming languages
is improved support for abstraction—making more and more of the language features
programmable. Widely used languages such as Java, C++, Scheme and Haskell are
actively gaining abstraction power with Java Generics, C++ Templates, Scheme’s com-
posable macros, and Haskell meta-programming, respectively. But power always comes
at a price: in this case, without proper checking, more complex features can increase
the risk of bugs and unintended behaviour. Thus, with new abstraction mechanisms we
also need new, preferably computer-aided, mechanisms for checking the program code.

Types. Types are used in many parts of computer science to organise the different
kinds of values and to prevent software from going wrong. In a nutshell, types enable
the programmer to keep track of the structure of data and computation in a way that is
checkable by the computer itself. Effectively, they act as contracts between the imple-
menter of a program part and its users. If type-checking is performed statically, when
the program is compiled, it then amounts to proving that properties hold for all possible
executions of the program, independently of its input.

By the Curry–Howard correspondence, type systems are directly related to logics. Rich
type systems, such as those for languages with higher-order abstraction, correspond to
higher-order logics. A well-know example of a system based on this principle is the Coq
proof assistant [The Coq development team, 2010].

Dependently typed programs. Even though type theory has been used as a logic for
decades, it has only recently gained popularity as a medium for programming. The via-
bility of dependent types in a substantial “real world” example was perhaps first demon-
strated by CompCert, a C compiler written and verified in Coq [Leroy, 2009]. Other
applications are rapidly appearing: verification of imperative programs within Coq [Chli-
pala et al., 2009], database access with static guarantees [Oury and Swierstra, 2008],
distributed programming [Swamy et al., 2011] resource-safe programs [Brady and Ham-
mond, 2012] A recent grant from the National Science Foundation is exploring “The
Science of Deep Specification” using dependently typed programs and proofs ($10M,
2016–2021).

Agda. The programming language Agda is a system based on Martin-Löf type the-
ory [Martin-Löf, 1984]. Within it, one can express programs, functional specifications,
and proofs in a single language (by taking advantage of the Curry–Howard correspon-
dence). Agda is currently emerging as a lingua-franca of programming with dependent
types. Its canonical reference, Norell’s thesis [2007], has been cited 60 times per year
since its publication, indicating strong academic interest. Additionally, there are several
high-quality video introductions to Agda available on the Internet, produced by scientists
with no affiliation to Chalmers. These range from short demonstrations (e.g., L. May-

2

http://deepspec.org/
http://deepspec.org/


Appendix A P. Jansson, 720311–7515, LibTrust

dwell’s 15 min. available on YouTube since 2012) to mini-courses consisting of several
lectures (e.g., D. Licata’s Dependently-Typed Programming in Agda, presented at the
Oregon Prog. Lang. Summer School in 2013). Accordingly, the focus of this project is
on expressing libraries of correct programs and proofs in Agda.

Libraries for dependent types. Strongly typed languages, such as Agda and Coq,
come with standard libraries that contain useful building blocks to create programs,
specifications, and proofs. The Coq library is part of a mature system which has
been used in many projects (sometimes complemented by extensions such as Ssre-
flect [Gonthier, 2009]). However, it places a strong emphasis on proofs rather than pro-
grams, reflecting the fact that the Coq system is mostly intended as a proof assistant.
Projects which aim to use Coq for program development, such as Ynot and CompCert
[Chlipala et al., 2009; Leroy, 2009], do not result programs written in the dependently-
typed language of Coq. This language is used to specify and prove the correctness of
computations implemented in other (not dependently-typed, imperative) languages.

The same observation applies to the libraries of most systems with dependent types. In
contrast, the Agda standard library has evolved from common abstractions needed by
Agda programmers and thus emphasises programs rather than proofs. This is demon-
strated by its use in programs across several fields, in particular parser combinators
[Danielsson, 2010], Algebra of Programming [Mu et al., 2009] and Cryptography [Pouil-
lard and Gustafsson, 2015].

3 Project description

Our project will be organised in multiple iterations, each refining the libraries developed
in the previous one. The first iteration is based on our current experience with libraries
built in the functional programming languages Haskell and Agda. Each iteration will have
the following three phases.

1. Development of a proven-correct application in a given domain. We believe
that the best way to develop libraries is by abstracting common patterns found in
various applications. In this phase, we will assess the viability of our libraries by ap-
plying them to different applications ranging from classical problems of computer
science to global systems science applications (details in the following subsec-
tions).

2. Extraction of common patterns into libraries. In this phase, we will identify
common patterns found in the programs and specifications produced in the pre-
vious phase, and capture them in libraries. At the same time, we will tie each
pattern of specification to one or more patterns of implementation. We will then
reimplement the application previously produced using the library.

3. Refinement of the programming language. In this phase we will assess the
strong and weak points of the underlying programming environment we use. We
will inform the group in charge of the development of the language of the possible
shortcomings we might identify and participate in their remedy.

The iterative refinement steps will be used in two major case studies described in the
following subsections: Algebra of Parallel Programming and Domain-Specific Mod-
elling of global systems.
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3.1 Algebra of Parallel Programming (AoPP)

Dependent type theory is rich enough to express that a program satisfies a functional
specification, but there is no a-priori method to derive a program once the specification-
as-type is written. On the other hand, Bird and de Moor [1997] give a general method-
ology to derive Haskell programs from specifications, via algebraic reasoning. Despite
the strong emphasis on correctness, their specifications and proofs are not expressed
in a formally checkable way. In [Mu et al., 2009] we have shown how to encode Bird
and de Moor–style program derivation in the dependently typed programming language
Agda. A program is coupled with an algebraic derivation from a specification, whose
correctness is guaranteed by the type system. We believe that this approach is useful in
tackling one of the key problems confronting the computing world today: that of correctly
implementing scalable parallel computations. This is our aim in the first case study.

At the core of scalable parallel programming is the ability to divide a workload into two
independent tasks (which can be run in parallel) in such a way the solutions can be
easily combined into a final result. This subdivision can be done recursively to the depth
needed to effectively use the available hardware parallelism. We want the results of
the parallel computation to be independent of the number of divisions of the workload,
otherwise we would obtain different results on machines with different numbers of pro-
cessors. Similarly, we want to obtain the same result irrespective of the order in which
the individual tasks terminate.

These conditions are met by a large class of algorithms, namely those which are monoid
homomorphisms. That is, a function f : A → B can be parallelised if it satisfies the
following laws:

f emptyA = emptyB

f (a ++A b) = f a ++B f b

where empty and ++ denote monoidal unit and composition (for the type in the subscript).
Often, a function which is quite not a monoid homomorphism can be formulated in terms
of an auxiliary function, which works on an extended type.

A simple example is word counting, which maps strings to natural numbers (the number
of white-space separated words in the string). The monoid structures are concatenation
with the empty string as unit for the domain, and addition with zero as unit for the co-
domain. It is easy to see that word counting is not a homomorphism: if we cut a string
containing a single word (no spaces) in two, each sub-task will count one word, and the
addition of the two independent results will return the erroneous count of two.

The reason for that is that we have lost the information about the (lack of) spacing. To
avoid this loss, we need to preserve the information about spacing on either side, in
addition to counting the number of full words.

wordCount : String → N
wordCount = extractCount ◦ helper
helper : String → CountAndSpacing -- homomorphism
helper = divideAndConquer baseCase combine
extractCount : CountAndSpacing → N -- simple projection
baseCase : String → CountAndSpacing
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combine : CountAndSpacing → CountAndSpacing → CountAndSpacing
...

In this simple case, inventing the CountAndSpacing type and the helper function does
not require much ingenuity1. But when we move on to more realistic examples, such as
that of parallel parsing, the type transformation is more challenging.

A parser is a program that analyses a piece of text to determine its logical structure.
Parsing is, at least at first sight, an inherently sequential process, especially when it
comes to formal texts, such as program code, since lines of code often require the
surrounding context in order to make sense.

Nevertheless, inspired by sparse matrix algorithms and the work of Valiant [1975] on lan-
guage recognition, we have been able to create a suitable analogue of the CountAndSpacing
type for parsing, leading to “Efficient Parallel and Incremental Parsing of Practical Context-
Free Languages” [Bernardy and Claessen, 2013].

Perhaps more importantly, when formalising the proofs of correctness of the parallel
parsers, we have been able to use the Bird and de Moor approach in order to calculate
the parallelisation from the specification of parsing [Bernardy and Jansson, 2015]. This
kind of program calculation is at the core of what we call the Algebra of Parallel Pro-
gramming (AoPP). The resulting parsing algorithm is based on matrix algebra where
the matrix elements are sets of non-terminals (often the empty set when there is no
parse for a substring). The matrix representation is based on quad-trees to exploit the
sparseness and the algebraic structure turns out to be related to semi-rings. (We intend
to further explore this connection to linear algebra).

In this project, we aim to develop and use AoPP in order to

• calculate parallel algorithms for optimisation algorithms (and other numerical meth-
ods required by the domain-specific modelling case study),

• calculate parallel versions of certain graph algorithms (like path finding),

• develop general principles for the construction of the intermediate datatypes and
helper applications.

3.2 Domain-specific modelling (DSM)

The proof that an implementation satisfies a specification is not very valuable if the spec-
ification is expressed in an incomprehensible fashion. To be useful, specifications must
be understandable to domain experts, and therefore it is important for computer scien-
tists to work with the domain-specific concepts. We have done so in the past, in the
domain of vulnerability for climate impact research [Lincke et al., 2009], grammars for
language processing [Duregård and Jansson, 2011], and more recently, Walras equilib-
ria and Pareto-efficiency for economics [Ionescu and Jansson, 2013a].

In the case of economics, the resulting specifications, while quite close to the mathe-
matical formulations that the modellers are used to, are non-constructive in nature and
can only be implemented in restricted settings (for example, when all the types involved
are finite). To deal with more general cases will involve a great deal of innovation, both in

1Take CountAndSpacing = B× N × B for “space at start?”, “word count”, “space at end?”.
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the concepts to be specified (consider the difference between discrete and continuous
mathematics) and in the numerical methods to be implemented. To bring about such
innovations is our aim in this area of the project.

The chosen application area for the first phase of our iterative development is that of
models of emissions trading and, more generally, international environmental agree-
ments. We plan to build on the previous work by formalising, together with the domain
experts of the Potsdam Institute for Climate Impact Research, the key concepts of such
models. (player, coalition, market, stability, free-riding, etc.). This requires specifications
and proofs for higher-order constructions such as functors, monads, and vulnerability
measures [Ionescu, 2009].

In the second phase, we will develop a library of common patterns, creating a domain
specific language for expressing models of emission trading and coalition formation.

And in the third phase we will suggest ways of improving language support to present the
specifications in a way accessible to the domain experts. This includes better syntactic
support for domain specific languages (using the Brady and Hammond [2012] as a
starting point), and better support for eliding information, extending the mechanism for
hidden arguments in Agda.

3.3 Organisation

The project is led by Patrik Jansson in the Functional Programming group at Chalmers.
The work will be carried out by Jansson (20%), a PhD student (80%) and by C. Ionescu
(Guest Researcher), and several MSc thesis students (not paid by the project). We will
benefit from work on high-level modelling and scientific computing done at (and funded
by) the Potsdam Institute for Climate Impact Research (N. Botta).

The first year of project is devoted to library support for Algebra of Programming (mile-
stone AoPP) and the second year focus is on the DSM case study. From year two Irene
Lobo Valbuena (currently a PhD student working on an EU-project, GRACeFUL, ending
early 2018) will join.Irene will do her licentiate in the GRACeFUL project and finish her
PhD in the LibTrust project working on the DSM case-study.

From year three onward we aim at merging the two tracks by applying the AoPP libraries
to global systems models. We want the resulting software to scale up to enable running
on HPC centres beyond the end of the project. Jansson and Ionescu will together su-
pervise the new PhD student towards her PhD on “High-level Specifications and Correct
Implementations via Dependent Types”.

To educate MSc and PhD students (in this and in other projects) we plan to organise
a summer school in 2017 on the Algebra of Parallel Programming in Agda. We will
also build up a github repository of library code (for specifications and implementations)
produced in the project.

4 Significance

Effective production of correct software is a problem which remains unsolved, and is of
great economic significance. By leveraging the capabilities of dependently-typed lan-
guages, this project aims to reduce the potential for errors by developing the specifi-
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cation of a system together with its implementation, and keeping them synchronised
throughout the lifetime of the system.

Dependently-typed programming languages also allow us to formally encode and verify
program derivations, which are important in minimising the number of “Eureka” steps
needed to go from the specification to the implementation. This is even more so in
the context of parallel programming, where the problems of sequential programming
are compounded by the need to invent suitable operations and types for efficient paral-
lelisation. The development of an algebra of parallel programming will be a significant
advance in this area.

Software libraries have long been recognised as vehicles for increased software pro-
ductivity. First, they capture domain knowledge in terms of software solutions to the
problems that a user wants to solve. Second, they add a layer of abstraction to the un-
derlying computation, which allows developers to write software in terms closer to their
problem domain and usually results in improved quality and robustness. We aim to go
beyond state-of-the-art when it comes to expressivity of libraries for programming with
dependent types, and set new standards for the design of libraries in general.

The scientific contributions to the computer science area will be in the form of software
prototypes (the libraries and other associated code will be available under an open li-
cence), conference and journal papers and talks (on the techniques used to create the
libraries as well as on the amendments made to the languages with dependent types),
and doctoral training. We also hope to help the wider research community by contribut-
ing libraries for increasingly correct scientific computing.

As the example of parallel parsing shows, there are computations that can be expressed
as instances of (abstract) linear algebra algorithms. At the same time, the calculational
proofs that we have given for the correctness of these algorithms improve on the classi-
cal informal proofs. The connection between computing science and linear algebra has
been noticed several times in the literature, but it has until now been exploited mainly in
one direction: finding new applications of linear algebra. We aim to explore the connec-
tion also in the other direction: using recursive types and calculational proofs to simplify
presentations of classical linear algebra notions and results. This will be a natural part
of our more general efforts (beyond this project) to specify and implement validated
numerical methods.

5 Preliminary findings

We have published results showing relevant related experience in all the suggested
iteration phases and application areas as indicated below.

5.1 The three phases of the iteration

Proven-correct applications: We have worked on correct applications in Haskell [Daniels-
son and Jansson, 2004; Jansson and Jeuring, 2002] and supporting theory [Danielsson
et al., 2006]. We have also worked on applications to climate impact research and eco-
nomic modelling directly in Agda: [Ionescu and Jansson, 2013a,b]. More recent work
(in submission) includes a formalisation of Sequential Decision Problems [Botta et al.,
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2016b] and follow-up work on a computational theory of policy advice and avoidabil-
ity [Botta et al., 2016a].

Patterns into libraries: We have developed, implemented and compared libraries of
generic functions [Jansson and Jeuring, 1998a,b; Norell and Jansson, 2004; Rodriguez
et al., 2008]. Most of this has been done in Haskell, but it has become clear that the
natural setting for generic programming is dependent types [Benke et al., 2003]. We
have also worked on libraries for parsing [Bernardy and Jansson, 2015; Duregård and
Jansson, 2011], testing [Duregård et al., 2012; Jeuring et al., 2012] and several DSLs
for applied mathematics and calculus [Ionescu and Jansson, 2013a,b, 2015]

Refinement of programming languages: We have designed a generic programming
language extension (PolyP [Jansson and Jeuring, 1997]) for Haskell, and we have been
involved in the design of the Agda language [Norell, 2007]. We are active in the devel-
opment of Agda: from the development of parametricity theory [Bernardy et al., 2012],
a new kind of generic programming, based on a generalisation of erasure, is being de-
veloped by our collaborators at Chalmers. We have also contributed to the development
of the “Concepts” feature of C++ by an extensive comparison to Haskell’s type classes
[Bernardy et al., 2010].

5.2 The application areas

AoPP: In [Mu et al., 2009] we presented a library for Bird and de Moor–style program
derivation in Agda. Based on this work, a similar library has been implemented in Idris
by David Christiansen.

Our group has developed an efficient sparse matrix based algorithm for parallel parsing
[Bernardy and Claessen, 2013]. As a follow-up, we have recently shown [Bernardy and
Jansson, 2015] that it is possible to calculate the efficient parallel algorithm from a spec-
ification of parsing, thus illustrating the promise of an algebra of parallel programming.

DSM: We have used dependent types in order to express high-level specifications
of software components used in computational assessments of vulnerability to climate
change [Ionescu, 2016; Ionescu and Jansson, 2013b]. We have been able to prove
the correctness of some of these components (and explain why others were incorrect),
and, perhaps more importantly, we have been able to clarify some of the terminological
confusion existing in the field.

In [Ionescu and Jansson, 2013a], we have also used type theory to specify the basic
building blocks of economic theory, used in almost all economic models today, concepts
such as Pareto efficiency, Walrasian equilibrium, Nash equilibrium, etc., together with
the relations between them (for example, Walrasian equilibria are Pareto efficient). Re-
cently, we have developed specifications and correct-by-construction implementations
for a large class of sequential decision problems [Botta et al., 2013, 2016a,b].

6 International and national collaboration

With this project, we believe we are in an ideal situation for collaboration, as we have
contacts both upstream with the implementers of dependently-typed languages, and
downstream with end-users of frameworks for formal modelling and implementation.
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On the upstream side, we are in direct contact with the group in charge of the devel-
opment of Agda: Two of the main developers, Norell and Danielsson, were Jansson’s
students; and Agda Implementers’ Meetings are held yearly at Chalmers. These meet-
ings attract participants from research groups in Nottingham, Copenhagen, Munich,
and Japan. We have also close contacts with the programming-logic group at Univ. of
Gothenburg, which deals with the fundamental aspects of type theory (T. Coquand).

Downstream, we have contacts with domain experts (N. Botta, J. Heitzig) in Potsdam,
who need tools to describe models of various dynamical systems (such as the atmo-
sphere or the economy) in formal ways, as well as efficient implementations of these
models. Since political decisions may depend on the outcome of their simulations, cor-
rectly implementing these models is important.

Based on our experience with functional programming and domain specific modelling we
have acquired funding for the project GRACeFUL from the FETPROACT-1-2014 Global
Systems Science call in Horizon 2020. The project started early 2015 and can comple-
ment the current application, especially the case study on Domain Specific Modelling.
More recently we have started working in the “Centre of excellence for Global Systems
Science (CoeGSS)”, also with Horizon 2020 funding. Through CoeGSS we have access
to two super-computing centres (HLRS in Stuttgart and PSNC in Poznań) and several
sites with domain experts in Global Systems Science.
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