This is the authors’ version (2011-3-25) of the work pre-refereeing. It is posted here by permission of ACM for your personal use.
Not for redistribution.

Embedded parser generators

Jonas Duregérd

Patrik Jansson

Chalmers University of Technology and
University of Gothenburg

{jonas.duregard,patrikj}@chalmers.se

Abstract

We present a novel method of embedding context-free grammars in
Haskell, and to automatically generate parsers and pretty-printers
from them. We have implemented this method in a library called
BNFC-meta (from the BNF Converter, which it is built on). The li-
brary builds compiler front ends using metaprogramming instead of
conventional code generation. Parsers are built from labelled BNF
grammars that are defined directly in Haskell modules. Our solu-
tion combines features of parser generators (static grammar checks,
a highly specialised grammar DSL) and adds several features that
are otherwise exclusive to combinatory libraries such as the ability
to reuse, parameterise and generate grammars inside Haskell.

To allow writing grammars in concrete syntax, BNFC-meta pro-
vides a quasi-quoter that can parse grammars (embedded in Haskell
files) at compile time and use metaprogramming to replace them
with their abstract syntax. We also generate quasi-quoters so that
the languages we define with BNFC-meta can be embedded in
the same way. With a minimal change to the grammar, we sup-
port adding anti-quotation to the generated quasi-quoters, which
allows users of the defined language to mix concrete and abstract
syntax almost seamlessly. Unlike previous methods of achieving
anti-quotation, the method used by BNFC-meta is simple, efficient
and avoids polluting the abstract syntax types.

Keywords Metaprogramming, Grammar Engineering, Domain
Specific Languages, Quasi-quoting

1. Introduction

The underlying motivation of this paper is to support rapid devel-
opment of, and experimentation with, Domain Specific Languages
(DSLs). Especially if the desired syntax of the DSL makes it diffi-
cult or impossible to embed it in a general purpose language using
conventional methods (as a combinator library). We aim to elim-
inate the “barrier” associated with employing a parser generator
such as BNFC, and make it as easy to use as a parser combinator
library but provide a wider set of features.

The title of this paper is deliberately ambiguous about what is
embedded, referring both to the parser generators and the generated
parsers.

[Copyright notice will appear here once ’preprint’ option is removed.]

Embedded (parser generators) Like the original BNF Converter
on which it is built, BNFC-meta builds compiler front ends (ab-
stract syntax types, parsers, lexers and pretty-printers) from gram-
mar descriptions. Unlike the BNF Converter and other parser gen-
erators: 1) BNFC-meta is a metaprogram and 2) our grammar de-
scriptions are embedded as Haskell values.

By “metaprogram” we mean that it is a Haskell function from
grammars to abstract Haskell code. This abstract code can be
“spliced” by the compiler using the Template Haskell language
extension. Shortening the compilation tool chain in this way has
many practical advantages, including faster and simpler compila-
tion. Embedding the language definitions also allow users to define
their own functions in the same module as the parser.

The fact that grammars are embedded in the target language
(i.e. Haskell) is a major advantage of our approach. This lends
BNFC-meta features which are typically reserved for combinator
parsers, namely the possibility of building grammar definitions us-
ing all the abstraction features of a functional language. This can
drastically reduce the complexity of code, enabling features such
as reusable grammars, parameterised grammars and programmer
defined grammar transformations. Even though BNFC-meta gram-
mars are embedded in Haskell rather than defined in separate files,
BNFC-meta allows users to write grammars in the same concrete
syntax as BNFC does. This is achieved using another metapro-
gramming facility called quasi-quoting, which essentially provides
programmer defined syntax extensions to Haskell. Users can mix
concrete and abstract grammar syntax depending on which is most
suited for the task at hand.

(Embedded parser) generators The alternative interpretation of
the title (that the generated parsers are embedded) highlights an-
other innovation in BNFC-meta. By embedded we mean that any
language defined with BNFC-meta (an object language) can be
used as a syntactic extension to Haskell, and the compiler will au-
tomatically translate the concrete syntax of the object language into
its corresponding abstract syntax. This is achieved using the same
technique as when we embed our grammar definitions; we auto-
matically generate quoters for the object language. As indicated by
their name, a quoter allow the object language to be used in a syn-
tactically defined scope (a quote).

Quotes can be used to define both patterns and expression, but in
order to define useful patterns we need to be able to bind variables.
In general we want to be able to have “holes” in our quotes that are
filled with Haskell values. This is called anti-quoting, and it is what
separates a quasi-quoter from just a quoter. In BNFC-meta there is
built in support for defining anti-quotation.

The embedded parsers generated by BNFC-meta enables the
programmer to “mix and match” abstract and concrete syntax of
the object language seamlessly, reducing code size and increasing
readability for several common language processing tasks.

2011/3/25

2. Examples

The remainder of this paper is structured as follows. In this sec-
tion we present the tools on which BNFC-meta is built and some
examples of using it. In Section 3 we present the details of embed-
ding BNFC into a Haskell library. We also argue that this method
is not only useful for BNFC, but can be applied in several other
contexts. In Section 4 we explain the quasi-quoting mechanisms
generated by BNFC-meta, and explain why these are a natural con-
sequence of embedding BNFC as a library. In Section 5 we show
some performance results and a large scale example. We conclude
in Section 6 with a discussion of related and future work.

2.1 Preliminaries

BNE, LBNF and BNFC The Backus-Naur Form (BNF) is a
notation for context free grammars. The notation is widely used in
computer language processing, mainly due to the fact that efficient
parsers can be automatically constructed from BNF grammars.
There are many variants of BNF but all of them have production
rules from which you can build sentences:

Foo ::="Foo!" Foo
| Bar
Bar ::="Bar."

The category Foo (also called a nonterminal, as opposed to the
terminal strings) represents all sentences on the form “Foo!Foo! ...
Foo!Bar.”. We use a variant of BNF called Labeled BNF (LBNF).
In LBNF each production rule represents a single choice (there
is no vertical bar operator) and each production rule carries a
descriptive label. The grammar above can be expressed as:

FooCons. Foo ::= "Foo!" Foo;
FooNill. Foo ::= Bar;
BarDot. Bar ::="Bar."

The primary advantage of LBNF is that a system of algebraic data
types can be extracted from the rules by using categories as types
and labels as constructors. These types capture the abstract syntax
tree of the object language. In our example:

data Foo = FooCons Foo | FooNill Bar
data Bar = BarDot

In LBNF users can add custom lexical tokens to the language by
specifying a regular expression. Each token is given a name, and
constitutes an independent grammar category which is represented
in the abstract syntax by a newtype wrapper around strings. In
BNFC-meta we offer a slightly generalised version of these token
definitions where each token has a category and a label (just like
any other rule). We write:

FoosToken. Foos ::= Q(’F’ 0’ ’0’ > 1?) x

The @ just denotes that this is a token definition. There are more
compact ways of writing this particular expression. The abstract
syntax type generated by this example is simply data Foos =
FoosToken String. Strings matching the regular expressions are
wrapped by the constructor (FoosToken) representing the defined
rule.

The BNF Converter (BNFC) is a program that uses LBNF
grammars to generate complete compiler front ends. This includes
abstract syntax tree types, a lexical analyser (lexer), a parser and a
pretty printer. BNFC is written in Haskell but can generate parser
code for many target languages, including Haskell, C/C++ and
Java. BNFC-meta does not support any target language other than
Haskell, and when we refer to the BNFC in the remainder of this
paper we actually mean only its Haskell back end. The LBNF
grammar formalism has many features which are not described in
this paper (see [Forsberg and Ranta 2003] for details).

Template Haskell and Quasi-quoters Template Haskell is a
metaprogramming extension to Haskell, first described by [Sheard
and Jones 2002]. The features of Template Haskell relevant to this
paper include:

e A library of data types for the abstract syntax of Haskell, in-
cluding types for declarations, expressions, patterns etc. We call
these values metaprograms.

e A language extension for “splicing” the metaprograms into
Haskell source code at compile time.

Suppose we have defined a few metaprograms (in this case simple
code fragments) in a module My Templates. With a recent version
of Template Haskell the following program is possible:

{-# LANGUAGE TemplateHaskell #-}
import Language.Haskell. TH (Q, Dec, Exp)
import MyTemplates (myDeclarations, --:: Q [Dec]
myExpression) - QExp

-- Top-level Haskell declaration splice
myDeclarations

-- Expression splice
splicedEzpression = $(myExpression)

In this example the expression myDeclarations is used in place of
a sequence of declarations at the top level. The compiler will eval-
uate it, splice in the resulting declarations in its place and continue
to compile the resulting code. In expression contexts splices must
be indicated by a $ but the idea is the same: evaluate, splice in, re-
compile. Note that the) monad can perform /O actions so even
this simple example could potentially splice “dynamic” code e.g.
by reading a description from a file or base the particular code on
the architecture of the compiling machine.

Quasi-quotes The term quasi-quotation is not used entirely con-
sistently in the functional programming community. In a broader
linguistic setting, the term quasi-quote was coined by W. V. Quine
in 1940 as a means of formally distinguishing metavariables from
surrounding text. In computer languages such as Lisp, the term
quasi-quote is almost synonymous with template metaprogram i.e.
a metaprogram that may contain “holes” for the programmer to fill.
This type of quasi-quotes are also in the original Template Haskell
design. Understanding exactly how this kind of quasi-quoter works
is not essential for this paper, but we show a (somewhat contrived)
example of how it can be used:

sharedPair :: QQ Exp — Q Exp
sharedPair e = [| let z = $e in (z,z) |]

The [| initiates the quote, which means that the Haskell code within
it is a metaprogram. The dollar sign marks holes in the metapro-
gram, where e is the the parameter of sharedPair. The general
term for the dollar sign is anti-quotation operator, since it escapes
from the quoted context into the surrounding metalanguage.

The QuasiQuotes extension to Haskell, introduced in [Mainland
2007], offers a generalisation of quasi-quotes where any object lan-
guage can reside in a quote. The Lisp and Template Haskell quasi-
quotes are the special case where the object language is the same as
the enclosing language. The translation of the object language into
Haskell is defined by the user (by writing a parser). Each quote is
labeled with the name of a quasi-quoter (defined in another Haskell
module) which is used to parse the specific quote. In other words
a Haskell quasi-quoter is essentially syntactic sugar for metapro-
grams parameterised by a string. If ¢ is quasi-quoter, then we can
write the declaration z = [¢ | ¢ |] and the compiler applies ¢ to the
String containing the text ¢. This produces a metaprogram of type
@ Ezp which is spliced by Template Haskell, replacing the quasi-
quote. Note that this generalized type of quoters does not have a

2011/3/25

{-# LANGUAGE QuasiQuotes, TemplateHaskell #-} 1
import Language. LBNF 2
bnfe [lbnf | 3
RAIlt. Reg, ::= Reg; "|" Reg,; 4
RSeq. Reg, ::= Reg, Regs; 5
RStar. Regs ::= Regs "*"; 6
REps. Regs::="eps"; 7
RChar. Regq ::= Char; 8
_. Reg ::= Reg; 9
— Reg, ::= Reg,; 10
_ Reg, ::= Regs; 11
_. Regg ::="(" Reg ")"; 12
i 13
example :: Reg 14
example = RStar (RAlt (RChar *a’) (RChar ’b’)) 15

Figure 1. Basic usage of the Language. LBNF module.

universal anti-quotation operator like the built in Template Haskell
quasi-quoter does. Instead the programmer of each quasi-quoter
must define the syntax for anti-quotation and the proper translation
of the anti-quoted text into Haskell expressions and patterns. Many
Haskell quasi-quoters don’t support anti-quotation at all, meaning
they are are really only quoters (and not actually “quasi”). In the
rest of this paper we will still use the term quasi-quoters to refer to
any quoters regardless their anti-quotation support.

2.2 Running example

In this section we demonstrate the use of BNFC-meta, and explain
how this differs from the original BNF Converter. Our object lan-
guage represents regular expressions (it is actually a subset of the
regular expression syntax of LBNF). Henceforth we refer to this
language as Reg and it is used as a running example in the rest of
the paper. The language has six syntactic constructs: choice, con-
catenation, repetition (Kleene star), empty string (epsilon), single
characters and parentheses. These constructs all reside in a sin-
gle grammar category, that we also call Reg. Since there are in-
fix binary operators (choice and concatenation) we need to indicate
precedence and associativity. In LBNF this is done by using in-
dexed categories. Figure 1 (lines 4—12) shows the grammar of Reg,
divided into three levels of precedence. We label the first five syn-
tactic constructs (RAIlt, RSeq, RStar, REps and RChar). The
other rules (including the parenthesis rule) have no semantic im-
portance and are not labeled; an underscore is placed instead of a
label to indicate this.

Note that in Figure 1, we have embedded the grammar into a
Haskell module using a quasi-quoter (named [bnf) and the value
produced by the quoter is passed to the metaprogram bnfc. The end
result is that the code produced by bnfc is spliced by the compiler,
replacing the grammar definition. The details of this embedding
are covered in Section 3. With the original BNF Converter, we
would need to put the grammar in a . c£ file and run the BNFC tool
instead. Doing so would produce a lexer module, a parser module,
a printing module and an abstract syntax module (each module in
a separate output file). The module we have defined, on the other
hand, can be loaded into the GHC interpreter just like any other
module and the generated tools for Reg are readily available:

Ok, modules loaded: Main.
*Main> :i Reg
data Reg = RAlt Reg Reg | RSeq Reg Reg
| RStar Reg | REps | RChar Char

instance Eq Reg
instance Ord Reg
instance Show Reg
instance Print Reg

This is the abstract syntax type extracted by BNFC-meta. Note that
all the indices are ignored for the purpose of building the AST
types, so the different levels of precedence are not reflected here.
As the figure shows we can also write code that uses this abstract
syntax directly in the module (like we do in example). The Print
instance for Reg (indicated above) provides a pretty printer:

*Main> printTree example
n()ay | ;b))*u
There is also a lexer for the grammar and a parser for each category.

The name of of the parser is the name of the category prefixed by
the letter p and the name of the lexer is tokens:

*Main> pReg (tokens "’a’ | ’b’ *")
Ok (RAlt (RChar ’a’) (RStar (RChar ’b’)))

In Section 3.1 we show more advantages of embedding BNFC in
Haskell.

2.3 Quasi-quoters for free

Apart from the embedding itself, the major addition in BNFC-
meta compared to the original BNFC is the automatic generation
of quasi-quoters. This feature generates a quasi-quoter for each
category of the grammar (the name of the quasi-quoter is the name
of the category, but with initial lowercase). Abstract values in the
language may thus be specified using the concrete syntax. Because
of the Template Haskell stage restrictions, we can not use the quasi-
quoters directly in the same module. But if we import the module
in which we defined the grammar we can write code like this:

ri, 12t Reg
r=[reg|’a’ x b’ *x’c’x ||
ro = RSeq (RSeq (RStar (RChar ’a’))
(RStar (RChar ’b?)))
(RStar (RChar ’c?))

Here 7 and r are exactly equal, but r; is defined using concrete
syntax whereas 72 uses abstract. Note that the parsing of the regular
expression syntax occurs at compile time, so there is no run time
overhead and no risk of run time errors. Any closed expression or
pattern of the type Reg can be expressed using these quotes.

To express patterns with variable bindings, or expressions that
use variables, there needs to be a facility to escape from the quote
back to Haskell. In other words we need to extend the quasi-quoters
with anti-quoting. To add a simple form of anti-quoting to Reg we
need to determine a syntax which does not clash with our other
syntactic constructs. For instance we can use %z where z is an
identifier bound in the Haskell environment in which the quote is
situated. So we can have definitions like these:

plus :: Reg — Reg

plus = [reg | Y%r %rx|]
zs :: Reg

zs = plus [reg | >a’ |]

where xs evaluates to the abstract syntax of the Reg expression
’a’ ’a’*. To express this kind of anti-quotation, we introduce a
special label for grammar rules in BNFC-meta: $. We can use this
together with the built in Ident category' to add anti-quotation to
Reg:

! Ident is a predefined LBNF-category for identifiers. We could also roll
our own identifiers or use any other category to syntactically define allowed
Haskell expressions.

2011/3/25

Grammar

4 &

Parser Quasi-quoter
(Ibnf)

¢ 1

Code M etaprogram
Generator (bnfc)

Parser

Figure 2. A comparative overview of BNFC and BNFC-meta. The
asterisk indicates programmer defined transformations.

$. Regq ::="%" Ident;

This adds exactly the anti-quotation mode we want to the Reg
parser and the example above works as intended. Replacing the
label with the dollar sign indicates to BNFC-meta that this is an
anti-quotation rule. By default BNFC-meta allows only one cate-
gory on the right hand side of such rules. When the quasi-quoter
parses using this rule, the concrete syntax of the Ident is sent to
a Haskell parser and the resulting expression (or pattern) is used
instead of an abstract syntax expression. Adding this anti-quotation
does not change the parser pReg nor does it change the abstract
syntax type Reg.

3. Embedding BNFC

This section discusses the process of elevating BNFC from a com-
mand line tool into a metaprogram, and the advantages of doing so.
We also show that the process can be generalised and applied to
any tool that satisfies certain criteria. Figure 2 gives an overview of
the basic changes in BNFC-meta compared to BNFC. The benefits
of embedding BNFC into Haskell are:

e Libraries that use BNFC-meta do not depend on any installed
applications other than the Haskell compiler, hence they do not
require custom install scripts. An alternative way to achieve this
is to include the BNFC-generated code in the library; but that is
generally bad practice since it makes the source more difficult to
understand and it invites collaborators to edit the generated code
directly, as opposed to properly changing the source grammar.

Like with any other embedding, the features of the host lan-
guage (Haskell) are available to the embedded one. Since the
Grammar type is exported by Language.LBNF it is pos-

sible to write functions that combine or otherwise manipu-
late/analyse grammars at compile time, before they are spliced
by the bnfc function.

While the importance of the first feature should not be underesti-
mated, it has no groundbreaking impact on the process of defining
languages. The second one has more substantial benefits and is the
focus of the remainder of this section.

3.1 Parser generators and combinators

Traditionally, parser generators are the dominating software tools
for defining parsers. Most parser generators use some domain spe-
cific language for defining grammars, and from such definitions
they produce a much more verbose parser implementation in a par-
ticular language (the target language). Sometimes a parser genera-
tor can use the same grammar to generate parsers in several differ-
ent target languages. Parser generators can also generate other use-
ful language tools such as pretty-printers and abstract syntax tree
types, if the grammar DSL carries enough information [Forsberg
and Ranta 2003; Ranta 2004].

In functional programming there is a compelling alternative to
parser generators, known as parser combinators. Here the grammar
DSL is embedded in the target language, using ordinary language
features such as higher order functions to construct parsers by
combining simpler ones. Major advantages over parser generators
include the familiarity to the programmer (the parser is written in
the same language as the code that uses it) and the comfort with
which parsers can be developed (no need to generate code between
test-runs). Also all the features of the target language are available
when defining the parsers so general patterns for eliminating code
duplication can be applied, which might not be possible in a stand-
alone grammar DSL. But parser combinators also have several
downsides compared to parser generators:

e A parser generator (especially one that is limited to context free
object languages) can analyse grammars and detect ambiguities
and other anomalies statically. With parser combinators these
errors are either detected at runtime, or not detected at all
(resulting in unpredictable behaviour).

Combinator parsing has generally lower performance compared
to parser generators, often relying heavily on backtracking or
requiring the user to perform manual optimisations.

Since combinator libraries usually rely on the recursion mech-
anism of the target language, they typically can’t deal with left
recursive grammars (which causes an infinite expansion and
subsequently failure to terminate). Most grammars for real ob-
ject languages rely on left recursion at some point, but any
grammar with left recursion can be rewritten into an equiva-
lent form without it [Moore 2000]. The rewriting might not be
obvious though, and may impair the readability of the grammar
considerably.

Sometimes parser combinator libraries have a significant syn-
tactic overhead compared to the streamlined grammar DSLs
used by parser generators.

While BNFC-meta is definitely a parser generator (the parsers are
generated Haskell code), it has several of the advantages of parser
combinators. Like parser combinators it is available as a library in-
stead of an application, thus it does not require any other tools than
the compiler. More importantly, grammars are almost first class cit-
izens of the target language (Haskell). We write almost first class
because the grammars are only values at compile time, and some-
times this kind of values are referred to as second class citizens.
This means that users can apply arbitrary Haskell functions to the
grammar after parsing it with [bnf but before splicing it with bnfc.

2011/3/25

module RegezGrammars where

import Language. LBNF
import Language. LBNF.Grammar

combine :: Grammar — Grammar — Grammar

combine (Grammar 1) (Grammar j) = Grammar (i H j)

minimal, extended :: Grammar
minimal = [lbnf |
RAlt. Reg, ::= Reg; "|" Regy;
RSeq. Reg, ::= Reg, Regs;
RStar. Regs ::= Regg "*";
REps. Regg ::="eps";
RChar. Regy := Char;

_.Reg = Reg;
_.Reg, = Reg,;
—.Reg, = Regs;
7.R693 = Il(ll Reg n)n;

1]

extended = combine minimal [lbnf |
RPlus. R6g3 = R6g3 g
ROpt Reg3 se— R€g3 Il?n;

1]

Figure 3. Grammar reuse.

In Figure 2 this is indicated by the asterisk symbol in the flow chart.
In practice this means you can write code like this:

import OtherModule (f) - f:: Grammar — Grammar
bafe (f [Ibnf | T])

The Template Haskell stage restrictions prevent f from being de-
fined (at top level) in the same module as the splice. Note that f is
evaluated at compile time so if it fails then a compile time error is
raised (see Section 4.3 for a discussion on error messages). In this
case the type of f indicates that it is a grammar transformer but one
could also have functions that do not take an existing grammar as
an argument (i.e. constant grammars) or one that takes some other
parameter like a list of operators and constructs grammar from that
(i.e. parameterised grammars).

Example: grammar reuse In the original BNF Converter, the
only way to extend an existing grammar is to copy the file and add
the required rules. This procedure is very pervasive from a mainte-
nance perspective. In BNFC-meta on the other hand, grammars are
Haskell values (at compile time) and can thus be manipulated using
all the features of Haskell (including a rich module system).

Suppose that we want to create an extended version of our Reg
grammar (from Figure 1) that has the postfix operators + (non
empty repetition) and 7 (optional). First we factor the grammar
out of the module in which it is defined into a new module. Then,
instead of applying bnfc to the grammar, we give it a top level
name. Thus bnfc [lbnf | T' |] becomes minimal = [lbnf | T |].
The type of minimal is Grammar which is just a wrapper around
a list of grammar rules. Figure 3 demonstrates how we exploit this
fact to create a crude function for combining two grammars, and
how this function is used to define the extended grammar in terms
of the original one.

The extended parser is defined by importing RegezGrammars
and splicing in bnfc extended (or bnfc minimal for the original
language). In Section 4 we will come back to the combine func-
tion to add anti-quotation support to our extended grammar (see
Figure 7).

3.2 A general method for embedding compilers

The principle behind the embedding is remarkably simple. Like
most compilers BNFC has two distinct components:

e A front end, roughly corresponding to a function of type
String — Grammar, where the string is the grammar written
by the user (the concrete syntax) which is parsed into a value of
type Grammar (an abstract syntax tree).

e Several back ends, each producing a parser written in a specific
programming language. The Haskell back end can (somewhat
simplified) be thought of as a function Grammar — String
which takes the grammar of the parser and produces concrete
Haskell syntax.

Conveniently, the front end corresponds exactly to the [bnf quasi-
quoter. All that is needed to construct (bnf is a function that con-
verts a Grammar into a Haskell expression of type Ezp(), such
that the expression evaluates to the given grammar value. The func-
tion is trivial but a bit verbose. One method of doing this automat-
ically for any type (using generic programming) is presented by
[Mainland 2007].

Likewise, the back end corresponds exactly to the bnfc function.
The only difference is that BNFC produces concrete Haskell syntax
(String) whereas we need abstract syntax (Decs@). The quickest
way of coding this conversion from concrete to abstract syntax is
to plug in a Haskell parser. A more elegant way might be to alter
the BNFC back end.

This simple technique can be generalised to embed any com-
piler under the conditions that 1) the target language of the compiler
is Haskell and 2) the compiler is implemented in Haskell. The first
requirement enables Template Haskell to splice the resulting code
into a Haskell module. The second requirement means that the code
from the original application can be put directly into a library. Note
that it is not required to have separated front / back-ends. If the ap-
plication only provides a function « :: String — String we can
just consider the abstract syntax tree type to be String. The front
end quoter may then be built from the identity function, and the
back end may be built from «.

Embedding BNFC and friends In practice it proved complicated
to use the general method for BNFC because the back end does
not only produce Haskell code. BNFC also produces intermediate
code for the Happy parser generator and the Alex lexer generator,
violating the first condition for applying our method. When using
BNEFC this means that after processing your grammar with BNFC,
you will need to process the output with Happy and Alex. This is
not desirable in a library setting, especially since avoiding external
software is one of the perks of the embedding.

The generality of our approach enabled us to overcome this
problem, by embedding Alex and Happy in much the same way
as we embedded BNFC. Alex and Happy 1) both produce Haskell
code and 2) are both written in Haskell, so they satisfy the criteria
for embedding. The result of applying the embedding method to
these programs are two new libraries: happy-meta and alex-meta.
Similar to BNFC-meta, these libraries allow users to write Happy
/ Alex syntax directly into Haskell modules using quasi-quoters,
and splice the result into the module using Template Haskell. As
a byproduct, they provide the functions necessary to adapt BNFC
to the first condition (by composing the back end of BNFC with
the front ends of Alex/Happy). Although we used the “quick and
dirty” approach (parsing code we have generated ourselves) this
is only a performance issue at compile time, the produced code is
essentially identical to the code produced by the original tools. We
have made the three resulting libraries (BNFC-meta, happy-meta
and alex-meta) available through Hackage.

2011/3/25

import Regez

r o= [7"69 | a’ % b’ x '¢cx% H

ro = RSeq (RSeq (RStar (RChar *a’))
(RStar (RChar ’b?)))

(RStar (RChar >c?))

isEps;, [reg | eps |] = True

1sEps, — = False

isEpsy REps = True

1sEps, — = False

Figure 4. Using simple automatically generated quasi-quoters.
The values 7 and r» are equivalent.

4. Quasi-quoters for free

When designing an embedded domain specific language, program-
mers usually have some ideal concrete syntax in mind (often some-
thing inspired by the domain in question). Conventional embed-
ding techniques typically employ combinators and infix operators
to make the interface in the host language as similar as possible to
the ideal syntax. Although Haskell’s syntax is remarkably flexible
for embedding languages, there are restrictions on what you can do,
and combinators are not useful when pattern matching.

These problems are avoided by employing quasi-quoters. Users
can then insert program fragments written in the concrete syntax
of the object language, and the compiler will translate these into
Haskell expressions or patterns. Constructing basic quasi-quoters
require little more effort than writing the parser. Since BNFC-meta
already generates the parsers, it is natural to extend it to generate
quasi-quoters as well.

In Figure 4 two functions are defined with and without quasi-
quoters. The basic quasi-quoters are quite useful for defining con-
stant (closed) expressions, with r; being considerably shorter and
easier to read than 7». For patterns the basic quoters are not very
useful since they cannot bind variables. It is difficult to think of
a useful constant pattern which is more advanced than the one in
1sEps; . In fact we cannot even make a corresponding function that
checks if the argument is a choice (RAIt) expression because we
would need to bind variables which we cannot express in our Reg
language. In Section 4.2 we show a solution to this problem.

4.1 Where do quoters come from?

This part of the paper will describe the technical aspects of generat-
ing Haskell quasi-quoters automatically. All quasi-quoters, like reg
and [bnf, are of the type QuasiQuoter which is a record type that
contains at least an expression and a pattern quoter (recent versions
of the Template Haskell library also include type and declaration
quoters).

data QuasiQuoter = QuasiQuoter
{ quoteEzp :: String — Q Ezxp
, quotePat :: String — @ Pat

}

The Exp and Pat types are used for building Haskell expression
and patterns respectively. So the quote [¢ | ¢ |] splices the expres-
sion produced by quoteExp q ¢ if the quote is in an expression
context and quotePat q ¢ in a pattern context. For the basic quot-
ers we can restrict ourselves to this tiny subset of the Template
Haskell library API:

mkName :: String — Name

data Ezp

= ConkE Name -- Constructors

| AppE Exzp Exp -- Application
| LitE Lit

data Pat
= ConP Name [Pat] -- Constructor application
| LitP Lit

data Lit = CharL Char

From these definitions we can simply translate a parsed value into
an expression that evaluates back to the given value, or a pattern
that matches only the given value. For instance "’a’" is parsed to
RChar ’a’, which as an expression is

AppE (ConE (mkName "RChar")) (LitE (CharL ’a’))
and as a pattern
ConP (mkName "RChar") [LitP (CharL ’a’)]

This translation is completely mechanical and there are tools for
performing it automatically, either using generic programming or
metaprogramming. This is essentially the technique BNFC-meta
uses to build basic quasi-quoters.

Bootstrapping The original BNF Converter is bootstrapped, it
“eats its own dog food”. Specifically it is used to generate its own
front end: the syntax of LBNF is specified as an LBNF grammar,
and when the grammar is fed to BNFC the output is identical to
the front end of BNFC. The addition of automatically generated
quasi-quoters preserves this property’: the quasi-quoter lbnf can
be automatically generated by processing the grammar for LBNF
in BNFC-meta. Just like BNFC can generate a complete front
end for a traditional compiler, BNFC-meta can generate a front
end for an embedded one. Figure 5 shows a comparison between
the components of BNFC and BNFC-meta, and the dotted lines
indicate the bootstrapping capacity of each.

4.2 Anti-quoting

There is no standardised mode for anti-quotation in Haskell quasi-
quoters (and many quasi-quoters do not use anti-quotation at all).
Since a quoter is essentially a function String — @ Fxp (if used
in an expression context) this function can choose to treat some part
of the input string as Haskell code, and parse it as such. Usually
a special token followed by a single identifier is used, and the
identifier is translated into a Haskell variable instead of a member
of the abstract syntax type. By using let or where bindings the
single identifier can represent any expression, including nested
quotes (although this does not work in pattern context).

Usually quasi-quoters are built from regular parsers, i.e. from
functions like « :: String — Maybe A where A is some abstract
syntax tree type. The Template Haskell library contains functions
that use generic programming to automatically construct quoters
from this type of functions, and users can add the exceptions for
anti-quoted code in a reasonably simple manner. The problem with
this approach is that the parser must still be changed to accommo-
date the anti-quoting syntax. Although the changes to the parser can
be mitigated by using flags to indicate if the parser is used for regu-
lar parsing or quasi-quoting (and thus enable/disable anti-quotation
syntax), the abstract syntax type A will need to be extended to con-
tain arbitrary strings.

2 The concept of bootstrapping is slightly misleading in a library context,
since libraries cannot depend on previous versions of themselves. In BNFC-
meta this is solved by adding a small bootstrapping utility that flushes the
produced code into a file instead of splicing it.

2011/3/25

BNFC

BNFC-meta

Input [

Grammar]

Front

Parser
end

Back

Code generator
end

AV 4
[Quasi-quoter (lbnf) I

Code template (bnfc)

1L

Output Parser

44

Parser Quasi-
quoter

Figure 5. A comparative overview of BNFC and BNFC-meta

BNFC-meta example Consider our running example (the Reg
language). We want to add these two modes of anti-quotation:

e Single identifiers, escaped by $, for example A[reg | $ax |] — a
translates to ARStar a — a.

e General Haskell expressions or patterns, surrounded by angle
brackets e.g. f (r:1s) = [reg | $r * <f rs> || translates to
f (r:rs) = RSeq (RStar r) (f rs).

In order to implement the necessary syntactic changes to the gram-
mar, we add two custom lexical tokens (as described in Sec-
tion 2.1):

Aql. Regy ::= @<’ (char — ?>°) % ’>7;
Aq2. Regy ::=Q’$? letter (letter | digit)x;

The impact on the abstract syntax is as can be expected, two
constructors (Ag1 and Ag2) are added to the Reg data type, each
containing a string. This pollution of the abstract syntax types
is detrimental to type safety: even though the constructors are
intended to be used only for anti-quoting, the compiler cannot
statically enforce that they are not used elsewhere.

To solve this problem, and to make defining anti-quotation
syntax simpler in general, BNFC-meta introduces a special anti-
quoting rule to the LBNF formalism. This rule automatically in-
troduces anti-quotation as per the users request, without polluting
the abstract syntax. In Figure 6 this rule is demonstrated. Syn-
tactically AQ-rules are distinguished from regular rules by labels
being replaced with a $ followed by an optional identifier. This
instructs BNFC-meta quasi-quoters to parse any text that matches
the rule as Haskell code. If a function name is written after the
$, that function is used to parse the text (in our case we want to
remove the enclosing angle brackets before passing the text to a
Haskell parser for instance). In general the supplied function needs
to be of type Delta — BNFC_QQType where Delta is the AST
type of the category on the right hand side of the rule. The type

module Regex where
import Language. LBNF
import RegexGrammars

bnfc $ combine extended [lbnf |
$ myAqE. Regy ::= @Q’<’ (char — *>’) % ’>’;
$ myAq. Regy::=@’$’ letter (letter | digit)x;

1]

myAq :: String — BNFC_QQType

myAq = stringAq o tail

myAqE :: String — BNFC_QQType

myAqE = stringAq o reverse o tail o reverse o tail

Figure 6. Adding anti-quotation to the regular expression lan-
guage.

BNFC_QQType is more or less internal to the BNFC-meta li-
brary, the function stringAq can be used to parse a snippet of
Haskell code into a BNFC'_QQ Type.

In Figure 7 we 1) define a general top-down traversal function
on regexps and 2) use the function to transform regular expressions
that don’t use + and 7 into equivalent ones that do. Note that
the entire module is written without assuming anything about the
abstract syntax other than the existence of a category named Reg.
Thus, the names of constructors and other grammar details can be
freely changed as long as the concrete syntax remains the same.

The BNFC-meta implementation Instead of producing a single
parser and implementing quasi-quoters by translating the abstract
syntax, BNFC-meta produces two parsers for each grammar cate-
gory. One parser targets the abstract syntax, while the other targets

2011/3/25

topdown :: (Reg — Reg) — Reg — Reg
topdown f rr = case f rr of

[reg | $er Sex |] = [reg | <r e1> <71 ex> |[]
[reg | $e1 | Sea |] = [reg | <r e1> | <7 ex> |[]
[reg | $eq * [] = [reg | <r e1> = 1
[reg | $er + |] = [reg | <r ei> + (]
[reg | $ex? || = [reg | <r er> 7 1]
e —e

where r = topdown f

transform :: Reg — Reg
transform = topdown step where
step rx = case rz of

[reg | $e | eps |] — [reg|Se? |]
[reg | $er $ez x |]
| e1 = e — [reg | $er + |[]
| otherwise — 1z
e —e

Figure 7. Implementing a program transformation on regular ex-
pressions.

Haskell expressions and patterns. This solution is not practical to
write by hand, but that is not a problem for a metaprogram. The
approach does not alter the abstract syntax and it guarantees that
the original parser works and has no performance penalty in the
presence of anti-quoting.

4.3 Error handling

Using metaprogramming in general, and quasi-quoters in particu-
lar, adds a new dimension to compile time error handling. There are
no problems with errors “slipping through” to run time: all pars-
ing is performed at compile time and the generated code is type
checked after it is spliced. What can be problematic is the preci-
sion of the error messages, with regards to source location. The
compiler will automatically indicate which quasi-quote the error
occured in, anything beyond that will have to be provided by the
programmer of the quasi-quoter. Syntax errors are reported well
by BNF Converter parsers, with a source location and the concrete
syntax leading up to the error. When syntax errors occur in quasi-
quotes this information is presented to the user, in addition to the
generic compiler error.

The situation is worse for type errors. With the basic quoters
type errors can not occur unless there is a bug in BNFC-meta. In the
presence of anti-quoting however, the user is free to introduce any
imaginable type errors in the generated code. BNFC-meta has little
control over the error messages in these situations, and they will be
presented without an accurate source position and in terms of the
generated code. This is a problem for quasi-quoters in general and
not specific to BNFC-meta.

5. Performance and scalability

This section provides some examples and experimental results.
All tests where performed on a 3.0 GHz Intel Xeon processor.
Version 6.12.1 of the Glasgow Haskell Compiler was used, with
optimisation level -02.

5.1 Performance analysis

When using the quasi-quoters generated by BNFC-meta, perfor-
mance is not a major issue (since the parsers are only used at
compile time, when quasi-quotes are resolved). For applications
that use the parsers at runtime there may be some requirements

Average CPU Time (S)

B Computation ® Garbage Collection

3

2,5

2

1,5
1 -

0,5 -

0 -

BNFC-meta Parsec

Figure 8. Average CPU usage when parsing a Mondrian file

though. Since BNFC-meta is based on Alex / Happy the perfor-
mance should be comparable to that of hand written parsers using
them, which is usually considered good.

There are not many reliable performance comparisons between
parser generators and parser combinators, possibly because it is
difficult to make a fair comparison when the choice of object
language and the amount of work put into each parser is very
relevant to end performance. The general understanding seems to
be that parser generators are faster. Parsec [Leijen and Meijer 2001]
is considered a fast parser combinator library and it is seeing heavy
use in the Haskell community.

For this reason we decided to compare the performance of Par-
sec and BNFC-meta. In order to avoid bias in the choice of ob-
ject language or implementation of the Parsec parser we decided to
use an existing Parsec parser and write an equivalent LBNF gram-
mar for comparison. There are a number of examples included in
the distribution of Parsec 2, some of them where excluded because
they do not have context free syntax and as such can not be imple-
mented in BNFC-meta. From the remaining, the largest example
language was chosen and it proved to be a language called Mon-
drian. The source code for the Parsec parser (and abstract syntax)
is a few hundred lines of Haskell code and the BNFC-meta im-
plementation we wrote is around 50 lines of Haskell/LBNF code.
The two implementations where considered “similar enough” to be
comparable when the BNFC-meta parser could parse all the ex-
amples that the Parsec parser could, and the level of detail of the
abstract syntax types seemed equivalent in a quick inspection. Fig-
ures 8 show the relative CPU time usage. The times are measured
using the criterion benchmark tool. A very large Mondrian file (1
MB) was used in the test to ensure measurable time consumption.
Initially we speculated that the time difference was caused by a
difference in memory usage and specifically by garbage collection
(GC), but this was not confirmed by measurements which showed
only a slightly increased GC activity for Parsec.

Compilation time Since BNFC-meta does compile time calcula-
tions it is reasonable to assume that the compilation time should
be somewhat greater than for Parsec. Also the amount of code that
BNFC-meta produces can be quite big and the compiler needs to
process and optimise it, which could increase compilation times
further. This hypothesis is confirmed by our test results (see Fig-

2011/3/25

Compilation time (S)

1,5

BNFC-meta

Parsec

Figure 9. Compilation time of a Mondrian parser

Compiled binary size (MB)

20
18
16
14
12
10

oON B O

I .

BNFC BNFC-meta

Parsec

Figure 10. Size of produced binary for a Mondrian parser

ure 9), with the BNFC-meta parser taking twice as long to compile
as the parsec one.

Binary size A somewhat troubling discovery was that the binary
size of the BNFC-meta parser outweighs Parsec by an order of
magnitude. Presumably this is because GHC fails to notice that
some imported modules are only used at compile time, and thus
some redundant components (e.g. a Haskell parser) are linked into
the binary. As figure 10 shows, this hypothesis is supported by
the fact that the original BNFC does not have this problem with
the same grammar (although the BNFC and BNFC-meta parsers
behave equally in all other tests).

5.2 Expressiveness

When comparing to flexible parser generators and combinator li-
braries such as parsec and hand written Alex/Happy it is important
to note that BNFC-meta is limited to defining the same set of object

languages as the original BNFC. This set is essentially all context-
free languages and some context sensitive extensions like a limited
kind of layout syntax (by automatic preprocessing). This means
that it is difficult to capture many real world languages exactly us-
ing LBNE.

The fact that BNFC generates a lexer automatically and that
this lexer does not distinguish newlines from white spaces imposes
some further restrictions. Specifically it is not trivial to implement
object languages with significant newline characters, which is a
common feature. In principle it should be possible to give the user
stronger control over the lexer without sacrificing the simplicity in
cases where this is not needed. In spite of these limitations LBNF is
no way limited to “toy languages”, as we will demonstrate below.

5.3 A large scale example

In order to fit a complete definition, the running example in this arti-
cle is very simple (only a single grammar category Reg). Nonethe-
less, the applications can scale up to fully equipped real world lan-
guages. To demonstrate this, we applied BNFC-meta to the gram-
mar of (pre-processed) ANSI C available from the BNFC webpage.
The grammar is roughly 250 LBNF rules so the module is too
large to include in this paper, but not much larger than an average
Haskell module. By default BNFC-meta generates quasi-quoters
for any entry point categories (or for all categories if no entry point
is specified in the grammar). In this case it means we are given
quasi-quoters for C programs, statements and expressions. Using
the program quoter we can define a C program using concrete syn-
tax:

p :: Program

p = [program |

int main () {
printf ("Hello World");
return 0;

}
1]

The “least pretty equivalent” to this definitions (which only uses
the abstract syntax constructors) looks like this:

p :: Program

p = Progr [Afunc (NewFunc | Type Tint] (NoPointer
(OldFuncDec (Name (Ident "main")))) (ScompTwo
[EzprS (SexprTwo (Efunkpar (Fvar (Ident "printf"))
[Estring "Hello World"])), JumpS (SjumpFive
(Econst (Eoctal (Octal "0"))))]))]

Anti-quoting There is an existing open source quasi-quoter li-
brary for C, called language-c-quote [Mainland 2009]. It offers a
kind of “typed” anti-quotation where expressions like

[cexp | $int: a+ $exp : b |]

means that ¢ and b must be Haskell identifiers. Furthermore a must
be an integer (i.e. of type Int) and b must be a C expression (i.e. of
the same type as the quote).

We want to add a more liberal quotation syntax that allows
more advanced Haskell expressions (not just single identifiers) in
the quotes. We chose to have two anti-quotation modes for each
category:

¢ An explicitly typed mode where [C : h:] is a member of the
category C for any Haskell expression h of type C' (h may
not contain the string ":]" and may not contain nested quasi-
quotes). Note the syntactic similarity with quasi-quoters.

e An implicitly typed mode where the category name is dropped
meaning [:h:] is a member of all categories.

2011/3/25

import C
zeroFill :: Integer — [Ident] — Stm
zeroFill n arrs = [stm |
{
nt tmp;
for (tmp = 0; tmp < [Integer : n:]; tmp+) {
[:map zeroOneSlot arrs:]

}

1]

zeroOneSlot :: Ident — Stm

zeroOneSlot arr = [stm |
[Ident : arr:] [tmp] = 0;

1]

Figure 11. Using the C grammar with anti-quoting

Figure 11 demonstrates how these are used to define a program
that is parameterised over an array length n and a list of identifiers
(names of arrays), such that the produced C program fills each array
with n zeroes. Note that the program deals only with the abstract
syntax of C at runtime, so the Haskell type system statically guar-
antees that the program will produce syntactically correct code in-
dependent of the arguments to zeroF'ill. The second anti-quotation
mode is controversial because it introduces massive ambiguities in
the grammar. For instance if we have a quasi-quoted C statement
[stm | [:h:] |] then the anti-quote may refer to a statement, an ex-
pression or even an integer. The decision is made by the parser gen-
erator (automatically resolving ambiguities) but the user is warned
of the ambiguities. In most cases assuming the wrong category will
simply incur a type error, but if A is polymorphic there may be se-
rious problems. One solution is to avoid the implicitly typed mode
if the expression is polymorphic.

Observe that we describe the anti-quotation without mention-
ing that C is our object language. In fact this description of anti-
quotation is expressed only in general terms of the existing gram-
mar categories and as such it can be applied to any grammar. This
has a tremendous potential for code reuse: instead of adding this
mode of anti-quotation to the C grammar (and write a hundred or
so grammar rules by hand) we can define a grammar transformation
that adds this anti-quotation mode to any grammar. We can even pa-
rameterise the grammar transformation over the exact syntax of the
anti-quotes; how quotes are initiated, what delimits the optional cat-
egory name from the Haskell expression and how quotes are ended.
The grammar transformation is thus a function:

antiquote ::
String — String — String — Grammar — Grammar

And to add the desired anti-quotation to the C grammar we simply
interpose this function between the quasi-quoter front end and the
splicing back-end:

bnfc $ antiquote "[" ":" ":1" § [Ibnf |
... the C Grammar ...

1]

Implementing a general anti-quotation mode The implementa-
tion of antiquote adds two things to the grammar: a shared anti-
quoting token and two anti-quotation rules for each category. The
individual rules contain the start string " [and optionally the name
of the category, the token matches the delimiter ":" an arbitrary

string and the ending string " :1". The LBNF rules for a single cat-
egory C' looks something like this:

$ g :="[C" AntiQuotingToken;
$ f="[" AntiQuotingToken;

where AntiQuotingToken is the shared anti-quotation token. The
functions g and f need to do the appropriate pruning of the matched
string before the Haskell expression is parsed. Defining these rules
is a simple task of collecting the categories of the original grammar,
defining a new set of rules from these and adding this set to the
original grammar.

While we would not go so far as to say that the generated quasi-
quoters are equivalent to the ones provided by the language-c-quote
library (such an analysis would not be practical), they are certainly
quite similar. The most striking difference is the simplicity of the
BNFC-meta implementation. Where language-c-quote has several
hundred or even a few thousand lines of code, our implementation
has a single Haskell source file with a readable and syntax-directed
grammar definition. We also obtain a reusable pattern for anti-
quoting and even for this single example the definition of this
reusable pattern is shorter than the manual changes we would
otherwise have needed.

6. Discussion

The closest predecessor to our work is the Quasi-quoting paper by
Mainland [2007] where he gives the basic infrastructure to support
user-defined quoting and anti-quoting in GHC. We build on, and
extend this work in two directions. Firstly we demonstrate how
to generate quasi-quoters (including flexible anti-quoting support)
from labelled BNF. Secondly we give a method to embed other
compiler-like tools as quasi-quoters.

We derive much of the strength of our tool from the implemen-
tation of the BNF Converter [Forsberg and Ranta 2003]. We inter-
nalise BNFC (+ Happy and Alex for parsing and lexing) and add
general support for anti-quoting.

In his recent tutorial on combinator parsing Swierstra [2009]
writes “Parser combinators occupy a unique place in the field of
parsing: they make it possible to write expressions which look like
grammars, but actually describe parsers for these grammars.” In
this paper we retain this property but also allow “off-line” parser
generators to be used at compile time.

There is a long history of metaprogramming in the Lisp and
Scheme community, starting already in the sixties. Twenty years
ago META for Common Lisp used metaprogramming to construct
parsers [Baker 1991]. The more recent survey of lexer and parser
generators in Scheme [Owens et al. 2004] shows several examples
and cites several Scheme-based generators.

From the C++ world, Spirit [de Guzman and Kaiser] is a set
of libraries (part of the Boost library suite [Boost]) that can build
recursive descent parsers, using an embedded grammar DSL. It
uses template metaprogramming to generate parsers.

The comparison of DSL implementations by Czarnecki et al.
[2003] looks at the meta-programming support of MetaOCaml,
Template Haskell, and C++. All of those systems have the meta-
programming strength to support compile time parser generation,
but currently only Template Haskell supports quasi-quoting.

There are several attempts at bridging the gap between parser
generators and combinators by improving combinator libraries.
[Devriese and Piessens 2011] attempts to limit the problems related
to left recursive grammars in parser combinator libraries. They
use Template Haskell to perform some grammar transformation
at compile time. In [Rendel and Ostermann 2010] a technique for
getting “pretty-printers for free” from a parser combinator library
is described.

2011/3/25

6.1 Future work

While working on BNFC-meta we have found several interesting
directions for future work. One direction is to work closely on the
interface to and the implementation of Template Haskell. Here we
would like to allow more control over error messages, especially
when the following static checks on the generated code fail. We
have also seen the need for generating not just declaration lists, but
also module headers, including import and export lists. This would
be helpful to avoid exporting some “junk” data types produced by
Happy. Currently the only way to avoid polluting the name space
of the module is to generate definitions in local where or let
blocks, which is bad for error messages. Also we are not sure if
the compiler responds well to a two thousand lines where clause.

Another direction we aim to pursue is to apply BNFC-meta to
ongoing DSL projects (the Feldspar [Axelsson et al. 2010] back-
end, GPGPU programming with Obsidian [Svensson et al. 2010],
language based security, etc.)

Finally we would also like to embed more libraries and tools
in the same way and BNFC, Happy and Alex: candidates include
the dependently typed language Agda and the Foreign Function
Interface tool hsc2hs.

6.2 Conclusions

We use metaprogramming both to embed parser generators and to
generate embedded parsers. There is a natural connection between
these tasks: the latter provide a suitable front end for the first. This
is evident from the bootstrapping ability of BNFC-meta.

The QuasiQuotes Haskell extension is a very general frame-
work for quasi-quotation. Unfortunately this generality prevents
such things as a general anti-quotation operator. By limiting our-
selves to context free object languages and using quasi-quotation
to produce abstract syntax, we can define these general modes of
anti-quotation by transforming the object language definition on a
grammar level.

As far as we know, BNFC-meta is the only system that pro-
vides both embedded parser generators and generation of embed-
ded parsers in a single library.

References

E. Axelsson, K. Claessen, G. Dévai, Z. Horvith, K. Keijzer, B. Lyckegard,
A. Persson, M. Sheeran, J. Svenningsson, and A. Vajdax. Feldspar: A
domain specific language for digital signal processing algorithms. In
MEMOCODE, pages 169-178, 2010.

H. G. Baker. Pragmatic parsing in Common Lisp; or, putting defmacro on
steroids. SIGPLAN Lisp Pointers, IV:3-15, April 1991. ISSN 1045-
3563.

Boost. The Boost initiative for free peer-reviewed portable C++ source
libraries. http://www.boost.org, 2009.

K. Czarnecki, T. O’Donnell, John, J. Striegnitz, and W. Taha. DSL Imple-
mentation in MetaOCaml, Template Haskell, and C++, volume 3016 of
LNCS, pages 51-72. Springer-Verlag, Berlin, Heidelberg, 2003. doi:
10.1007/b98156.

J. de Guzman and H. Kaiser. Boost spirit. http://www.boost.org/doc/
libs/1_46_1/1ibs/spirit/.

D. Devriese and F. Piessens. Explicitly recursive grammar combinators
— a better model for shallow parser DSLs. In Practical Aspects of
Declarative Languages (PADL) 2011, volume 6539 of LNCS. Springer,
Jan. 2011.

M. Forsberg and A. Ranta. The BNF converter: A high-level tool for im-
plementing well-behaved programming languages. In NWPT’02 proc.,
Proc. Estonian Academy of Sciences, December 2003.

D. Leijen and E. Meijer. Parsec: Direct style monadic parser combinators
for the real world. Technical Report UU-CS-2001-35, Departement of
Computer Science, Utrecht University, 2001. http://www.cs.uu.nl/
~daan/parsec.html.

G. Mainland. Why it’s nice to be quoted: quasiquoting for Haskell. In
Proc. ACM SIGPLAN workshop on Haskell, Haskell *07, pages 73-82,
New York, NY, USA, 2007. ACM. ISBN 978-1-59593-674-5.

G. Mainland. The haskell package language-c-quote. http://hackage.
haskell.org/package/language-c-quote, 2009.

R. C. Moore. Removing left recursion from context-free grammars. In
Proc. 1st North American chapter of the Association for Computational
Linguistics conference, pages 249255, San Francisco, CA, USA, 2000.
Morgan Kaufmann Publishers Inc.

S. Owens, M. Flatt, O. Shivers, and B. Mcmullan. Lexer and parser
generators in scheme. In 2004 Scheme Workshop, 2004. URL
http://repository.readscheme.org/ftp/papers/sw2004/
owens.ps.gz.

A. Ranta. Grammatical framework. J. Funct. Program., 14:145-189, March
2004. ISSN 0956-7968.

T. Rendel and K. Ostermann. Invertible syntax descriptions: unifying
parsing and pretty printing. In Proc. third ACM Haskell symposium,
Haskell *10, New York, NY, USA, 2010. ACM.

T. Sheard and S. P. Jones. Template meta-programming for Haskell. In
Proceedings of the Haskell workshop, pages 1-16. ACM Press, 2002.
ISBN 1-58113-605-6.

J. Svensson, K. Claessen, and M. Sheeran. GPGPU kernel implementation
and refinement using Obsidian. Procedia Computer Science, 1(1):2065 —
2074, 2010. ISSN 1877-0509. doi: 10.1016/j.procs.2010.04.231. ICCS
2010.

S. D. Swierstra. Combinator Parsing: A Short Tutorial, pages 252-300.
Springer-Verlag, Berlin, Heidelberg, 2009. ISBN 978-3-642-03152-6.
doi: 10.1007/978-3-642-03153-3_6.

2011/3/25

http://www.boost.org
http://www.boost.org/doc/libs/1_46_1/libs/spirit/
http://www.boost.org/doc/libs/1_46_1/libs/spirit/
http://www.cs.uu.nl/~daan/parsec.html
http://www.cs.uu.nl/~daan/parsec.html
http://hackage.haskell.org/package/language-c-quote
http://hackage.haskell.org/package/language-c-quote
http://repository.readscheme.org/ftp/papers/sw2004/owens.ps.gz
http://repository.readscheme.org/ftp/papers/sw2004/owens.ps.gz

	Introduction
	Examples
	Preliminaries
	Running example
	Quasi-quoters for free

	Embedding BNFC
	Parser generators and combinators
	A general method for embedding compilers

	Quasi-quoters for free
	Where do quoters come from?
	Anti-quoting
	Error handling

	Performance and scalability
	Performance analysis
	Expressiveness
	A large scale example

	Discussion
	Future work
	Conclusions

