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What is a DSL?

Klarlund, Schwartzbach, A domain-specific language for regular sets of strings 
and trees, IEEE Trans. Software Engineering, 3:25, 1999
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DSL approach:
Motivation

• Design DSLs that capture compositional 
structure of domain model

• Isomorphism principle: One-to-one 
correspondence between informal 
requirements and formal DSL specifications

• Small change in requirements = Small change in 
specifications

• Language-oriented programming
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What is special about 
DSLs (for behavior)?

• A DSL specification is

• a program: it has standard semantics

• data: it can be analyzed 

• A DSL specification has multiple, open-
ended interpretations 
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ERP System
• Electronically manage everything in a company

• sales, purchase, production orders

• payments

• inventory

• customers

• Perform analysis on business data

• tax

• statistics
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ERP market
• SAP, Oracle, 

• Microsoft Dynamics, many more (mostly regional)

• Inclusive definition: “enterprise systems” (ERP, CRM, HRM, 
SCM, etc.)

• Global annual revenues (2009, Gartner Group projections):

•    Hollywood:               28 billion dollars (2008)

•     Videogames:             42 billion dollars  

•    ERP Software:           223 billion dollars
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Functional View of present-day
ERP System Architecture 

Source: http://blogs.zdnet.com/SAAS/images/erp-block.png
Source: http://www.bluedzine.com/images/erp_diagram.gif
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Configuration 
data (tables) User data (tables)

Code units Form specifications

Architectural view:
Conventional ERP software architecture

Centralized database
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Developer’s view of ERP 
Systems

Source: http://blogs.zdnet.com/SAAS/images/erp-block.pngSource: http://www.bluedzine.com/images/erp_diagram.gif
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• Data: Resources, events (”transactions”), agents, 
documents (basic information such as invoices)

• Reports: Interpretation of all base data by selection, 
aggregation, correlation, transformation etc.

• Processes: Specifications of expected sequences of 
events, in particular (commercial) contracts

• Rules: Legal and business constraints on how things 
are to/may be done, e.g. VAT or customs rules

• Interfaces: Specification of interactions between 
system components, and between system and users 
(roles).  

Process-Oriented Event-driven 
Transaction System (POETS):

Requirements = Specifications = Code
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Why POETS?

• No accounting artifacts (double-entry book-
keeping): register events

• Unlimited configurability by DSLs:

• Contract, report, rules languages

• Technical “simplicity”:

• Order of magnitude less code

• Performance is “in the box” (needs not be 
programmed)
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DSLs: The business model 
aspect

• Free clients:  Android, Web, iPhone, iPad

• Free servers:  Cloud-based

• Apps containing business processes, rules, 
information

• Developed by channel partners

• Made possible by DSL architecture
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Unique features
• Simplicity ... and generality

• No SQL, no legacy code, no double entry 
bookkeeping, no platform dependence

• Built-in auditability (like Time Machine)

• Unlimited extensibility through DSLs

• new applications possible

• scalability through partner channels
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 New apps possible in 
POETS (examples)

• Render contracts in Hindi

• Works for all contracts, also future/new ones

• Sales tax rules for the State of New Hampshire, e.g. for 
approval by regulatory body

• Not enmeshed with code for processing them

• Stochastic contract valuation for risk management 
(compare with pricing of financial instruments)
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POETS
Architectur

e 
(more 
detail)
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Real events
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Registered events

…
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…

Registered events
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Reports: Invoices
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Reports: FIFO inventory valuation for cost 

Invoices sent

Inventory acquired

foldl: Iterate over inventory acquisitions from 
oldest to youngest. 

Replace by foldr è LIFO costing

Text
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Contracts: Processes involving external parties

A simple sales contract, with VAT requirements

Choreography (“global 
view”)
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 Contracts…
A sales contract with multiple installments (and VAT payments)

orelse
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Why formal contract 
specifications?

• Operational semantics by reduction semantics

• <C, e> à C’ (e matches, C’ is residual contract)

• <C, e> à “unexpected event”

• Can write programs that analyze contracts C:

• When is the next deadline for something to happen in C?

• Is the next thing to happen a payment I must make? (A/P)

• Is the next thing to happen a payment I must receive? (A/R)

• What is the value/risk to me of entering into C? (Peyton-
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Internal processes
The universal process, which allows all internal transactions, for matching events that are 

not part of a given contract or specified internal business process
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Contract Specification 
Language (CSL), v. 2.0

Hvitved, Klaedtke, Zalinescu,  A trace-based model for multiparty contracts, to appear in JLAP 2011 
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Reporting In ERP Systems
• ERP systems contain a lot of data
• Many reports are simple
• Computing reports is time consuming

• Only suitable for off-line reporting (batch runs)
• Decisions may be delayed due to report 

computation time
• Reports are usually expressed in SQL, in a 

general purpose languages, (for instance, X++ or 
C/AL) or a combination of them
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FunSETL: Purpose
• Powerful enough to express reports.

• Restrictive enough to facilitate automatic 
incrementalization.

• Easy to define report declaratively:

• What should be the result?

• Not: How exactly should it be computed?
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FunSETL: Properties 
• A simple functional language

• No recursion - only iteration on multisets

• Strongly normalizing

• Data iteration

• No general recursion
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FunSETL: Syntax
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Incrementalization
• Idea: Reuse intermediate results automatically. 

• Let f be a function and ⊕ be an update operation. 

• Then f ’ is the incremental version of f with 
respect to ⊕

• It computes the result of f (x ⊕ y) by making use 
of the value of f (x):
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The key equivalence
• We are interested in incrementalization with 

respect to the with operation.

• That is, we want to eliminate foreach loops by 
the following equivalence. 

• Realizes asymptotic speed-up over naïve 
execution

• r = foreach (a, b → e1 ) e2 S implies
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Transformations
• To transform function into an incrementalized 

version perform the following transformations: 

• 1. Normalise to A-normal form (almost) 

• 2. Caching of intermediate results 

• 3. Incrementalization use cashed intermediate 
values 

• 4. Prune all unnecessary computations
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Example: Computing the 
Average 
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Example: Normalisation 
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Example: Cache 
Intermediate Results
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Example: 
Incrementalization 
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Example: Cleaning Up
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Case study
• Financial statement (report) in MS Dynamics AX 

• X++ source of report and live data from German 
company

• Provided by MDCC

• Computes:

• Sum class computations (balance of account intervals X000 
− X999, where X = 0, 1, 2, 3, 4, 5, 6, 7, 8 and from 9000 and 
up. 

• Assets and liabilities
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Status
• Incrementalizer and compiler in F#

• Target language: C#

• C# then compiled to .NET (MSIL)

• Interrailing with MS Dynamics NAV

• FunSETL report can be executed and displayed 
in NAV (Version 5.0).

40



Challenges for innovation 
in ERP sector

• Technical backwards compatibility: 

• Vast amounts of code and data representing 
enormous investments

• Investment in code and data must be preserved

• Eco-sociological backwards compatibility:

• Large number of existing users, business 
architects, and (non-CS trained) application 
developers
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Domain-specific 
languages: Advantages

• Domain-oriented concepts
• Reflects domain ontology: Resource, Event, 

Agent, etc.
• Built-in properties

• Checkpointing:  Source-level representation of 
execution state

• Termination/limited resource usage
• Restrictive expressive power

• Analyzability, not just executability
• Closure properties by composition

• Differentiability
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Financial contracts:
Steps

Contract American put option

Execution 
strategy

Exercise option if price good and counterparty risk 
low  

Analysis (for 
given scenario)

Computed pay-off of a partiular future contract 
execution scenario, discounted to today 

(stochastic) 
model

Underlying modeled using Brownian motion, with 
given mean and variance 

Analysis (for 
model)

Expected pay-off and its variation (and, implicitly, 
execution strategy)
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DSLs?

Contract often implicit, or enumerated (not defined)

Execution 
strategy no

Analysis (for 
given scenario) no 

(stochastic) 
model

no (programmatic generation of scenarios)

Analysis (for 
model)

PDEs, closed forms (where possible) , no where not
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Why DSLs for Finance?

• Multiple independent use of what is modeled

• Contracts: For lawyers, execution

• Stochastic models: For multiple contracts

• Analysis functions: For arbitrary contracts, 
arbitrary models

• Solution methods:  MC, FD, etc.

• Genericity: infinitely many specifications, 
“intensional” representation -> functions that 
work on infinitely many different specifications
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DSL benefits
•DSLs for correctness, safety and 

reusability
• Click and run and do your job
• Language invariants, properties, logic

• DSLs for expressiveness, performance 
and business scalability 
• Unlimited extensibility
• Cutting-edge “computer science in the box”
• Partner business model through DSL (micro-)app 

market
•DSLs for separation of concerns and 

standardization
• Include in legal rules
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Exercise

• Design a DSL for waterfall payments part of 
asset-backed securities
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A 
programming 

language!
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