
Fritz Henglein
Department of Computer Science, University of Copenhagen (DIKU)

DSL4EE Workshop, Marstrand, 2011-06-17

DSLs for Finance!

1

Outline

• DSL essentials

• DSLs in enterprise modeling

• DSLs in Finance -- observations and
considerations

• HIPERFIT

2

What is a DSL?

Klarlund, Schwartzbach, A domain-specific language for regular sets of strings
and trees, IEEE Trans. Software Engineering, 3:25, 1999

3

DSL approach:
Motivation

• Design DSLs that capture compositional
structure of domain model

• Isomorphism principle: One-to-one
correspondence between informal
requirements and formal DSL specifications

• Small change in requirements = Small change in
specifications

• Language-oriented programming

4

What is special about
DSLs (for behavior)?

• A DSL specification is

• a program: it has standard semantics

• data: it can be analyzed

• A DSL specification has multiple, open-
ended interpretations

5

ERP System
• Electronically manage everything in a company

• sales, purchase, production orders

• payments

• inventory

• customers

• Perform analysis on business data

• tax

• statistics

6

ERP market
• SAP, Oracle,

• Microsoft Dynamics, many more (mostly regional)

• Inclusive definition: “enterprise systems” (ERP, CRM, HRM,
SCM, etc.)

• Global annual revenues (2009, Gartner Group projections):

• Hollywood: 28 billion dollars (2008)

• Videogames: 42 billion dollars

• ERP Software: 223 billion dollars

7

Functional View of present-day
ERP System Architecture

Source: http://blogs.zdnet.com/SAAS/images/erp-block.png
Source: http://www.bluedzine.com/images/erp_diagram.gif

8

public static void main (…) {
 ..

 int gl_line;
…
bla
bla
bla
bla
bla
}

public static void main (…) {
 ..

 int gl_line;
…
bla
bla
bla
bla
bla
}

public static void main (…) {
 ..

 int gl_line;
…
bla
bla
bla
bla
bla
}

public static void main (…) {
 ..

 int gl_line;
…
bla
bla
bla
bla
bla
}

public static void main (…) {
 ..

 int gl_line;
…
bla
bla
bla
bla
bla
}

public static void main (…) {
 ..

 int gl_line;
…
bla
bla
bla
bla
bla
}

Configuration
data (tables) User data (tables)

Code units Form specifications

Architectural view:
Conventional ERP software architecture

Centralized database

9

Developer’s view of ERP
Systems

Source: http://blogs.zdnet.com/SAAS/images/erp-block.pngSource: http://www.bluedzine.com/images/erp_diagram.gif

10

• Data: Resources, events (”transactions”), agents,
documents (basic information such as invoices)

• Reports: Interpretation of all base data by selection,
aggregation, correlation, transformation etc.

• Processes: Specifications of expected sequences of
events, in particular (commercial) contracts

• Rules: Legal and business constraints on how things
are to/may be done, e.g. VAT or customs rules

• Interfaces: Specification of interactions between
system components, and between system and users
(roles).

Process-Oriented Event-driven
Transaction System (POETS):

Requirements = Specifications = Code

11

Why POETS?

• No accounting artifacts (double-entry book-
keeping): register events

• Unlimited configurability by DSLs:

• Contract, report, rules languages

• Technical “simplicity”:

• Order of magnitude less code

• Performance is “in the box” (needs not be
programmed)

12

DSLs: The business model
aspect

• Free clients: Android, Web, iPhone, iPad

• Free servers: Cloud-based

• Apps containing business processes, rules,
information

• Developed by channel partners

• Made possible by DSL architecture

13

Unique features
• Simplicity ... and generality

• No SQL, no legacy code, no double entry
bookkeeping, no platform dependence

• Built-in auditability (like Time Machine)

• Unlimited extensibility through DSLs

• new applications possible

• scalability through partner channels

14

 New apps possible in
POETS (examples)

• Render contracts in Hindi

• Works for all contracts, also future/new ones

• Sales tax rules for the State of New Hampshire, e.g. for
approval by regulatory body

• Not enmeshed with code for processing them

• Stochastic contract valuation for risk management
(compare with pricing of financial instruments)

15

POETS
Architectur

e
(more
detail)

16

Real events

17

Registered events

…

18

…

Registered events

19

Reports: Invoices

20

Reports: FIFO inventory valuation for cost

Invoices sent

Inventory acquired

foldl: Iterate over inventory acquisitions from
oldest to youngest.

Replace by foldr è LIFO costing

Text

21

Contracts: Processes involving external parties

A simple sales contract, with VAT requirements

Choreography (“global
view”)

22

 Contracts…
A sales contract with multiple installments (and VAT payments)

orelse

23

Why formal contract
specifications?

• Operational semantics by reduction semantics

• <C, e> à C’ (e matches, C’ is residual contract)

• <C, e> à “unexpected event”

• Can write programs that analyze contracts C:

• When is the next deadline for something to happen in C?

• Is the next thing to happen a payment I must make? (A/P)

• Is the next thing to happen a payment I must receive? (A/R)

• What is the value/risk to me of entering into C? (Peyton-

24

Internal processes
The universal process, which allows all internal transactions, for matching events that are

not part of a given contract or specified internal business process

25

Contract Specification
Language (CSL), v. 2.0

Hvitved, Klaedtke, Zalinescu, A trace-based model for multiparty contracts, to appear in JLAP 2011
26

Reporting In ERP Systems
• ERP systems contain a lot of data
• Many reports are simple
• Computing reports is time consuming

• Only suitable for off-line reporting (batch runs)
• Decisions may be delayed due to report

computation time
• Reports are usually expressed in SQL, in a

general purpose languages, (for instance, X++ or
C/AL) or a combination of them

27

FunSETL: Purpose
• Powerful enough to express reports.

• Restrictive enough to facilitate automatic
incrementalization.

• Easy to define report declaratively:

• What should be the result?

• Not: How exactly should it be computed?

28

FunSETL: Properties
• A simple functional language

• No recursion - only iteration on multisets

• Strongly normalizing

• Data iteration

• No general recursion

29

FunSETL: Syntax

30

Incrementalization
• Idea: Reuse intermediate results automatically.

• Let f be a function and ⊕ be an update operation.

• Then f ’ is the incremental version of f with
respect to ⊕

• It computes the result of f (x ⊕ y) by making use
of the value of f (x):

31

The key equivalence
• We are interested in incrementalization with

respect to the with operation.

• That is, we want to eliminate foreach loops by
the following equivalence.

• Realizes asymptotic speed-up over naïve
execution

• r = foreach (a, b → e1) e2 S implies

32

Transformations
• To transform function into an incrementalized

version perform the following transformations:

• 1. Normalise to A-normal form (almost)

• 2. Caching of intermediate results

• 3. Incrementalization use cashed intermediate
values

• 4. Prune all unnecessary computations

33

Example: Computing the
Average

34

Example: Normalisation

35

Example: Cache
Intermediate Results

36

Example:
Incrementalization

37

Example: Cleaning Up

38

Case study
• Financial statement (report) in MS Dynamics AX

• X++ source of report and live data from German
company

• Provided by MDCC

• Computes:

• Sum class computations (balance of account intervals X000
− X999, where X = 0, 1, 2, 3, 4, 5, 6, 7, 8 and from 9000 and
up.

• Assets and liabilities

39

Status
• Incrementalizer and compiler in F#

• Target language: C#

• C# then compiled to .NET (MSIL)

• Interrailing with MS Dynamics NAV

• FunSETL report can be executed and displayed
in NAV (Version 5.0).

40

Challenges for innovation
in ERP sector

• Technical backwards compatibility:

• Vast amounts of code and data representing
enormous investments

• Investment in code and data must be preserved

• Eco-sociological backwards compatibility:

• Large number of existing users, business
architects, and (non-CS trained) application
developers

41

Domain-specific
languages: Advantages

• Domain-oriented concepts
• Reflects domain ontology: Resource, Event,

Agent, etc.
• Built-in properties

• Checkpointing: Source-level representation of
execution state

• Termination/limited resource usage
• Restrictive expressive power

• Analyzability, not just executability
• Closure properties by composition

• Differentiability

42

Financial contracts:
Steps

Contract American put option

Execution
strategy

Exercise option if price good and counterparty risk
low

Analysis (for
given scenario)

Computed pay-off of a partiular future contract
execution scenario, discounted to today

(stochastic)
model

Underlying modeled using Brownian motion, with
given mean and variance

Analysis (for
model)

Expected pay-off and its variation (and, implicitly,
execution strategy)

43

DSLs?

Contract often implicit, or enumerated (not defined)

Execution
strategy no

Analysis (for
given scenario) no

(stochastic)
model

no (programmatic generation of scenarios)

Analysis (for
model)

PDEs, closed forms (where possible) , no where not

44

Why DSLs for Finance?

• Multiple independent use of what is modeled

• Contracts: For lawyers, execution

• Stochastic models: For multiple contracts

• Analysis functions: For arbitrary contracts,
arbitrary models

• Solution methods: MC, FD, etc.

• Genericity: infinitely many specifications,
“intensional” representation -> functions that
work on infinitely many different specifications

45

DSL benefits
•DSLs for correctness, safety and

reusability
• Click and run and do your job
• Language invariants, properties, logic

• DSLs for expressiveness, performance
and business scalability
• Unlimited extensibility
• Cutting-edge “computer science in the box”
• Partner business model through DSL (micro-)app

market
•DSLs for separation of concerns and

standardization
• Include in legal rules

46

Exercise

• Design a DSL for waterfall payments part of
asset-backed securities

47

A
programming

language!

48

