Dependent Types For DSLs

Edwin Brady

eb@cs.st-andrews.ac.uk

University of St Andrews
DSLA4EE, Gothenburg, 16th June 2011

DSLA4EE, Gothenburg, 16th June 2011 —p.1/22

Introduction
c

This talk is about a technique for Domain Specific
Language implementation. It will cover:

1. An overview of functional programming with
dependent types, using the language IDRIS.

2. Embedded Domain Specific Language (EDSL)
Implementation.

B A type safe interpreter

B \erified resource management using DSLs
¢ e.g. for networks, security, concurrency, ...

3. For discussion: what other domains fit this
approach?

DSL4EE, Gothenburg, 16th June 2011 — p.2/22

ldris
N

IDRIS IS an experimental purely functional language with
dependent types (http://idris-lang.org/).
B Compiled, via C, with some optimisations.

B |oosely based on Haskell, similarities with Agda,
Epigram.

B Available from Hackage:
¢ cabal install idris
¢ Requires Boehm GC, port install boehmgc

B Tutorial notes online:
¢ http://idris-lang.org/tutorial

DSL4EE, Gothenburg, 16th June 2011 — p.3/22

http://idris-lang.org/
http://idris-lang.org/tutorial

ldris
N

IDRIS IS an experimental purely functional language with
dependent types (http://idris-lang.org/).

B Compiled, via C, with some optimisations.

B |oosely based on Haskell, similarities with Agda,
Epigram.

B Available from Hackage:
¢ cabal install idris
¢ Requires Boehm GC, port install boehmgc

B Tutorial notes online:
¢ http://idris-lang.org/tutorial

B “Research quality software”

DSL4EE, Gothenburg, 16th June 2011 — p.3/22

http://idris-lang.org/
http://idris-lang.org/tutorial

Some ldris Features
c

IDRIS has several features to help support EDSL
Implementation. ..

Full-Spectrum De
Compile-time eva
Efficient executab

pendent Types
uation

e code, via C

Unification (type/argument inference)

Plugin decision procedures

Overloadable do-notation, idiom brackets
Simple foreign function interface

...and | try to be responsive to feature requests!

DSL4EE, Gothenburg, 16th June 2011 — p.4/22

Dependent Types In Idris
o

Dependent types allow types to be parameterised by
values, giving a more precise description of data.
Some data types in ldris:

data Nat = 0 | S Nat;

infixr 5 :: ; -- Define an infix operator

data Vect : Set -> Nat -> Set where -- List with size
VNil : Vect a O
| (::) : a -> Vect a k -> Vect a (S k);

We say that Vect Is parameterised by the element type
and indexed by its length.

DSL4EE, Gothenburg, 16th June 2011 — p.5/22

Functions
]

The type of a function over vectors describes invariants
of the input/output lengths.

e.g. the type of vAdd expresses that the output length is
the same as the input length:

vAdd : Vect Int n -> Vect Int n -> Vect Int n;
vAdd VNil VNil = VNil;
vAdd (x :: xs) (y :: ys) = x +y :: vAdd xs ys;

The type checker works out the type of n implicitly, from
the type of Vect.

DSL4EE, Gothenburg, 16th June 2011 — p.6/22

Input and Output
-

/O in Idris works in a similar way to Haskell. e.g. readVec
reads user input and adds to an accumulator:

readVec : Vect Int n -> I0 (p **x Vect Int p);
readVec xs = do { putStr "Number: ";

val <- getlnt;

if val == -1 then return <| _, xs |[|>

else (readVec (val :: xs));

};

The program returns a dependent pair, which pairs a
value with a predicate on that value.

DSL4EE, Gothenburg, 16th June 2011 — p.7/22

Libraries
1

Libraries can be imported via include "1lib.idr". All
programs automatically import prelude. idr which
Includes, among other things:

B Primitive types Int, String, Float and Char, plus
Nat, Bool

Tuples, dependent pairs.

Fin, the finite sets.

List, Vect and related functions.
Maybe and Either

The 10 monad, and foreign function interface.

DSL4EE, Gothenburg, 16th June 2011 — p.8/22

A Type Safe Interpreter

A common introductory example to dependent types Is
the type safe interpreter. The pattern is:

B Define a data type which represents the language
and its typing rules.

B Write an interpreter function which evaluates this
data type directly.

‘demo: interp.idr]

'code available at
http://idris-lang.org/examples/dsl4dee.tgz]

DSL4EE, Gothenburg, 16th June 2011 — p.9/22

http://idris-lang.org/examples/dsl4ee.tgz

A Type Safe Interpreter
-—

Notice that when we run the interpreter on functions
without arguments, we get a translation into Idris:

Idris> interp Empty test
\x : Int . \ X0 : Int . x + %0
Idris> interp Empty double

\ x : Int . x+x

DSL4EE, Gothenburg, 16th June 2011 — p.10/22

A Type Safe Interpreter

We have partially evaluated these programs. If we can
do this reliably, and have reasonable control over, e.qg.,

Inlining, then we have a recipe for efficient verified EDSL
Implementation:

1. Design an EDSL which guarantees the resource
constraints, represented as a dependent type

2. Implement the interpreter for that EDSL

3. Specialise the interpreter for concrete EDSL
programs, using a partial evaluator

DSL4EE, Gothenburg, 16th June 2011 —p.11/22

Resource Usage Verification
-

We have applied the type safe interpreter approach to a
family of domain specific languages with resource usage
properties, in their type:

B File handling

B Memory usage

B Concurrency (locks)

B Network protocol state

| will outline a generic framework for the construction of
resource aware DSLs

DSL4EE, Gothenburg, 16th June 2011 — p.12/22

Resource Aware DSLs
]

Our aim is to define a language for tracking resource
usage statically. It will take the following form, a data
type parameterised over a start and end state:

data RLang : Set -> ResState -> ResState -> Set where

An interpreter, given an environment of resources, runs a
program which updates the environment:

rinterp : {s,s’:ResState} ->
ResEnv s -> RLang a s s’ -> I0 (a & s);

DSL4EE, Gothenburg, 16th June 2011 — p.13/22

Resource Aware DSLs
]

Our concern is whether a resource is valid at a given
time. We define resource types, and include a time slice
In the state:

data ResTy = RTy Set;
ResState n = (Nat & Vect ResTy n);

rty : ResTy -> Set;

We parameterise resources over the time they are valid,
and their location in a resource list:

data Resource : Nat -> Fin n -> ResTy -> Set where

Res : {i:Fin n} -> rty a -> Resource t i a;

DSL4EE, Gothenburg, 16th June 2011 — p.14/22

Resource environments
]

An environment contains concrete resource values
(compare to the well-typed interpreter earlier)

data ResEnv : Vect ResTy n -> Set where
Empty : ResEnv VNil

| Extend : rty r -> ResEnv xs -> ResEnv (r :: xs);

DSL4EE, Gothenburg, 16th June 2011 — p.15/22

Resource 1O monad
]

We can now define a resource state monad,
parameterised over the current state.

data ResIO : Set -> ResState n -> ResState n -> Set where
ResIOp : (ResEnv (snd s) -> I0 (a & ResEnv (snd s’))) ->

ResIO a s s’;

BIND : ResIO t s s’ -> (t -> ResIO u s’ s’?) -> ResI0O u s s’’;
RETURN : a -> ResIO a s s;

Operations in this monad give a DSL for managing
resources in general.

DSL4EE, Gothenburg, 16th June 2011 — p.16/22

Resource 10 operations
— 000000000

For example, as in Haskell's State monad we may need
to GET and PUT state:
GET : (i:Fin n) ->

ResI0 (Resource (fst s) i (vlookup i (snd s))) s s;
PUT : {i:Fin n} ->

Resource (fst s) i (RTy a) -> rty b ->

ResI0 () s (Later s i b);

GET gives a value valid in the current time slice. PUT
updates the time slice, using Later, which increments the
time slice portion of the state.

DSL4EE, Gothenburg, 16th June 2011 —p.17/22

Resource 10 operations
— 000000000

We can USE a value stored in a resource, provided the
resource is valid in the current time slice:

USE : {i:Fin n} ->
(rty a -> I0r b) -> Resource (fst s) i a ->
ResI0O b s s;

While the types of GET, PUT and USE may look complex (to
ensure that resources are used only when valid) using
them in a realistic example is more straightforward.

[demo: safe-file.idr]

DSL4EE, Gothenburg, 16th June 2011 — p.18/22

Conclusions
]

We have seen how IDRIS can be used to implement
type-safe languages, with IDRIS’s type system enforcing
the type safety of the object language.

B Resource safety in particular is an important
problem

This is not unigue to IDRIS!

B Techniques equally applicable to Agda, Coq, Guru,
Trellys, Haskell (with GADTS). ..

DSL4EE, Gothenburg, 16th June 2011 — p.19/22

For Discussion
]

Lots of interesting (resource related) problems fit into the
EDSL framework:

B Concurrency, time/space usage, security, power

consum

These are al
that’s what |

ption, Al/planning ...

problems in Computer Science (because

Know!)

B \Where else might resource aware DSLs and
dependent types in general fit?

DSL4EE, Gothenburg, 16th June 2011 — p.20/22

Related Work
1

B “Parameterised Notions of Computation”
— Robert Atkey,
In MSFP 2006

B “The Power of Pi”
— N. Oury and W. Swierstra,
In ICFP 2008

B “Security Typed Programming Within Dependently Typed
Programming”
— J. Morgenstern and D. Licata,
In ICFP 2010

DSL4EE, Gothenburg, 16th June 2011 — p.21/22

Further Reading
c

B “Scrapping your Inefficient Engine: using Partial Evaluation to
Improve Domain-Specific Language Implementation”
— E. Brady and K. Hammond,
In ICFP 2010.

B “Domain Specific Languages (DSLs) for Network Protocols”
— S. Bhatti, E. Brady, K. Hammond and J. McKinna,
In Next Generation Network Architecture 2009.

B “Ipris — Systems Programming meets Full Dependent Types”
— E. Brady, In PLPV 2011.

B https://github.com/edwinb/ResI0— Resource IO
Implementation

B http://idris-lang.org/tutorial/

DSL4EE, Gothenburg, 16th June 2011 — p.22/22

https://github.com/edwinb/ResIO
http://idris-lang.org/tutorial/

	Introduction
	Idris
	Some Idris Features
	Dependent Types in Idris
	Functions
	Input and Output
	Libraries
	A Type Safe Interpreter
	A Type Safe Interpreter
	A Type Safe Interpreter
	Resource Usage Verification
	Resource Aware DSLs
	Resource Aware DSLs
	Resource environments
	Resource IO monad
	Resource IO operations
	Resource IO operations
	Conclusions
	For Discussion
	Related Work
	Further Reading

