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Abstract. In 1995, the MedView project, based on a co-operation be-
tween computing science and clinical medicine was initiated. The overall
aim of the project is to develop models, methods, and tools to support
clinicians in their diagnostic work. Today, the system is in daily use at
several clinics and the knowledge base created contains more than 2000
examination records from the involved clinics. Knowledge representation
and reasoning within MedView uses a declarative model based on a the-
ory of definitions. In order to be able to model knowledge declaratively
and integrate reasoning into applications with GUIs a framework for def-
initional programming has been developed. We give an overview of the
project and of how declarative programming techniques are integrated
with industrial strength object-oriented programming tools to facilitate
the development of real-world applications.
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1 Introduction

Diagnostic work and clinical decision-making are central items in every field of
medical practice, where clinical experience, knowledge and judgement are the
cornerstones of health care management. In order to achieve increased compe-
tence, the clinician is confronted with complex information that needs to be
analysed. Accordingly, the clinician needs tools to improve analysis and visual-
ization of data in the diagnostic and learning processes.

The traditional paper record used in medicine does not store information in
a manner that makes it easy to learn from the huge amounts of information
collected over time. Not only does it require that someone manually reads and
organizes the stored information, but even if the records are read the information
stored within them is not sufficiently organized and formalized to form a basis for
a general analysis. Unfortunately most computerized systems developed today
to replace the paper record share the same problem. Systems are designed for
storage and transportation of data, and to simplify administrative tasks.

To remedy these problems systems must be designed which are from the be-
ginning focused on knowledge representation and reasoning, areas where declar-
ative programming tools typically are a natural choice.



In 1995, the Medview project [1], based on a co-operation between computing
science and oral medicine, was initiated. The overall goal of the project is to
develop models, methods, and tools to support clinicians in their diagnostic work.
The project is centered around the question: how can computing technology be
used to handle clinical information in everyday work such that clinicians more
systematically can learn from their gathered clinical data? That is, how can the
chain “formalize-collect-view-analyse-learn” be understood and implemented in
the area of clinical medicine.

The basis for formalizing clinical knowledge within MedView is a uniform
definitional model suitable for automated reasoning in a computerized system.
At the same time, the model is simple enough to have an obvious intuitive read-
ing to the involved clinicians needing no further explanation. To implement the
declarative formalized model of clinical knowledge suitable programming tools
are needed. Since interacting with users is another very important part of a
system for use in a clinical setting we also need programming tools suitable for
building graphical user interfaces. The solution taken in the MedView project is
to use declarative programming techniques and state-of-the-art object-oriented
programming tools in concert using each for the task it performs best. To en-
sure a smooth integration a framework for definitional programming has been
developed that can be seamlessly integrated into applications of various kinds.

The rest of this paper is organized as follows. In Sect. 2 we give some back-
ground on definitional programming and the MedView project. Section 3 pro-
vides an overview of Gisela, a new framework for definitional programming. In
Sect. 4 we describe how Gisela is used in the MedView project. Finally, Sect. 5
gives some notes on related work and possible future directions.

2 Background

2.1 Definitional Programming

Declarative programming comes in many flavors. Common to most declarative
paradigms is the concept of a definition. Function definitions are given, predi-
cates are defined etc. However, focus is on what we define, on the functions and
predicates respectively. Definitional programming is an approach to declarative
programming where the definition is the basic notion, that is, focus is on the
definitions themselves, not on what we define.

The definitional programming language GCLA'[3,2,12] was developed as a
tool suitable for the design and implementation of knowledge-based systems. In
GCLA, programs are regarded as instances of a specific class of definitions, the
partial inductive definitions (PID) [9]. The definitions of GCLA consist of a
number of definitional clauses

a=A.,

! To be pronounced Gisela.



where an atom a is defined in terms of a condition A. The most important
operation on definitions is the definiens operation, D(a), which gives all the
conditions defining the atom a in the definition D.

In GCLA, control information is completely separated from domain infor-
mation. This is achieved by using two kinds of definitions when constructing
programs: The (object) definition and the rule definition. The intention is that
the definition by itself gives a purely declarative description of the problem do-
main, while the rule definition contains the procedural knowledge needed to
perform computations.

From a programming point of view, GCLA is basically a logic programming
language, sharing syntax, logical variables, depth-first-search and backtracking
with Prolog. The explicit representation of control makes definitional program-
ming a more low-level approach, compared to other declarative programming
paradigms, and for most programs, the programmer must be aware of control
issues.

Definitional programming in the form of GCLA has been used in a number
of applications including construction planning, diagnosis of telecommunication
equipment, and music theory. It has also been used to implement a definitional
approach to the combination of functional and logic programming [14].

2.2 The MedView Project

Essentially, the MedView project can be divided into two sub-problems: knowl-
edge representation and reasoning, and development of applications for gathering
and exploring clinical data. A first strategic decision was to not try to build yet
another electronic medical record system, but to focus on knowledge gathering
and analysis based on a formal description of the concept “examination”. An-
other to build applied software, for use in the clinical setting, in parallel with the
development of theory and implementation of tools for knowledge representation
and reasoning. This led to the following things to be done, approximately in the
given order:

1. Provide a formal framework and methodology to be used.

2. Formalize the knowledge to be gathered based on this methodology in a close
cooperation between odontologists and computer scientists.

3. Develop tools for entering the information gathered at an examination into
the knowledge base directly in the examination room.

4. Develop tools for viewing the contents of the knowledge base, both for use
in the examination room and later for retrospective studies.

5. Develop tools for analyzing and exploring the knowledge base and for adding
concepts built on top of the basic formal method.

Knowledge Representation. In MedView clinical data is seen as definitions
of clinical terms. Abstract clinical concepts, like diagnosis, examination, and pa-
tient are all given by definitions of collections of specific clinical terms. Knowl-
edge acquisition is modeled as acts of defining a series of descriptive parameters,
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e.g., anamnesis (disease history), status and diagnosis, in terms of observed val-
ues. The basic data thus gathered is collected in the form of definitions which are
stored into a large knowledge base. The knowledge base also contains additional
definitions describing general medical knowledge.

Status. Today, the system has been in use for a couple of years at several clinics
and data from more than 2000 examinations has been collected during patient
visits. Apart from applications for use in the clinical setting a number of tools
for exploring the database using information visualization techniques have been
developed. The most used applications are

— MedRecords, which is used by clinicians to enter detailed formalized exami-
nation data during patient visits.

— MedSummary (Fig. 1), which is used to automatically generate textual and
pictorial summaries of examination data using natural language generation.

— SimVis and The Cube [8], which are two analysis tools developed to enhance
the clinician’s ability to intelligibly analyze existing patient material and to
allow for pattern recognition and statistical analysis.

Work on a definitional framework for case based reasoning is under way [7].



3 Gisela - a Framework for Definitional Programming

While GCLA is a nice realization of definitional programming it has several
drawbacks which became significant when new programming techniques [6] were
developed and attempts were made to use GCLA for knowledge representation
and reasoning in the MedView project. Most notable were efficiency problems
with certain classes of definitions and the problem of interacting well with the
tools used to build GUIs.

It was therefore decided that a new definitional programming system should
be developed. When we analyzed our needs we realized that what we wanted was
not yet another declarative programming language based on a definitional model.
Rather, we wanted to create a general framework for definitional programming
which would allow us to implement definitional knowledge structures in a flex-
ible way. Equally important was that the framework should allow us to easily
build state-of-the-art desktop and web applications with embedded definitional
reasoning components.

3.1 Key Properties

The analysis mentioned above led to the development of a framework with the
following features important for building real applications:

— The computational model of Gisela treats definitions as abstract objects
only, allowing for different kinds of implementation and behaviors.

— Gisela is designed and implemented as an object-oriented framework written
in Objective-C.

— Gisela provides a complete object-oriented application programming inter-
face (API) for building definitional components for use in applications.

— Using Gisela in various contexts, e.g,. in desktop or web applications, en-
tails nothing more than allocating some objects, no particular interfacing
techniques are needed.

— To allow for “traditional declarative programming” a second APT using equa-
tional representations is provided.

— Since the computational model is given at a rather abstract level it allows
for modification by subclassing the classes defined in the framework allowing
for new kinds of definitions and computation methods.

Furthermore, the framework:

— Makes use of the notion of an observer, which sets up hooks for interactive
computations.

— Gives a description of definitional programming that breaks the links to
Prolog present in GCLA.

— Keeps the distinction between declarative and procedural parts of programs
used in GCLA, thus separating declarative descriptions and control infor-
mation.



— Allows any number of distinct definitions in programs. The GCLA system
used two: the declarative (object) definition and the procedural (rule) defi-
nition.

— Allows for new definitional programming ideas while keeping many tech-
niques developed for GCLA.

Gisela can to some extent be seen as a heir to GCLA. However, the computa-
tional model is rather different and the implementation as an extensible object-
oriented framework has very little in common with the Prolog-based GCLA
system.

3.2 Integration with Objective-C

Gisela was from the start designed to make it simple to build programs directly
as objects, from components and classes in the framework instead of using tra-
ditional syntactic representations. Indeed, all that is required to use the Gisela
framework in an Objective-C program is to create a new instance of the class
DFDMachine, some data and method definition objects and start computing.

The general idea behind the Objective-C interface to Gisela is that each kind
of entity used to build programs, variables, terms, conditions, definitions, etc., is
represented by objects of a corresponding class. Thus, a constant is represented
by an object of the class DFConstant, an equation by an object of the class
DFEquation and so on. It follows that if we have a conceptually clear definitional
model of a system it can be realized directly using object representations.

For example, the equation, a = b. is created by the following code segment:

DFConstant *a = [DFConstant constantWithName:0"a"];
DFConstant *b [DFConstant constantWithName:@"b"];

DFEquation *eq = [DFEquation equationWithLeft:a andRight:b];

The basic API for using a DFDMachine performing actual computations is very
simple consisting of the methods:

// Create a machine that uses the default observer.
- (id)initWithDelegate: (id)anObject;

// Set the query to evaluate.
- (void)setQuery: (DFQuery *)aQuery;

// Returns the next answer if there is one or nil otherwise.
- (DFAnswer *)nextAnswer;

// Returns an array with all the possible answers.
- (NSArray *)findAllAnswers;

The framework provides a number of different definition classes for various pur-
poses. In case these are not sufficient they can be subclassed or simply replaced
by custom classes.



3.3 Computing Basics

Giving a full account of Gisela is beyond the scope of this paper. Here we present
some basics and a few small examples. For a complete description see [15].

Definitions. A definition D is given by

1. two sets: the domain of D, written dom(D), and the co-domain of D, written
com(D), where dom (D) C com(D),
2. and a definiens operation: D : com(D) — P(com(D)).

Objects in dom(D) are referred to as atoms and objects in com(D) are referred
to as conditions.

A natural presentation of a definition is that of a (possibly infinite) system
of equations

ag = A()
ay = A1
D : n>0,
an = A,
where atoms, ag,...,an,... € dom(D), are defined in terms of a number of

conditions, Ay, ..., A,,... € com(D),i.e., all pairs (a;, 4;) such that A; € D(a;),
and a; € dom(D). Note that an equation a = A is just a notation for A being
a member of D(a). Expressed differently, the left-hand sides in an equational
presentation of a definition D are the atoms for which D(a;) is not empty.

Given a definition D the presentation as a system of equations is unique
modulo the order of equations. However, given an equational presentation of a
definition it is not generally possible to determine which definition the equations
represent.

Intuitively, the definiens operation gives further information about its ar-
gument. For an atom a, D(a) gives the conditions defining a, that is, D(a) =
{A| (a = A) € D}. For a condition A € com(D) \ dom(D), D(A) gives the
constituents of the condition.

Computations. Programs in Gisela consist of an arbitrary number of data
definitions and method definitions. The data definitions describe the declarative
content of the program, and the method definitions give the algorithms, or search
strategies, used to compute solutions.

Method Definitions. All method definitions presented in this paper will be of the
form
method m(D1,...,Dy).n >0

m=C1 # Gy

m = Cy # Gy



where m is the name of the method definition, D, ..., D,, are parameters rep-
resenting the actual data definitions used in computations, each Cj; is a compu-
tation condition describing a number of operations to perform, and the G;s are
guards restricting the applicability of equations in the method definition.

Queries. A computation is a transformation of an initial state definition into
a final result definition. To compute a query, a method definition is applied to
an initial state definition. We will write the initial definition as a sequence of
equations. The general form of a query is

m(Dy,...,Dp){e1,...,en}.

where m is a method definition, D1, ..., D, are the actual data definitions used
in the computation, and each e; is an equation.

If the computation method applied cannot be used to transform the initial
state definition into an acceptable result definition the computation fails. If the
computation succeeds we take the result definition and any bindings of variables
in the initial state definition as the answer to the query. Note that the compu-
tation method m provides the particular data definitions describing declarative
knowledge to use in the computation. Depending on the context the result of a
computation can be interpreted in different ways.

Sample Programs. Programs in Gisela can be built directly from objects pro-
grammed in Objective-C based on classes in the framework or using a traditional
declarative programming style. We show some simple examples using the later
approach to give a flavor of the system.

Example 1. A Toy Expert System. Consider the following toy expert system
adopted from [2]. The knowledge base of the system is the data definition:

definition diseases.

symptom(high_temp) = disease(pneumonia).
symptom(high_temp) = disease(plague).
symptom(cough) = disease(pneumonia).
symptom(cough) = disease(cold).

The data definition, named diseases, contains the connections between symp-
toms and diseases, but no facts. To ask the system what a possible disease might
be, based on observed facts, e.g. symptoms, we form a query using a method
definition and an initial state definition. For instance, assume that the patient
has the symptom high_temp, from which diseases does this follow?

lra(diseases){disease(X) = symptom(high_temp)}.

The meaning of the query is “use the method definition 1ra instantiated with the
domain knowledge in the data definition diseases to compute a result definition
from the initial state definition {disease(X) = symptom(high_temp)}”.



G3> lra(diseases){disease(X) = symptom(high_temp)}.
X = pneumonia
75

X = plague

The answer tells us that high_temp could be caused by pneumonia or plague.
Since the result definition is of no particular interest the system has been asked
to display only the computed answer substitution.

The method definition 1ra is defined as follows:

method 1lra(D).
lra = [lra, 1:D] # some 1l:in_dom(D).
lra = [lra, r:D] # some r:in_dom(D) & all not(l:in_dom(D)).
lra = [D] # all not(l:in_dom(D); r:in_dom(D)).

The first line states that lra is a method definition that takes one parameter,
a data definition D. The remaining lines are three equations that describe the
behavior implemented by lra.

The method 1ra attempts to replace left and right-hand sides of equations
in the current state definition using the data definition D. If this is not possible,
the third equation of 1ra will try to unify the left and right-hand side of some
equation in the state definition. If no equation of 1ra can be applied, the answer
to the query is no.

Example 2. Default Reasoning. Assume we know that an object can fly if it is a
bird and if it is not a penguin. We also know that Tweety and Polly are birds as
are all penguins, and finally we know that Pengo is a penguin. A data definition
expressing this information is the following:

definition birds:gcla.
flies(X) =

bird(X),
(penguin(X) -> false).

bird(tweety) .

bird(polly).

bird(X) = penguin(X).

penguin(pengo) .

If we want to know which birds can fly, we pose the query
G3> gcla(birds){true = flies(X)}.

which gives the expected answers. More interesting is that we can also infer
negative information, i.e., which birds cannot fly:

G3> gcla(birds){flies(X) = false}.
X = pengo



The method definition gcla is an attempt to emulate general GCLA behavior.
More details about how the kind of negation used works can be found in [2].

Example 8. Hamming Distance. The examples above were adopted from GCLA
programs. Since GCLA is essentially an extension to logic programming, the
interesting part of the answer is the computed answer substitution for variables
in the initial state definition. One of the objectives of Gisela is to allow for
other ways of computing with definitions, where the computed result definition
is the interesting part of the answer. Studying properties of definitions, such as
similarity, is an example of this.

Hamming distance is a notion generally used to measure difference with re-
spect to information content. The Hamming distance between two code-words,
for example 1101 and 0110, is the number of positions where the words differ.
In this example we let each code-word be represented by a data definition. Thus,
the word 1101 and the word 0110 are represented by:

definition wil. definition w2.
w(0) = 1. w(0) = 0.
w(l) = 1. w(l) =1
w(2) = 0. w(2) = 1.
w(3) = 1. w(3) = 0.

To compute the Hamming distance between w1l and w2 we ask the query
G3> 1r(wi,w2){w(0)=w(0), w(1)=w(1), w(2)=w(2), w(3)=w(3)}

which computes the result definition {1=0, 1=1, 0=1, 1=0}. What we have
computed is, so to speak, how similar wl and w2 are. From this similarity mea-
sure, it is easy to see that the Hamming distance is 3.

The method 1r expands the initial state definition as far as possible by
replacing atoms according to the actual data definitions used. When a state
where no equation can be changed is reached the computation stops.

4 MedView and Gisela

4.1 Application Architecture

The general design approach used in applications is to use the Model-View-
Controller (MVC) paradigm. MV C is a commonly used object-oriented software
development methodology. When MVC is used, the model, that is, data and
operations on data, is kept strictly separated from the wview displayed to the
user. The controller connects the two together and decides how to handle user
actions and how data obtained from the model should be presented in the view.

Applied to the MedView and Gisela setting, the model of what an applica-
tion should do is implemented using definitional programming in Gisela. The
view displayed to the user can be of different kinds, desktop applications, web
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applications etc. In between the view presented to the user and the Gisela ma-
chinery there is a controller object which manages communication between the
two parts.

One advantage of this approach is, of course, that different views may be
used without changing the model. The general architecture is illustrated in Fig.
2. At the center is a Document (controller) object, which manages an on-screen
window displaying graphs and all resources needed to perform computations. All
definitional computations are embedded into a model consisting of an object of
the DataProvider class. An object of this class creates a DFDMachine to perform
computations and feeds it with data from an MVDatabase. The MVDatabase in
turn is provided by an MVDatabaseManager, which is responsible for things like
loading databases and sharing them among objects. Gisela also provides API
to load definition objects at run time from text-files. Consequently, any Gisela
program developed using equational presentations can smoothly be integrated
into an Objective-C application.

4.2 Knowledge Base Structure

The MedView knowledge base consists of a large number of definitions stored
in a format that can be read by the Gisela framework. The general structure of
the knowledge base is pictured in Fig. 3. It consists of the following;:

— A collection of examination records, where each examination is represented
by a data definition.

— Additional data definitions describing different kinds of general knowledge.

— Procedural knowledge represented by definitions in terms of method defini-
tions.
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Fig. 3. Schematic view of the MedView knowledge base. The knowledge base consists
of a collection of examination records on top of which extra knowledge may be added.
To perform computations, methods, shown to the right, are needed.

Note the distinction between declarative and procedural knowledge. In addition,
the knowledge base contains a large number of digitized images taken at ex-
aminations. Each image is associated with a particular examination and can be
retrieved by searching the collection of examination records.

Representing Basic Data. Assembling information at examinations is mod-
eled as defining a series of descriptive parameters, such as disease history (anam-
nesis), status, diagnosis, and so on. All examination definitions share a common
structure, which so to speak defines the basic concept “examination”. A small
part of this structure is:

examination = anamnesis
examination = status
anamnesis = common
status = direct
common = drug
E { common = smoke (1)
direct = mucos
direct = palpation
MUCOS = mucos_site
MuUcos = mucos_col
| palpation = palp_site

As can be seen from the example, the general structure is hierarchical. An ex-
amination consists of anamnesis, status, etc. Each of these in turn consist of a
number of parts, which consist of a number of parts, and so on until we reach the
actual attributes for which values are collected at an examination. The attributes
in (1) are, drug, smoke, mucos_site, mucos_col, and palp_site. It is important
to note that not all attributes must be given values. A missing value simply
indicates that we know nothing about it. The structure may be changed as long



as it is extended, since then old records will remain valid, it is simply that they
may have a larger number of attributes without values.

It is natural to view an examination record as being the sum of two defini-
tions. One definition, E, describing the concept examination, and one definition,
R, providing data collected at a particular patient visit. Thus, a complete ex-
amination is given by E + R.

For instance, a set of equations that together with (1) define a particular

examination could be
drug = losec

drug = dermovat
R < smoke = no

mucos_site = [122

mucos_col = white

4.3 Additional Knowledge Structures.

On top of the basic collection of examination records additional definitions may
be created to represent different kinds of knowledge. We show two examples.

Value Classes. As the number of examinations in the knowledge base grows, it
becomes increasingly important to group related values into classes in a hierar-
chical manner. For example, diseases such as Herpes labialis, Herpetic gingivos-
tomatis, Shingles etc., can be classified into viral diseases. Such classifications
facilitate the detection of interesting patterns in the data. Value classes are given
as definitions and can be stored in the knowledge base for future use. Examples
of existing simple value classes are a division between smokers and non-smokers
and between patients with oral lichen planus and patients that do not have oral
lichen planus.
A Gisela definition that classifies smoking habits into three groups is:

definition smoke_3:constant.

’1 cigaretter utan filter/dag’ = ’< 10 cigarettes/day’.
’4 cigaretter utan filter/dag’ = ’< 10 cigarettes/day’.
’10 filtercigaretter/dag’ = ’> 10 cigarettes/day’.
’10-15 filtercigaretter/dag’ = ’> 10 cigarettes/day’.
’40 filtercigaretter/dag’ = ’> 10 cigarettes/day’.
’Nej’ = ’non smoking’.

Of course, as the knowledge base grows so will the number of equations in the
definition smoke_3. To further categorize smoking habits into smokers and non-
smokers another definition can be used:

definition smoke_2:constant.

’< 10 cigarettes/day’ = smoking.
’> 10 cigarettes/day’ = smoking.



Note that in the definition smoke_2 it is assumed that smoking habits have
already been grouped using smoke_3. A complete value class definition is de-
rived by adding together smoke_2 and smoke_3, that is, conceptually smoke =
smoke_2 + smoke_3.

To examine the use of value classes consider the query

m(Dy,...,Dp){V = A}

where m is a computation method using the definitions D1,...,D,, V is the
value we are looking for and A some kind of attribute. We will say that a record
fulfills the demands of the query if the single equation in the initial state defini-
tion can be reduced to identity. For instance a query could be

srfi(el1297,smoke_3){’<10 cigarettes/day’ = ’Smoke’}.

which succeeds if the examination represented by definition e1297 has a value for
the attribute ’Smoke’ indicating that the patient smokes less than 10 cigarettes
a day.

A possible method definition encoding the necessary procedural knowledge
is:

method srfi(Exam,Filter).
srfi = [] # some identity.
srfi = [srfi, r:Exam] # some r:in_dom(Exam) &
all not(identity).
srfi = [srfi, r:Filter] # some r:in_dom(Filter) &
all not(identity) &
all not(r:in_dom(Exam)).

The meaning of the equations in srfi is: (i) if there is an equation with identical
left- and right-hand sides in the current state definition, the computation is
finished, (ii) if some attribute can be reduced using Exam, reduce it and continue,
and (iii) if a value can be grouped using Filter, do that and continue.

Computationally, in the query above, ’Smoke’ is first replaced with the value
in the definition €1297, and then this value is replaced by the appropriate group
as given by the definition smoke_3.

If we add the definitions smoke_3 and smoke together (an operation sup-
ported by the Gisela framework) we could ask the query

srfi(el1297,smoke_3+smoke_2){smoking = ’Smoke’}.

to check whether a person smokes or not.

Value Corrections. In the MedView project new values for attributes may
be freely added by any user. This is necessary since we cannot anticipate all
possible values. Also, it is not possible to wait for approval when a new value is
encountered, since data is entered during examinations. There are of course at
least two major problems with this practice: (i) letting all users add new values



might lead to confusion and a less harmonized terminology within the network
of users involved, (ii) misspelled words may be introduced into the lists of valid
values.

One solution is to monitor the values in the knowledge base regularly and
add extra definitions that can be used to find replacements for incorrect values.
These definitions can then be used by applications to ensure that a harmonized
terminology is used. It is natural to use one definition with corrections for each
attribute in the general examination structure that has incorrect values. Which
values are correct and which are not is decided by the network of clinicians work-
ing with MedView. Solving the problem by making changes in the examination
definitions directly is not a viable solution for several reasons, one being the
general rule stating that medical record information may not be changed.

As an example, when the values used for the attribute >Chld-dis’ (Child
Disease) were inspected, it was found that both “Misslingen” and “Massling”
were used to denote the same disease (Measles). It was also found that in a num-
ber of examinations the disease “Réda Hund” (Rubella) was misspelled “Ruda
Hund”.

A Gisela definition that describes how to correct values for the attribute
’Chld-dis’ is the following:

definition ’Chld-dis’.

’Massling’ = ’M&asslingen’.
’Ruda hund’ = ’Réda Hund’.

It was decided that “Maésslingen” was preferred over “Massling”. Therefore, the
value *Massling’ is defined to be equal to the correct value *Mésslingen’. Note
that only values that are regarded as incorrect are defined in this definition. For
simplicity, the name of the definition is the same as the name of the attribute it
gives corrections for. From a computational point of view value corrections are
essentially identical to value classes.

5 Discussion

The value of Gisela and its use in the MedView project depends on two key
issues: (i) To what extent the use of a uniform declarative model facilitates the
development of a system such as MedView, and (ii) How well the Gisela system
is suited for the task at hand. These issues are discussed briefly here.

5.1 Definitions and MedView

The choice to use definitions as the model underlying knowledge representation
and reasoning within MedView was taken in a very early phase of the project
based on the expertise of the computer scientists involved. However, the model
has proven easy for clinical users to understand and modify. Today, development
and maintenance of the general structure of examinations, value lists, value and
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Fig. 4. MedRecords. At the top left is a navigation area which is used to navigate into
the appropriate part of the input view (incomplete definition) at the bottom. To the
right is a list of values linked to the attributes in the input view.

correction definitions etc. is managed by the involved clinicians themselves. An
example of this is the MedRecords application shown in Fig.4 used to enter
data at examinations. The idea behind this application is to display an incom-
plete definition (examination record) and provide means to facilitate completing
it. The contents of the three views is developed by the users themselves. It is
also worth noting that although MedRecords does not make use of Gisela it is
definitely colored by the declarative model used.

Clinicians using MedView typically report increased competence resulting
from the stringent procedures set-up by using a formalized nomenclature and
standardized examination protocols. Furthermore, clinicians rarely have to dic-
tate medical record texts since these can be generated from examination records.

5.2 The Gisela Framework

A major advantage of using declarative programming is that the close gap be-
tween the knowledge model and programming model greatly simplifies imple-
menting the reasoning part of the system. While a large number of examinations
have been collected in MedView, the work on additional knowledge structures is
still in an early phase. In part, this depends on that, prior to the development
of the Gisela framework, each kind of new definitional computation to be per-
formed required the development of new specialized procedures for computing



with definitions. Accordingly, trying out new ideas in practice was a cumbersome
process that required a lot of work. With the Gisela framework different kinds
of definitions and computation methods can be expressed easily, something we
hope will speed-up the process of trying out new ideas on how to explore the
MedView knowledge base.

As the database is approaching a size where it might be meaningful to apply
data mining techniques to search for patterns it will become increasingly impor-
tant to have a tool that is tailored for definitional computing. It will also make
it easier to implement, for instance, an intelligent agent in MedRecords helping
the user during patient visits.

Of course, most declarative languages have foreign language interfaces. How-
ever, there are two things that set Gisela apart most of these: (i) Gisela does
not attempt to be a general-purpose programming language, rather it is a sys-
tem for realizing a certain set of definitional models, (ii) Gisela is a framework
with a rather loose definition, specifically aimed at allowing experiments and
modifications within the general model set up by the computation model. The
aim of declarative systems such as Prolog, Haskell, Mercury [13], and Curry
[11], is to provide full-fledged programming languages suitable as alternatives to
the commonly used imperative and object-oriented ones. Being general-purpose
languages, they also provide libraries to build GUIs [4,10]. An alternative path
is taken in [5] which implements Prolog in Java in a manner enabling a tight
integration between the two languages.

So far, our experiences from using Gisela are positive: It provides seamless
integration with state-of-the-art tools for building desktop and web applications,
handles the current database without any problems, and can easily be modified or
extended when functionality not present in the framework is needed. If desired
the framework can also be used to use declarative programming at different
levels. For instance, it is possible to use only data definitions describing a domain
and implement the procedural behavior without using Gisela.

5.3 Conclusion

We have described how the declarative programming tool Gisela is used for
knowledge representation within the MedView project. The approach taken has
been to build a declarative programming tool which can be integrated with ease
into a modern object-oriented programming environment. Currently, we have no
plans to extend Gisela to handle sophisticated interaction with the user. Instead,
we advocate an approach with a definitional model programmed in Gisela and an
interface part programmed using other, more suitable, tools. In our experience
this is the most practical approach, at least for the time being.

So far, more than 2000 examinations and some 2500 images have been col-
lected into the knowledge base, which in the area of oral medicine is a significant
contribution. For the future, both Gisela and MedView are being ported to Java
and we are looking into different ways to model and use the knowledge base
accumulated during the years.
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