Gisela—A Framework for Definitional
Programming

Olof Torgersson
Department of Computing Science
Chalmers University of Technology and Goéteborg University
S-412 96 Goteborg,Sweden
oloft@cs.chalmers.se

Abstract

We describe Gisela, a framework for developing systems based on defini-
tional models. The framework can be seen as a successor to the definitional
programming tools GCLA and GCLAII. Compared to these, Gisela was
designed to provide for a cleaner definitional programming methodology
and to allow for new ideas on programming with definitions not covered by
previous systems. Another important goal has been to create a system suit-
able for use as an embedded deductive database engine in object-oriented
applications with GUIs. The computational model and implementation
are described, and a number of example programs are given to illustrate
how the framework can be used.

1 Introduction

Declarative programming comes in many flavors. There are functional languages,
lazy functional languages, logic languages, constraint logic languages, functional
logic languages and so on. Common to most of these is the concept of a definition.
Function definitions are given, predicates are defined etc. Yet another approach
to declarative programming is what we call definitional programming. In a def-
initional program, the definition is the basic notion, not functions, predicates,
or constraints. Since both functions and predicates conceptually are given using
definitions, taking the definition as the basic notion puts definitional program-
ming at a lower level. This said, we also believe that definitional programming
does, and should, provide for a large degree of freedom. Using the tools presented
here many different kinds of programs and evaluation strategies can be expressed,
although it might take some more work than using a higher-level declarative sys-
tem. The situation can be compared to imperative languages. A language like

On GCLA, Gisela, and MedView

Ada or Java puts programming on a higher level than C. On the other hand, no
other widely used imperative language gives the freedom provided by C.

With Gisela', we have tried to keep the flexibility of the definitional program-
ming tool GCLAII and move on to another level. Gisela should not be seen as
a programming language with a fixed syntax and semantics, but as a framework
for definitional programming. The intention is to provide a set of tools that
are useful for realizing definitional (knowledge) models into executable programs.
The framework gives an abstract description of definitions in terms of sets and
operations. It also provides a general machinery for computing with definitions,
which does not depend on the details of how definitions are realized. Depending
on the application at hand, the tools may be used to implement programs using
a variety of different kinds of definitions and evaluation orders. Furthermore, the
framework also contains all the building blocks we need to construct a complete
definitional program, if we have no requirements beyond those provided by the
Gisela framework.

Theoretically, the basis for all work on definitional programming so far is, in
some sense, the theory of Partial Inductive Definitions (PID) [25]. Although the
definitions and proof-systems presented in this paper differ in many ways from the
original PIDs the heritage should be obvious. The model presented here builds
on, and borrows from, earlier definitional programming systems, reformulated,
augmented and constrained to fit the needs set up as goals for Gisela.

The definitional programming tools GCLA [9, 10] and GCLAII [6, 11, 36,
were based on finitary versions [29, 30, 38| of the infinitary PID theory. The basic
motivation for the development of these tools was to find a suitable modeling
tool for knowledge-based systems. GCLAII was successfully used in a number of
applications, including construction planning [7], music theory [47], and reasoning
about circuits [24]. It was also used for knowledge representation in the initial
phases of the MedView project [1, 28].

As definitional programming evolved, and new demands were set by the Med-
View project, it became obvious that a replacement for GCLAII was needed.
Some of the problems with GCLAII and ideas for a new definitional tool are
discussed in [58]. Gisela is the result of our efforts at building this replacement.
During development, several of the initial requirements have changed, both with
respect to the theoretic model used and the realization as a framework for defi-
nitional programming. However, several central ideas remain the same.

Among the goals we have had in mind while developing Gisela are:

e To design a framework for definitional programming rather than a defini-
tional programming language.

'In Swedish the preceding definitional language GCLAII was pronounced “Gisela 2”. Since
GCLA was an acronym for Generalized Horn Clause Language, which did not feel appropriate
in the current setting, we kept the way GCLA was pronounced but changed the spelling.

Gisela—A Framework for Definitional Programming

To describe definitional computations in a sufficiently abstract manner to
make the above possible.

To provide a framework suitable for use for knowledge representation and
reasoning in the MedView project.

To build a framework which can easily be integrated into a modern object-
oriented application programming environment.

To provide a machinery that can be used as a definitional programming
language based on a particular concrete syntax.

To give a description of definitional programming that breaks the links to
Prolog present in GCLA.

To provide a framework that is complete enough to be used as is, but which
can also easily be extended. Accordingly, the behavior of Gisela can be
modified and extended by providing specialized observers (see Section 4.3)
or new definition object classes.

To keep the distinction between declarative and procedural parts of pro-
grams used in GCLAII, thus separating declarative descriptions and con-
trol information.

To allow a more fine-grained definiens operation. The definiens operation
as described in [7, 30, 38| is very costly. By implementing several different
versions for different tasks, efficiency can be gained in many cases.

To allow any number of distinct definitions in programs. The GCLAII
system used two: the declarative (object) definition and the procedural
(rule) definition.

To allow for new definitional programming ideas [18, 19, 21, 22, 58] while
keeping many techniques developed for GCLAII.

To create a portable implementation.

To meet the goal of smooth integration into a modern object-oriented application
programming environment, Gisela is realized as an object-oriented framework
for definitional computing. This framework provides a complete object-oriented
application programming interface (API) for building definitional components
for use in applications, see Section 5.6. The realization as an object-oriented
framework also solves the issue of flexibility since it is possible to introduce new
classes, or subclass existing ones, to customize the behavior of the system. A
second API is provided in terms of equational syntactic representations, which
enables the use of Gisela as a “traditional” declarative programming language,
see Section 5.1. In addition, the two APIs may be mixed freely.

On GCLA, Gisela, and MedView

Gisela is still very much of an ongoing project. However, we believe that the
basic design will remain the same and we are developing various applications to
test and investigate programming using the Gisela framework.

The general organization of the rest of this paper is that we make a number
of iterations through Gisela where each iteration provides more detail than the
previous ones. Thus, in Section 2 we give a few examples of programs built using
Gisela to give a flavor of the general ideas. In Section 3 we introduce, in a general
way, the definitional computation model of Gisela. It is followed by a description
of Gisela and its operational semantics in Section 4. Section 5 gives a variety of
examples showing how Gisela can be used in various ways. Section 6 refines the
computational model into a more fine-grained operational semantics that is more
suited as a basis for implementation. In Section 7 an overview of the current
implementation is given. Section 8 finally, sums it all up with a discussion of
Gisela, its relation to other declarative programming systems, future directions
etc.

2 Samples

Programs in Gisela consist of an arbitrary number of data definitions and method
definitions. The data definitions describe the declarative content of the program,
and the method definitions give the algorithms, or search strategies, used to
compute solutions. A query is built from a method definition and an initial state
definition. The method definition tells the system how to compute an answer from
the initial state definition. The result of a computation is another state definition,
referred to as the result definition, and an answer substitution for variables in the
initial state definition. By default, the result definition is rather complex and
contains information, not only about the answer as such, but information about
how it was computed as well. Depending on the application, the result definition
may be simplified in different ways, since the full definition may not be interesting
and building it requires a lot of resources.

All examples in this section are based on the syntactic representations of
definitions described in Section 5.1. The example queries have been run using
the interactive system discussed in Section 5.8.

2.1 A Toy Expert System

As a first example we consider a toy expert system adopted from [6]. The knowl-
edge base of the system is the following data definition:

definition diseases.

symptom(high_temp) = disease(pneumonia).
symptom(high_temp) = disease(plague).

4

Gisela—A Framework for Definitional Programming

symptom(cough) = disease(pneumonia).
symptom(cough) = disease(cold).

The data definition, named diseases, contains the connections between symp-
toms and diseases, but no facts. To ask the system what a possible disease might
be, based on observed facts, e.g. symptoms, we form a query using a method
definition and an initial state definition. For instance, assume that the patient
has the symptom high_temp, from which diseases does this follow?

G3> lra(diseases){disease(X) = symptom(high_temp)}.

The meaning of the query is “use the method definition lra instantiated with
the domain knowledge in the data definition diseases to compute a result def-
inition from the initial state definition {disease(X) = symptom(high_temp)}”.
Generally, the form of a query is m{ey, ..., e,} where m is the method definition
to use to compute a result from the initial state definition {ey,...,e,}.

Now, let us run the above query and have a look at the result:

G3> lra(diseases){disease(X) = symptom(high_temp)}.

X = pneumonia,

{
[1ra,r:D] = {
[b] = {
disease(pneumonia) = disease(pneumonia)
}
}
}
?

The question mark at the end of the system’s response indicates that there may
be more answers to the query. Typing a semi-colon will cause the system to
attempt to compute the next answer. What has been computed here is the full
result definition for the query. The result definition can be viewed as a partial
trace of the computation. More details are given in Section 3. As with most
examples adopted from GCLA, the result definition is of no particular interest
in this case. Therefore, we ask the system to display only the computed answer
substitution and re-run the query:

G3> restype(vars_only) .
G3> lra(diseases){disease(X) = symptom(high_temp)}.

X = pneumonia
?;

X = plague
7?5

no

On GCLA, Gisela, and MedView

The answer tells us that high_temp could be caused by pneumonia or plague.
The method definition 1ra is actually a reusable method-scheme that can be
instantiated with different data definitions:

method lra:[D].

lra = [lra, 1:D] # some 1l:in_dom(D).
lra = [lra, r:D] # some r:in_dom(D) & all not(l:in_dom(D)).
lra = [D] # all not(l:in_dom(D); r:in_dom(D)).

The first line states that 1ra is a method definition that takes one parameter, a
data definition D. The remaining lines are three equations that describe the be-
havior implemented by 1ra. The general form of equations in method definitions
is M = Condition#Guard, where Guard decides if the equation can be applied
and Condition describes possible sequences of operations to perform.

The method 1ra attempts to replace left and right-hand sides of equations
in the current state definition using the data definition D. If this is not possible,
the third equation of 1ra will try to unify the left and right-hand side of some
equation in the state definition. If no equation of 1ra can be applied, the answer
to the query is no.

One way to view lra is as a method definition implementing a subset of
the general inference machinery of GCLA. More on how Gisela can be used for
GCLA-style programming can be found in Section 5.2.

2.2 Logic Programming

Pure Prolog [51] is a subset of Gisela, just as it is a subset of GCLA [29].
Pure Prolog programs can be transformed into valid Gisela definitions simply by
substituting ‘=" for ‘:-’ throughout.? Some examples of Prolog-style predicates
are given in the following data definition:

definition lpsample.

permutation([], [1).
permutation([X|Xs], [YIYs]) =
select (Y, [X|Xs], Zs),

permutation(Zs, Ys).

select (X, [X|Xs], Xs).
select (Y, [X|Xs], [X|Ys]) = select(Y, Xs, Ys).

hanoi(s(0), A, B, C, [mv(A,B)]).
hanoi(s(N), A, B, C, Moves) =

2 Actually, Prolog programs can be handled directly, as is, by a special definition class.

Gisela—A Framework for Definitional Programming

hanoi(N, A, C, B, Msl),
hanoi(N, C, B, A, Ms2),
append (Ms1, [mv(A,B)|Ms2], Moves).

append([], Ys, Ys).
append ([X|Xs], Ys, [X|Zs]) = append(Xs, Ys, Zs).

The predicate append/3 is the canonical logic programming example of how pred-
icates can be used in several modes. We use a method definition called prolog,
shown below, to try out logic programming in Gisela. Again, we have set the
system to show only the substitution part of the answer:

G3> prolog(lpsample){true = append([a,b],[c],Xs)}.
Xs = [a,b,c]

? .

b

no

G3> prolog(lpsample){true = append(Xs, Ys, [a,bl)}.

Xs = [1,
Ys = [a,b]
?;

Xs = [a],
Ys = [b]
?;

Xs = [a,b],
Ys = [1

?

no

Another query using the definition 1psample and the method prolog is
G3> prolog(lpsample){true = permutation([a,b,c],L)}.

The intended reading of this query is “is there an L such that L is a permutation of
[a,b,c]”. The computed answer substitutions are the six possible permutations
of [a,b,c]. The result definition, again, is of no particular interest.

Finally, the predicate hanoi/5 solves the well-known towers of Hanoi problem.
The problem is to move a tower of n disks from one peg to another with the help
of an auxiliary peg. Only one disk can be moved at a time and a larger disk
can never be placed on top of a smaller disk. The first argument of hanoi is the
number of disks to move. The result is a list of moves where mv(A,B) means
“move the top disk from A to B”.

To solve the problem for 3 disks we run the query

G3> prolog(lpsample){true = hanoi(s(s(s(0))), a, b, c, Moves)}.

On GCLA, Gisela, and MedView

Moves =

[mv(a,b) ,mv(a,c),mv(b,c),mv(a,b),mv(c,a),mv(c,b) ,mv(a,b)]
7

no

which computes a single answer just as we would expect it to do.
The method definition prolog is very simple:

method prolog: [P].

prolog = [] # some r:matches(true).
prolog = [prolog, r:P] # all not(r:matches(true)).

Note that it is assumed that the initial state definition used contains only one
equation. Otherwise, the query does not correspond to a Prolog query. What
prolog, parameterized with the program definition P, does is simply to apply the
correct computation rule (see Sections 3.5.1 and 4.2) to the right-hand side of
the the single equation of the state definition as long as it does not equal true.
When the right-hand side equals true the query is proved and evaluation stops.

2.3 Functional Evaluation

As in GCLA, a kind of (first-order) functional programming is possible in Gisela.
If we have the data definitions

definition nats:matching.

Zero = Zero.
s(X) = s(X).

definition plus:matching.

plus(zero, N) = N.
plus(s(M), N)
(plus(M, N) -> K)

-> s(K).

and a method definition fun, which takes two parameters, a definition defining
data objects and a definition defining functions, the query

G3> fun(nats, plus){plus(s(zero),s(zero)) = X}.

Gisela—A Framework for Definitional Programming

will compute the expected answer substitution {X = s(s(zero))}. The slightly
complex method definition fun is not shown here. If we combine logic program-
ming with functional evaluation we get functional logic programming. General
programming methodology and method definitions for functional logic program-
ming using the Gisela framework are discussed in Section 5.5.

2.4 Hamming Distance

All the examples above are adopted from GCLA programs. Since GCLA is
essentially an extension to logic programming, the interesting part of the answer
is the computed answer substitution for variables in the initial state definition.
One of the objectives of Gisela is to allow for other ways of computing with
definitions, where the computed result definition is the interesting part of the
answer. Studying properties of definitions, such as similarity, is an example of
this.

Hamming distance is a notion generally used to measure difference with re-
spect to information content. The Hamming distance between two code-words,
for example 001001110110 and 101100101100, is the number of positions where
the words differ, in this case six. If the Hamming distance between two words is
d it takes d simple bit-transformations to transform one word into the other.

In this example we let each code-word be represented by a data definition.
Thus, the word 1101 is represented by

definition wl.

w(0)
w(l)
w(2) =
w(3)

I
= O

and the word 0110 by:

definition w2.

w(0)
w(l)
w(2)
w(3)

O = = O

To compute the Hamming distance between wl and w2 we ask the query
G3> 1r(wl,w2){w(0)=w(0), w(1)=w(1), w(2)=w(2), w(3)=w(3)}

which computes the result definition {1=0, 1=1, 0=1, 1=0}. What we have
computed is, so to speak, how similarwl and w2 are. From this similarity measure,

On GCLA, Gisela, and MedView

it is easy to see that the Hamming distance is 3. Definitional similarity measures
are described in [20], another example using Gisela can be found in Section 5.4.

The method 1r expands the initial state definition as far as possible by re-
placing atoms according to the actual data definitions used. When a state where
no equation can be changed is reached the computation stops:

method 1r:[L,R].

lr = [1r,1:L] # some 1:in_dom(L).
1lr = [1r,r:R] # (all(not(l:in_dom(L))) & some(r:in_dom(R))).
1r = [] # all((not(l:in_dom(L)) , not(r:in_dom(R)))).

The first equation of 1r can be read as follows: ”If the left-hand side of some
equation in the current state definition is in the domain of the definition L, then
use L to replace the left-hand side of some equation by its definiens and continue
the computation using the method definition 1r”.

2.5 Database Search
Imagine a database built as a large number of data definitions:

definition recordil.
id = t(14).
status = active.

definition record2.
id = t(23).
status = passive.

definition record3.
id = t(11).
status = active.

A suitable method definition here will be one that replaces right-hand sides in
the state definition until both sides are equal in some equation:

method sri:[Record].

sri
sri

[sri, r:Record] # some r:in_dom(Record) & all not(identity).
[1 # some identity.

The guard of the first equation of sri holds if the right-hand side of some equation
in the state definition is in the domain of Record and no equation is an identity.
The guard of the second equation holds if some equation in the state definition
is an identity.

10

Gisela—A Framework for Definitional Programming

Now, if we wish to find all records in the database which have the value active
for the attribute status we can instantiate a method-scheme with a parameter
set instead of, as in earlier examples, with a single definition. This will have the
effect that all the definitions in the parameter set are used to create instances of
the method sri. A query could be:

sri(R <- records){active = status}.
The query has the answers:

{active = active}, R = recordl,

{active = active}, R = record3

which tells us that recordl and record3 are the ones we are looking for.

We conclude this section by showing how the above query can be setup and
run in Objective-C using the Gisela framework. Assuming that sri is an object
representing the method-scheme sri, recordDB contains all the records in the
database, and that state is the initial state definition, the following will collect
all matching records (definitions) in the array matches:

// (1) Some declarations

DFDMachine *dMachine;

DFQuery *query;

DFAnswer *answer = nil;

NSMutableArray *matches = [NSMutableArray arrayl];

// (2) Create Gisela machine.

dMachine = [[DFDMachine alloc] init];

// Create query.

query = [[DFQuery alloc] initWithMethodScheme:sri
stateDefinition:state
andParameterSets:recordDB];

// (3) Set query and run while there are answers.

[dMachine setQuery:queryl];

while (answer = [dMachine nextAnswer]) {

[matches addObject:[[answer parameterValues] objectAtIndex:0]];
}

All entities used in definitional computations can be represented using objects of
various classes provided by the Gisela framework. A small subset of these classes
are used in the present example. For example, the code following (2) creates a
machine for definitional computations and a query object set up to represent the
database search query shown above. The code following (3) tells the definitional
machine to use the created query and run it as long as more answers can be
computed.

11

On GCLA, Gisela, and MedView

3 Computing with Definitions

In this section we present the basic notions of definitions and computations using
definitions which form the basis of Gisela. Many notions are shared with previous
work on PID and definitional programming. However, the differences compared
to earlier work with respect to both terminology, ideas, and presentation are
significant enough to motivate a separate description. The presentation used is
one without variables and is in many ways similar to those in [20, 22, 27, 28],
with some significant extensions. In Section 4 variables are introduced and the
system refined to provide an operational semantics for Gisela.

In computations we will consider three different kinds of definitions: data
definitions, state definitions, and method definitions. We first describe what a
definition is, generally, and then proceed to describe the different definition types
and their respective roles in computations.

3.1 Definitions
A definition D is given by

1. two sets: the domain of D, written dom(D), and the co-domain of D,
written com(D), where dom(D) C com(D),

2. and a definiens operation: D : com(D) — P(com(D)).

Objects in dom(D) are referred to as atoms and objects in com(D) are referred
to as conditions.

A natural presentation of a definition is that of a (possibly infinite) system of
equations

(ap = Ao
a; = A1
D : n >0,
a, = Ay
where atoms, ag, ..., a0y, ... € dom(D), are defined in terms of a number of con-

ditions, Ay,...,Apn,... € com(D), i.e., all pairs (a;, A;) such that A; € D(a;),
and a; € dom(D). Note that an equation a = A is just a notation for A being
a member of D(a). Expressed differently, the left-hand sides in an equational
presentation of a definition D are the atoms for which D(a;) is not empty.
Given a definition D the presentation as a system of equations is unique
modulo the order of equations. However, given an equational presentation of a
definition it is not generally possible to determine which definition the equations
represent. The reason for this is that it is not possible to decide the domain and
co-domain of a definition from its equational presentation. When an equational

12

Gisela—A Framework for Definitional Programming

presentation of a definition D is given without further specifying dom(D) and
com(D), it is assumed that the definition is uniquely determined by its presenta-
tion.

Intuitively, the definiens operation gives further information about its argu-
ment. For an atom a, D(a) gives the conditions defining a, that is, D(a) =
{A] (e = A) € D}. For a condition A € com(D) \ dom(D), D(A) gives the
constituents of the condition. For example, D((A — B)) = {A, B}.

It should be kept in mind that although we frequently use equational presen-
tations of definitions, a definition is any object which adheres to 1 and 2 above.

3.1.1 Operations on Definitions

We will use some primitive operations on definitions:

e (A/B)D, is the definition given by replacing all left-hand sides of D identical
to B with A.

e D(A/B), is the definition given by replacing all right-hand sides of D iden-
tical to B with A.

e D | A If Ais a condition and D a definition, then if D # () then D | A is
the definition given by:

1. dom(D | A) = dom(D)U{T}, com(D | A) = com(D) U {A},
2. D | A(a) = {A} for all a € dom(D) such that D(a) # 0,
else D | Ais {T = A}.
e AS D. If Ais a condition and D a definition then A & D is the definition
given by:
1. dom(A & D) = dom(D), com(A & D) = com(D),
2. A6 D(A) =0, As D(C) = D(C) for C # A.

e A®D. If Ais a condition and D is a definition then A@D =T o (Ag' D)
where A @' D is the definition given by

1. dom(A &' D) = dom(D) U {A}, com(A &' D) = com(D) U {A},
2. 46" D(A) = Uscunmoy D), A® D(B) = D(B) for B # A

o D+ Dy. If Dy and Dy are definitions then D; + D, is the definition given
by:

1. dom(Dy + Dy) = dom(D;) U dom(Ds), com(Dy + Dy) = com(D;y) U
com(Dy),

13

On GCLA, Gisela, and MedView

3.2 Data Definitions

Data definitions are used to model declarative knowledge. These definitions are
the building blocks which computations operate on.

In principle there could be a great number of different kinds of conditions. In
the present work we will use the following to define the set C of all conditions:

1. all atoms are conditions,
2. T and L are conditions,
3. if A and B are conditions then (A, B) and (A — B) are conditions.

For any data definition D, the definiens of A € (com(D) \ dom(D)) is defined as
follows:

1. D(T) =
2. D(L) =
3. D((A, B)) = {A, B},

4. D((A— B)) = {A, B).

3.3 State Definitions

A computation is a transformation of an initial state definition into a final state
definition. State definitions will always be considered with respect to given data
definitions. We make a distinction between ordinary state definitions and result
definitions. State definitions are the initial state definition and all following def-
initions representing the state of a computation. Result definitions are used for
answers.

3.3.1 State Definition Details

The domain and co-domain of state definitions is the union of all the co-domains
of all the data definitions used in a computation. Expressed in another way, all
conditions as described in Section 3.2. We will generally denote state definitions
S, 51,55 ... and write them as a sequence of equations:

{e1,€9,..., e}

For example
{a=0b,(c,d) =be > b=0b, f = b}.

14

Gisela—A Framework for Definitional Programming

3.3.2 Result Definitions

All result definitions are uniquely determined by their equational presentations.
In result definitions the right-hand side of an equation can be another result
definition. Thus, a result definition can contain other result definitions nested
within itself. We will use X, X, Xs... to denote result definitions.

In the general case, the result of a computation is rather complex. Not only
does it contain a number of equations that may be viewed as being the answer
to a query, but also information on how the result was computed.

We illustrate with an example, a result definition nested several levels:

(1)

e = {brown = white

_ white = § emRy = 4§ € = {white = white
X< emR, = —
brown =

emBy =

The right-most equations in (1) are the end-points, or final equations, of the
computation. The rest essentially contains information about where the compu-
tation was split into different branches. The details for how result definitions are
constructed is defined by the computation rules in Section 3.5.1.

In most cases, we are only interested in the final equations, not the complete
structure of the result definition. Thus, result definitions can be transformed
to give the representation most suited for a particular application. Examples
of transformations are flatten(X), which gives a definition containing the leaf
equations of a nested definition only, and null(X) which gives the empty definition
{}. Applying flatten to (1) gives:

D% { white = white

brown = white
A flattened result definition is a valid state definition and can therefore be used
as the initial state definition for a new computation. Also, flattened result def-

initions where all left-hand sides are atoms are valid data definitions for use in
computations.

3.3.3 Definitions as a Generalization of Sequents

PID and GCLA use sequent calculus notation. In Gisela we try to use definitions
as the only structure wherever possible. Thus, sequents have been replaced by
state definitions. Each sequent of PID or GCLA can be represented as a state
definition. Also, compared to GCLA, state definitions generalize sequents to
include what would be sequents with an arbitrary number of consequents.

Instead of describing how sequents correspond to definitions, we give some
examples from which the general idea should be obvious. The sequent

abb

15

On GCLA, Gisela, and MedView

corresponds to the state definition

{a = b}
and the sequent
a,b,ckd
to the state definition
{a=d,b=d,c=d}.
Along the same lines, a sequent calculus rule such as

a,CFb
CrFa—b

can be represented as
{a=0b,C =b}
{C=a—0b}.

We use T to write sequents with an empty set of conditions in the antecedent.
Thus

AFB
FA— B

yields
{A=B)
{T =A - B}.
Since T simply is the representation corresponding to an empty antecedent it is
not part of the premise of the rule.

3.4 Method Definitions

A method definition describes the sequence of steps to be performed in a com-
putation. The description can be more or less precise. We may have method
definitions that set up general search strategies, or method definitions that in
great detail describe what to do next, given the current state definition. We say
that a method definition defines a computation method.

3.4.1 Method Definition Details

Let V be a set of atoms (computation method names). Given a set of data
definitions D, let O be a set of formal notations D, D, D for all definitions D in
D. Let W be the set of all computation words over ¥V and O: W = (V U O)*.
The empty word is denoted by e.

The set of computation conditions, WC, for use in method definitions is de-
fined as follows:

1. All words in W are computation conditions.

16

Gisela—A Framework for Definitional Programming

2. If W7 and W, are computation conditions then (W7, W) is a computation
condition.

3. If W, and W, are computation conditions then W; W, is a computation
condition.

A method definition is a definition with V as its domain and WC as its co-domain.
A method definition m can be presented as a system of (guarded) equations:

m = Wy # C
m = Wy # (s

m:Wn#Cn

where each condition W; € WC, and each guard C; is a boolean function that is
used to decide whether the equation can be applied or not.

Given a data definition, D, we refer to the word constituents D, D, and D
as operations on D. For the sake of simplicity we assume that each computation
method is defined in a method definition with the same name as the method.
That is, the only atom defined in a method named m is m. The meaning of the
operations is given by the calculus in Section 3.5.1.

A method acts on the present state definition. We could think of it as that
there is a hidden argument present in method definitions:

m(S) = Wi # C.(S)
m(S) = W, # Cy(S)

m

m(S) = W. # Ca(S)

3.5 Computations

We now give a presentation of what it means to compute a result definition X
given an initial state definition S and a computation condition W. We write
W:S5 = X, meaning “W:S can be computed to X”. We call W: S = X a
goal. Depending on the application at hand, we will interpret X and W: S in
different ways. For instance, X can be taken as a measure of the distance between
definitions with respect to S and computation methods used, or we can view W: S
as a logic programming goal to be proved, in which case only result definitions
where some right-hand side is T will be accepted. In any case, “W: S can be
computed to X” means that we try to move from the initial state definition S to
a result definition X using W. This may fail, which means that W could not be
used to move from S to X.

The possible computation steps are given using a number of inference rules.
The presentation is aimed mainly at making the intuition of definitional comput-
ing in Gisela clear. A similar, but fully detailed, calculus for Gisela is given in

17

On GCLA, Gisela, and MedView

Section 4.2. An even more fine-grained version, presented as a number of rewrite
rules more suitable as a basis for implementation, is given in Section 6.1.

3.5.1 Computation Rules

In all rules D denotes any data definition and M any computation method.

(1) Termination
eS=3_5 T

(2) Method

WWwi:S8 = Xq,... WW,:5 = X, M
WM:S =X
where M(M) = {W1,...,W,},n > 1. M(M) is the definiens of M in the method
M, that is
{Wi | M =Wi#C; € M ACy(S)}

and X is the result definition

W1 - X1
X .
w, = X,
(3) Choice
WW:S =X

where W; € {W, W,}.

(4) Definition Left

Let e € S. Then, depending on the left-hand side of e we have:

(41) Ife=(a=0C)

W:(Ai1/a)S = Xq,..., W:(A,/a)S = X, 5
WD:S = X P

where D(a) = {A;,...,A,} and X is the result definition

A1 - X1
X :
A, = X,

18

Gisela—A Framework for Definitional Programming

(4.2) Ife=((A,B)=0)

W:(C'/(A,B))S = X 5
WD:S = X v

where C' € D((A, B)).

(4.3) Ife=((A— B)=0)

W151:>X1 WISQZ>XQE
WD:S = X

A

where S; and Sy are given by
o Si=((A—B)eS)LA),
e So=(B/(A— B))S,

and X is the result definition

A:X1
d{azn

(5) Definition Right
Let e € S. Then, depending on the right-hand side of e we have:
(5.1) Ife=(A=na)

W:S(B/a) = X
WD:S=X P

where B € D(a).

(5.2) Ife=(A=(B,0))

W:S(A/(B,C)) =X, W:S(B/(B,C)) = X,
WD:S = X Dy

where X is the result definition
A == Xl
c(azn
(6.3) Ife=(A=(B—0))

W:SliX D
WD:S = X =4

where S’ = B@® (S(C/(B — (C))).

19

On GCLA, Gisela, and MedView

(6) Identity
Let e € S. If e = (a = a) for some @ then:

W.5=X I
WD:S =X ~ -

3.5.2 Comments

Note that the rules (1) through (6) only describe how state definitions and com-
putation conditions connect to each other and that the empty word means that
a computation terminates. In particular, there are no rules for the conditions L
and T. If we wish to interpret these in a special way, for instance as false and
true, the interpretation has to be given in a method definition. Another way to
explain computations is that the given rules describe what state definitions may
be generated given an initial state definition S and a computation condition W'.
The rules (4.1) and (5.1) connect computation methods to the data definitions
used in method definitions. The set of definitions that can be generated from a
state definition is thus given by the above inference rules, the form of the method
definitions involved, and the contents of the particular data definitions used in
methods.

The computation system described shares many properties with PID and the
definitional programming system GCLA, most notably the duality between the
left and right-hand sides of equations. Also, the rules are very similar if we look at
which sequents the different state definitions represent. However, state definitions
are more general in nature than sequents, and, as mentioned, a method definition
is necessary to further describe the permitted computation steps.

3.6 An Example

Consider the two data definitions R; and R,

[status = direct

direct = mucos
direct = palpation
mucos = mucos_site
mucos = mucos_col
mucos_site = 112
mucos_col = white
mucos_col = brown
palpation = palp_site
palp_site = 112

(status = direct

direct = mucos

direct = palpation
MUcos = mucos_site

Ry { mucos = mucos_col ,
mucos_site = 232
mucos_col = white
palpation = palp_site

| palp_site = 242

R <

20

Gisela—A Framework for Definitional Programming

which are adoptions of examination records from the MedView project. We will
investigate the similarity of Ry and R, with respect to to the attribute mucos_col.
To this end we need a computation method. A typical method definition for this
kind of computation using the definitions R; and R; is:

em = cmR; # 'eq € dom(Ry)
em em = cmRy # eq € dom(Ry) A —'eq € dom(R,) . (2)
cm = € # otherwise

If S is the state definition to which e¢m is applied, we may interpret (2) as follows:
If the left-hand side of some equation in S (‘eq) is in the domain of R;, then
replace it with its definiens and continue computing using cm. Otherwise, if the
right-hand side of some equation in S is in the domain of R, then replace it
with a condition from its definiens and continue computing using cm. Otherwise,
end the computation. Thus, what ¢m does is to replace atoms according to the
definitions R; and R, until the state definition can no longer be changed.

If we apply cm to the state definition {mucos_col = mucos_col}, that is, we
compute the goal em: {mucos_col = mucos_col} = X, the answer X is the
following result definition:

X Y white = { ecmRy = { e = {white = white
cmRy =
' brown = { emBy { e = {brown = white

We also show a derivation. All result definitions are abbreviated with some Xj:

e {brown = white} = X¢ r e{white = white} = Xy r
cm: {brown = white} = X4 cm: {white = white} = X;
emRy: {brown = mucs_col} = X4 =L emRy: {white = mucs_col} = X5 =L
em: {brown = mucs_col} = X, em: {white = mucs_col} = X3
D

emRy: {mucs_col = mucs_col} = X,

em: {mucs_col = mucs_col} = X

Note that we also allow method-schemes which are parameterized method
definitions. A method-scheme is one that covers all methods differing only with
respect to the data definitions used. The parameterized version of the method
cm with parameters L and R is written

em = emL # 'eq € dom(L)
empr{ cm = cmR # eq € dom(R) A —'eq € dom(L)
cm = € # otherwise

At the time of computation, this scheme must be instantiated with particular data
definitions for the parameters. Thus, the instance cmg, r, of cmp g is identical
to the method cm.

21

On GCLA, Gisela, and MedView

4 Gisela—Programs and Computations

Section 3 showed the principles of computations in the Gisela framework. How-
ever, several things were left out, e.g., the treatment of variables and how choices
are made. A more complete description is given here.

The basic computation model provided by the Gisela framework is a very
general one, allowing for several different approaches for how to program using
definitions. In part, this generality is achieved by leaving certain choices in the
description open to be handled by an observer. The observer is an abstract
concept. In any particular case it might be the user running a program, an
intelligent software agent or, as in most applications developed so far, a simple
object returning default choices. The other important thing is that definitions are
described in an abstract way only. Thus, any object which fits into the abstract
description is a valid definition to use in a program.

The main components involved in the description of computations are:

e Data Definitions. Compared to the description above, data definitions in
Gisela allow logical variables. A data definition may be created in several
ways, one of them being the syntactic representations given in Section 5.1.

e State Definitions. As before, but can contain variables.

e Method Definitions. The description of method definitions provided in Sec-
tion 3.4 is sufficient in this section also. Details of how to create method
definitions in the Gisela framework are given in Sections 5.1.2 and 5.6.2.

e Queries.
e An observer. The observer handles choices as mentioned above.

e A D-Machine. Computations are performed by a D-Machine. The behavior
of this machine is given by the operational semantics in Section 4.2. This
operational semantics involves an observer.

Compared to the presentation in Section 3, what is added in this section is vari-
ables in data definitions and state definitions, the notion of an observer, and
information on the order in which things are computed. The rules of the opera-
tional semantics in Section 4.2 together with an observer define how computations
are performed. The default observer is described in Section 4.3.

4.1 Gisela Programs

A program in the Gisela framework consists of a number of data and method
definitions. The data definitions are used to describe the declarative content of an
application and the method definitions define how solutions should be computed.
Expressed differently, the data definitions give connections between atoms and

22

Gisela—A Framework for Definitional Programming

conditions and method definitions describe the possible sequences of operations,
or applications of the built-in computation rules, a program can perform.

To run a program we pose a query M:S = X. The meaning of this is “can S
be computed to some result system X using the method M”. If the computation
is successful, we take X and any bindings for variables in S to be the answer
to the query. Otherwise, the answer is no. Of course, computations may not
terminate. A computation requires an observer to handle choices left open in
the basic computation rules. The same query run with different observers can
give different sets of answers. The power of the observer is restricted to making
choices. Thus, a complete search through all possible alternatives will include
all answer sets given by different observers. If no particular observer is provided
choices are handled left to right and from top to bottom with backtracking as
discussed in Section 4.3. Since search is performed depth-first with backtracking
the actual computing machinery may fail to find existing solutions.

4.1.1 Data Definitions

We have chosen to define the computation model of Gisela using an abstract
description only of what a data definition is. This is because we want to provide
a framework where users are free to create data definitions with as few restrictions
as possible. Also, a more detailed description is not really needed. Of course,
this means that we cannot here give any details for how the definiens operation
is computed. More details on this for certain definition classes are provided in
Section 5.1 below.

Atoms, Terms, Constants, and Variables We start with an infinite signa-
ture, 3, of term constructors and a denumerable set, V), of variables. We write
variables starting with a capital letter. Each term constructor has a specific ar-
ity, and there may be two different term constructors with the same name but
different arities. The term constructor ¢ of arity n is written ¢/n. The arity will
be omitted when there is no risk of ambiguity. A constant is a term constructor
of arity 0. The set 7 of all terms is built up using variables and constants as
follows:

1. all variables are terms,
2. all constants are terms,

3. if f isaterm constructor of arity n and ¢y, ..., t, are terms then f(¢,...,%,)
is a term.

An atom is a term which is not a variable.

23

On GCLA, Gisela, and MedView

Conditions The set C of all conditions is given by:

1. T and L are conditions,
2. all terms are conditions,

3. if A and B are conditions then (A, B) and (A — B) are conditions.

Substitutions A substitution is a (possibly empty) finite set of equalities

{mi=t),(@2=1t2),..., (¥ =1,)}

where each z; € V, t; € T, Vi(x; # t;), and Vi, j(z; = z; = i = j). We use o, T,
¢, 01,...to denote substitutions.

Definitions To describe data definitions in the presence of variables we make
some minor modifications to the definition given in Section 3. Thus, a definition
D is given by

1. two sets: the domain of D, written dom(D), and the co-domain of D, writ-
ten com(D), where dom(D) C com(D), also dom(D) C T and com(D) C C,

2. and a definiens operation: D : com(D) — P(com(D)).

Let VD be the set of all variables in com(D). We assume that for all data
definitions D; and Dj, i # j, (VD; N VD;) = (. Further, we assume that the
variables occurring in state definitions are not part of VD for any definition D
and that variables can be renamed to make sure that these conditions hold.
Given a term a, a substitution o is called a-sufficient if D(ao) is closed under
further substitution, that is, for all substitutions 7, D(aoT) = (D(a0))T.
For any data definition D we assume that the following can be computed:

1. Dyyss(a), which is a sequence of the a-sufficient substitutions for a with
respect to D.

2. Dpgu(a), which is a sequence of the most general unifiers (mgus) [41] be-
tween a and b € dom(D) such that D(b) # 0.

On a-sufficient substitutions Given an a-sufficient substitution the definiens
of a is completely determined. There can be more than one definiens of a however,
since there may be several a-sufficient substitutions.

With the completely abstract and variable-free system used in Section 3 it was
easy to state what D(a) should be. When variables are introduced the situation
becomes more complex. The situation has an exact parallel in GCLA where
the infinitary PID calculus is replaced by a system with variables. The problem
was first investigated in [30] where the notion a-sufficiency was introduced. Algo-
rithms for computing a-sufficient substitutions for definitions based on equational
presentations can be found in [8, 30, 38|.

24

Gisela—A Framework for Definitional Programming

4.1.2 Method Definitions

Conceptually, method definitions correspond to the rule definition of GCLAITI.
However, they are expressed and operate in a completely different manner. Also,
Gisela works with a fixed set of inference rules given below in Section 4.2. Thus,
what can be expressed in method definitions is which rule or computation method
to use given the current state definition. The description of method definitions
in Section 3.4 is sufficient to describe the operational behavior of Gisela.

Note that there are no variables in method definitions. Instead, in a method-
scheme like

m = mD # 'eq€ dom(D)
mp m mD # eq € dom(D) A —'eq € dom(D)
m = D # otherwise

we have a parameter D, see also Section 3.6. Parameters are a notational con-
venience only. Before a computation starts the parameters must be replaced by
the actual data definitions to use in the computation.

4.1.3 State Definitions

State Definitions and result definitions are as in Section 3.3.1, with the addition
of variables. The scope of a variable is the entire goal in which it occurs.

4.1.4 Queries

A query is simply a goal W: S = X. The answer to the query is the result
definition X and a substitution ¢ with bindings for variables in the initial state
definition S. The purpose of a query is to compute a result X from W:S.

4.2 Operational Semantics

We give an operational semantics to describe how computations are performed.
The operational semantics is expressed as a number of inference rules operating
on computation states. The following notations are used:

e A computation state is a tuple < I', 6 > where I is a list of goals and ¢
a substitution.

e A goal is of the form W:S = X where W is a computation condition, S is
a state definition, and X is a result definition.

e X - X s is the list with head X and tail Xs.

e D denotes any data definition and M any method.

25

On GCLA, Gisela, and MedView

o O,,(S) is an operation where an observer selects a sequence of elements
from a set S.

® Ouans(X) is an operation performed by an observer which transforms the
result definition X.

By using a list of qoals it is possible to write the rules with only one premise,
making them correspond to state transitions.

Note that in rules (5) through (7) it is an observer who selects which equations
of the current state definition S that may be used. Also note that an equation is
selected before it is decided which rule to apply.

(1) Termination

<{ 0> 7

The inference rules are applied backwards and the computation stops when the
list of goals is empty, thus the name termination.

(2) Empty

<X o>
<(eS=165)-% o>

E

A goal is fully evaluated, or proved, when the computation condition is empty.

(3) Method

< (WWlsin)(WWnS:}Xn)E, o>
<(WM:S=X)-%, o>

where M (M) = {Wy,...,W,},n > 1. M(M) is the definiens of the method name
M in the method definition M, that is,

M

{Wi| M =W;#C; € M ACi(S)},
and X = Oygns(X') where X' is the result definition
W, = X
X' : .
W, = X,

Whenever a compound result definition is built, an observer gets a chance to
transform it.

26

Gisela—A Framework for Definitional Programming

(4) Choice

<(WW;S=X)-3, o>
< (WW,W5):S = X)-%, o>
where W; is an element of ws = Ogeo({W1, Wa}). The elements of ws are tried
from left to right by backtracking. The selection ws must not be empty. This

construction lets an observer decide in which order W; and W, are tried and to
decide to only use one of them.

(5) Definition Left

Let es = Oy (S) be the sequence of equations of S considered for rule-application.
All elements of es are tried from left to right by backtracking. Let e be the
currently selected equation. Then, depending on the left-hand side of e we have:
(5.1) Ife=(a=C) then

< ((W:(Ai/ao)So = X1,...,W:(A,/ac)So = X)) - X)o, 0> B
<(WD:S=X)-%, fo> P

where 0 € Dyysp(a), D(ao) = {Ai1,..., An}, and X is the result definition
A1 - X1

X : .
An:Xn

Note that we have one instance of this rule for each a-sufficient substitution in
Dyyrs(a). All instances are tried by backtracking over these a-sufficient substitu-
tions.

(5.2) Ife=((A,B)=C) then

< (W:(C"J(A,B))S = X)-%, o> _
<WD:S=X)-%, o> Dy

where C’ is an element of cs = Osq(D((A, B))). The elements of cs are tried
from left to right by backtracking. The selection cs must not be empty. This
construction lets an observer decide in which order A and B are tried and to
decide to only use one of them.

(5.3) Ife=((A— B)=C) then

<(W:S1=X1) - (W:S, = X)-%, o> B
<(WD:S=X)-%, o>

A
where S; and Sy are given by

27

On GCLA, Gisela, and MedView

e Si=((A—=B)eS)] A),
e So=(B/(A— B))S,
and X = Oygns(X') where X' is the result definition

A
!
X{B

Xy
Xy

(6) Definition Right

Let es = Oyeq(S) be the sequence of equations of S considered for rule-application.
All elements of es are tried from left to right by backtracking. Let e be the
currently selected equation. Then, depending on the right-hand side of e we
have:

(6.1) Ife=(A=a) then

< ((W:So(B/ac) = X)-X)o, 6>
<(WD:S=X)-%, o> P

where 0 € Dy,gu(a) and B € D(ao). All elements of D(ao) are tried by back-
tracking.

Note that we have one instance of this rule for each element in D,,g,(a). All
instances are tried by backtracking.

(6.2) Ife=(A=(B,C)) then

< (W:S(B/(B,C)) = X1)- (W:S(C/(B,C)) = X5)-%, 60> D
<(WD:S=X)-%, 6> =V

where X = Oyrans(X') and X' is the result definition

B
!
x{ ¢

X
Xy

(6.3) Ife=(A=(B—C)) then

<(W:S=X)-2 0>
<(WD:S=X)-%, 6>"*

where ' = B@® (S(C/(B — (C))).

28

Gisela—A Framework for Definitional Programming

(7) Identity

Let es = Ogeq(S) be the sequence of equations of S considered for rule-application.
All elements of es are tried from left to right by backtracking. Let e be the
currently selected equation. Then

<(W:S=X) -X)o, 6>
<(WD:S=X)-%, 0o>

provided that e = (a = b), and and o = mgu(a, b).

4.3 The Observer

There are two main motivations for introducing an observer. First, to make it
possible to describe computations in a general manner without making all choices
with respect to execution order explicit. Second, to set up hooks where the user,
or some other process, may interact with computations. The Gisela framework
provides a default observer, which is used if nothing else is stated explicitly. The
default observer implements the following behavior:

o In rule 4, Oyeq({wr, ws}) returns [wy, wy).
e In rule 5.2, O, ({A, B}) returns [A, B].

e The selection of a sequence of equations from the state definition in rules 5,
6, and 7 is handled in the same way. When the guard of an equation in a
method definition is evaluated and holds, it is reasonable to assume that an
equation in the state definition that contributes to making the guard hold
should be considered. The default observer therefore uses the heuristic to
select all equations which make the guard hold. The selected equations are
tried from left to right. If no equation in the state definition can be detected
to make the quard hold all equations are selected.

e The result of Opans(X) depends on the result type currently set in the
observer. The default observer allows three result types: full, which means
that no transformation is performed, flat, which means that the result
definition is flattened to contain only the leaves of the full definition, and
empty, which returns the empty result definition. The same transformation
is performed throughout the entire computation.

5 Programming in the Gisela Framework

In this section we explain how to use Gisela for different kinds of programming.
So far, only a limited set of programs have been developed using the Gisela

29

On GCLA, Gisela, and MedView

framework. Apart from the examples shown in this paper, and various other
minor programs, we have also built some tools for use in the MedView project.

There are two main approaches to programming in Gisela: to use syntactic
representations (Section 5.1) or to use object representations (Section 5.6). Using
syntactic representations is the easier way and yields readable programs. Using
object representations is appropriate when we need some special kind of definition
or observer. When we use object representations we have full access to programs
written using syntactic representations, thus the two can be mixed freely.

Another view is that when we use syntactic representations only, in particular
in conjunction with the interactive system discussed in Section 5.8, we do in effect
work with a programming language. This programming language is what we get
from specializing the model from Section 4.2 to use only the definition classes and
methods for which we give syntactic representations, plus the default observer.
Using object, or mixed, representations we work with a framework which provides
a customizable model for definitional programming.

5.1 Syntactic Representations

When we use syntactic representations we create data definitions and method
definitions using an equational presentation. The syntax used in Gisela is closely
related to the syntax of GCLA and Prolog.

5.1.1 Terms and Data Definitions

The syntax used for data definitions is as follows:

1. Variables: A wvariable is a string beginning with an uppercase letter or the
character ‘_’, for example X, LongVariableName, _Foo.

2. Functors and constants:

e A functor is a string beginning with a lowercase letter, or an arbitrary
quoted string, which can be applied to some number of arguments.
Some examples are p/1, member/2, ’Any name whatever’/0.

e A constant is a functor with no arguments.
e Gisela also allows numbers and strings as special constants. Some
examples are 4, "abc", and 3.76.

3. Terms:

e FEach variable and constant is a term.

o Ifty,...,t, are terms and f is a functor of arity n then f(t1,...,t,) is
a term.

30

Gisela—A Framework for Definitional Programming

e Gisela allows the same shorthand notation as Prolog for lists. Thus,
[1 denotes the empty list, and the lists [X|Xs] and [a,b,c], the lists
X.Xs and a. (b.(c.nil)) respectively.

e Gisela allows infix notation for the ordinary arithmetic operators, +,
-, *. and /. Thus, 4%5 is shorthand for the term ’*’(4,5).

. Conditions:

e Each term is a condition.
e true and false are conditions.

e If C; and (O, are conditions then (C;,C3) and (C;->Cs) are con-
ditions. The parentheses may be omitted when there is no risk for
ambiguity.

. Equations. If ¢ is a term and C is a condition then a = C. is an equation.
The equation a. is shorthand for @ = true. .

. Guards. If t; and 5 are terms then ¢; \= %5 is a guard.

. Guarded Equations. If Gy, ..., G, are guards then
a#{Gl, ey Gn} =C.

is a guarded equation. Currently, guards are only allowed in matching defi-
nitions or equations restricted as matching (see below).

. Directives. The following are directives:
e definition Name., where Name is a constant denoting the name of

the definition.

e definition Name:Type., where Name is as above and Type is a
constant giving the type of the definition. Currently, possible types
are constant, matching, unifying, f1, and gcla. If no value is given
the type of a data definition defaults to unifying.

e restrict N/A:Val., where Val is one of right and matching.

9. Data Definitions. A data definition is a finite sequence of (guarded) equa-

tions and directives starting with a directive giving the name of the defini-
tion.

The scope of a variable is the equation where it occurs. Comments are allowed
as usual, that is, % or // means that the rest of the line is a comment, arbitrary
comments are enclosed in between /* and */.

Note that each data definition starts with a directive giving its name and
type. With a restrict directive the programmer informs the system that it can

31

On GCLA, Gisela, and MedView

use a simpler algorithm to compute the definiens operation. A right restriction
means that the term will only be used in the right-hand side of equations in com-
putations. A matching restriction tells the system that the definiens operation
will only be applied to fully instantiated terms.

The meaning of the different definition types is as follows:

A constant definition allows only constants as left-hand sides in equations.
The domain consists of all the constants in the left-hand side of the equa-
tions of the definition.

e A matching definition uses matching only to find the definiens of a term.
Thus, D(a) is only valid for fully instantiated terms. The domain consists
of all terms with the same principal functor as some term occurring as a
left-hand side in an equation.

e A unifying definition is as a matching definition but uses full unification.

e An f1 definition uses unification and has as its domain all terms with the
same principal functor as some left-hand side in the definition. The differ-
ence compared to a unifying definition is that for terms in the domain, but
not defined, an £1 definition returns {false}, whereas a unifying definition
returns {}.

e A gcla definition has as its domain the set of all terms, uses unification
and returns {false} for terms not defined in the definition.

When a definition is presented as a number of equations using the syntax de-
scribed above, the type of the definition together with the given equations fully
determines which definition the description represents.

5.1.2 Method Definitions

In the description of the syntax used for method definitions we start by describing
the building blocks and then show how they are combined into complete methods:

1. Parameters. A Parameter is a string beginning with an uppercase letter
which denotes any data definition given as parameter to a method.

2. Constants. A constant is a string beginning with a lowercase letter. De-
pending on the context a constant denotes a computation method or a data
definition with the same name.

3. Guard Constraints. A guard constraint is a boolean function which operates
on a single condition C selected from the current state definition. The
provided guard constraints are:

e in_dom(D), which holds if C is in the domain of D.

32

Gisela—A Framework for Definitional Programming

def_in_dom(D), which holds if some element of D(C) is in the
domain of D.

in_com(D), which holds if C' is in the co-domain of D.

def_in_com(D), which holds if some element of D(C) is in the co-
domain of D.

matches (7"), which holds if C' matches 7. No variables are bound.
var, which holds if C' is a variable.

nonvar, which holds if C' is not a variable.

In all cases D may be a parameter or a constant denoting a data definition.

4. Guard Primitives. A guard primitive is a boolean function which oper-
ates on a single equation e selected from the current state definition. The
provided guard primitives are:

false, which never holds.
true, which always holds.
identity, which holds if the left and right-hand sides of e are identical.

1:GC, which holds if the guard constraint GC holds for the left-hand
side of e.

r:GC, which holds if the guard constraint GC holds for the right-hand
side of e.

not(GP), the negation of the guard primitive GP.

(GP, , GP,), which holds if both the guard primitives GP; and
G P, hold for e.

(GP, ; GP,), which holds if any of the guard primitives GP; or G P,
hold for e.

5. Guards. A guard is a boolean function which operates on the current state
definition S. The following forms are provided:

some(GP) which holds if the guard primitive GP holds for some
equation of S.

all(GP) which holds if the guard primitive G P holds for all equa-
tions of S.

(Gy & G5), which holds if both the guards GP; and GP; hold for S.
(G1 | G5), which holds if any of the guards G; or G5 hold for S.

33

On GCLA, Gisela, and MedView

6.

10.

34

Equations. A method definition consists of a number of equations which
have the general form
m = W#Guard.

where m is a constant which is the same as the name of the method, W a
computation condition, described below, and Guard a guard as described
above.

Word Constituents. Computation words are built from word constituents.
A word constituent is one of the following:

e M, where M denotes any method or method instance in the current
scope. Scoping rules are given below.
e D where D is any parameter or definition constant.

e 1: D, where D is any parameter or definition constant. This is the
concrete syntax for D.

e r: D, where D is any parameter or definition constant. This is the

concrete syntax for D.

Computation words. A computation word is a (possibly empty) sequence
of word constituents. A computation word is one of the following:
e [1, the empty word.

o [Wi,...,W,], where the W; are word constituents.
Computation Conditions. A computation condition is one of the following:

e All computation words are computation conditions.

e Wi ; Wy, where the W; are computation conditions. This is the con-
crete syntax for (Wi, Wh).

o [Wy,...,W,], where the W, are computation conditions.
Imports. The following are used to import method and data definitions:

e import_definition(Name)., where Name is the name of the file
where the data definition is stored, or in case of built-in definitions,
simply the name of the definition.

e import_methods(Name) ., where Name is the name of the file where

the method definitions are stored.

After a method or a data definition has been imported its name can be used
in subsequent method definitions.

Gisela—A Framework for Definitional Programming

11. Instantiations. An instantiation of a method scheme is an equation
Iname= instance(Mname, D, ..., Dy)]).

where Iname is the name introduced to be used to denote an instance of the
method-scheme Mname created by instantiating it with the data definitions
D.,...,D,.

12. Method Definitions. A method definition has the following general form:

Imports
method m(D1,...,Dy). n>0
Instantiations

m=W1 #G1

m = W, # G,.
Method-schemes are method definitions where n > 0.
13. Scoping rules:
e The scope of a parameter is the method-scheme for which it is a pa-
rameter.
e Defined methods are visible throughout the file where they are defined.

e Imported method and data definitions are visible throughout the file
into which they are imported.

e A method created with an instantiation is visible within the method
definition where it is created.

The syntax for comments is the same as in data definitions.

5.1.3 Queries
We describe the syntax of queries for the interactive system in Section 5.8:

e State Definitions. A state definition is written {eq,...,e,} where each e;
is an equation. The scope of a variable is the entire state definition. Each
equation is of the form C; = C; where the both C'; and C5 are conditions.

e Queries. A query is written m(Dq,...,D,)S, n > 0, where m is a method,
Dy, ..., D, are parameters used to create on instance of m, and S is the
initial state definition.

The answer to a query is the computed result definition and any bindings to
variables occurring in the initial state definition. If no result can be computed
the answer is no.

35

On GCLA, Gisela, and MedView

5.1.4 Computing Definiens and Clause

For a definition represented as a sequence of equations, the definiens, D(a), of an
atom a is the set of all right-hand sides of equations in D whose left-hand sides
matches a, that is {Ao | (b < A) € D,bo = a}. All the different equational
definition types in the Gisela framework order the bodies in D(a) in the order in
which they appear in the definition.

To perform the operation D we need to compute an a-sufficient substitution
for a. In the general case this is a very costly operation which involves finding
a maximal set of left-hand sides in D which can be unified with each other and
with a. To perform the operation D (clause) we only need to find some left-hand
side in D unifiable with a. For constant and matching definitions the compu-
tation of an a-sufficient substitution is not needed which is why they should be
used whenever possible to improve performance. The restrict directive has the
same purpose, to avoid attempts at computing a-sufficient substitutions when-
ever possible. Some more details on how the definiens operation is performed can
be found in Section 7.

5.1.5 A Note on Variables and Completeness

Variables and calculi of PID are covered in [16, 30, 38]. In GCLA explicit
quantification can be used for variables in the bodies of clauses not occurring in
the head. Existential quantification can easily be handled if it occurs in the right-
hand side of an equation in a state definition. Likewise, universal quantification
is easily handled to the left. Gisela has no way to express explicit quantifiers.
Instead it is assumed that users are aware how free variables in bodies of equations
should be understood.

The algorithm used for computing definiens for data definitions which use
unification is not complete since it does not compute all a-sufficient substitutions
as discussed in [7, 38]. Both [7] and [38] present algorithms based on some notion
of guarded variables or disequalities to solve this problem. In Gisela guards
are only allowed in matching definitions. If guards are extended to be allowed in
unifying definitions we will be able to implement some version of these algorithms.
Doing so is not trivial though.

5.2 GCLA-style Programming

In GCLA [11] a program consisted of a single definition. Queries were proved
using a fixed PID-calculus. Some control of the search for proofs of queries
could be given using annotations in the definition, and by setting certain global
parameters. GCLAII [6, 37] introduced a second definition, the rule definition,
which made it possible to describe proof search strategies and inference rules in
a very sophisticated declarative manner. In this section we discuss how Gisela
can be used for GCLA style programming. First we give the basics, which

36

Gisela—A Framework for Definitional Programming

[Co D-right (b« C) € D,0 = mgu(b,c)

'kco
I'AFCo A€ D(ao) . _ o
T.aFC o D-left o is an a-sufficient substitution
TaFc s tsiom 7= mgu(a, c)
TF true true-right [falseF C false-left
I'AFB i 'HA T')BrFC ;
Fl‘A—)Ba_mg [LA— BFC a-left
r-c, 'e=Cy, . rc;,-C .
- - 1,2
Tk (Cy, Cy) v-right F,(C’l,CQ)I—CUleﬁ ie{1,2}
" o-right 1,2 N
TF(Cncy oM teL Tereyra ol

Figure 1: GCLA Sequent Calculus Rules.

essentially correspond to GCLA, and then we discuss control issues focusing on
the similarities and differences between GCLAII and Gisela.

5.2.1 Basics

Figure 1 shows a sequent calculus which is essentially the calculus used in GCLA
to prove queries. In GCLA a query is a sequent (' = C), where T" is a list of
conditions and (' is a condition. The meaning of the query is: “Does C' follow
from I' using the given definition”. If the query can be proved the result is an
answer substitution containing the variables in the query, otherwise the answer
is no. The logic used to prove a query is local to the definition D used [25], as
can be seen from the inference rules.

We need to define a computation method and describe how to write the initial
state definition in such a way that running a query in Gisela corresponds to
proving an equivalent query in GCLA. We will base our method on the following
observations and restrictions:

e Programs consist of a single data definition just as in GCLA,

e The data definitions used will be GCLA-definitions, that is, D(a) = false,
for all atoms a not occurring as left-hand sides in D.

e All right-hand sides in the initial state definition must be identical. This
corresponds to the single condition in the consequent of sequents in GCLA.

37

On GCLA, Gisela, and MedView

If all right-hand sides are identical in the initial state definition they will
remain so throughout the computation.

e There is nothing in Gisela corresponding the the rules o-right and o-left.
Indeed, (A; B) is not a condition in Gisela. We note that or in logic pro-
gramming is mainly for convenience. If desired, an extra data definition
defining or could be introduced.

e Gisela has no rules corresponding to the rules false-left and true-right. This
is since Gisela only has a limited number of built in rules providing a number
of ways to transform an initial state definition, but no particular interpre-
tation of true and false. We will have to write method definitions giving
the desired interpretation.

e The rest of the rules in Figure 1 have direct counterparts in Gisela.

An essential difference from the method definitions shown in Section 2 is that a ba-
sic search strategy for GCLA is inherently non-deterministic. Typically, for each
sequent more than one sequent calculus rule apply. In Gisela non-deterministic
method definitions are written by having more than one computation condition
to choose from in an equation of a method definition.

The default behavior of GCLA is to use a search strategy called arl which
first tries the azxiom rule, then z-right rules, and finally z-left rules. This behavior
is captured by the following method definitions:

method true_right.
true_right = [] # some r:matches(true).

method false_left.
false_left = [] # some l:matches(false).

method arl:[D].

arl = [D];[true_right];[arl,r:D]; [false_left];[arl,1:D].
method gcla: [D].

arl_inst = instance(arl, [D]).

gcla = [arl_inst].

We have defined gcla to be a cover for the computation method arl. Most
interesting is the definition of arl where the computation continues with any of
the computation conditions separated by ‘;’. We assume that the default observer
is used, thus all alternatives are tried from left to right.

Of course, other search orders could be used. For instance, 1ra and lar:

38

Gisela—A Framework for Definitional Programming

method lra:[D].
lra = [false_left];[1lra,1:D];[true_right];[lra,r:D];[D].
method lar:[D].

lar = [false_left];[lar,1:D];[D];[true_right];[lar,r:D].

Typically, too many answers are computed. One of the reasons is that atoms to
the left are reduced to false more often than desired. In GCLA atoms could be
declared total to prevent these reductions. In Gisela we could introduce another
data definition defining such atoms to be regarded as data. More on issues like
this can be found in Section 5.5.

5.2.2 Example: Default Reasoning

Assume we know that an object can fly if it is a bird and if it is not a penguin.
We also know that Tweety and Polly are birds as are all penguins, and finally we
know that Pengo is a penguin. A data definition expressing this information is
the following:

definition birds:gcla.

flies(X) =
bird(X),
(penguin(X) -> false).

bird(tweety) .
bird(polly).
bird(X) = penguin(X).

penguin(pengo) .

The definition is adopted from [23]. If we want to know which birds can fly, we
pose the query

G3> gcla(birds){true = flies(X)}.

X = tweety
[

= polly
7?5
no

which gives the expected answers. More interesting is that we can also infer
negative information, i.e., which birds cannot fly:

39

On GCLA, Gisela, and MedView

G3> gcla(birds){true = flies(X) -> falsel}.
X = pengo
7

no

This kind of negation has been treated at length in a number of papers on GCLA
for instance [6, 11, 36]. It works the same in Gisela.

5.2.3 Control

Both GCLATI and Gisela separate the declarative and the procedural part of a
program. The way control issues are handled are very different though, as are
parts of the general computation models.

GCLAII has a default set of inference rules similar to the calculus shown in
Section 5.2.1 and a number of search-strategies built from these rules. To pro-
gram the control part, the user could define new search-strategies but it was also
possible to define new inference rules, discarding the default calculus completely if
desired. The system was very powerful and a lot of work was put into developing
suitable programming methodologies [6, 23, 57].

Compared to the rule definitions of GCLAII, method definitions in Gisela are
very restricted. Although most parts of method definitions may be modified using
specialized object representations, the structure, as such, remains very simple. A
method definition is just a number of equations where each equation contains
a computation condition. The conditions are simple flat structures describing a
sequence of actions to perform. It is natural to think of a method definition as
a function which takes an initial state definition and transforms it according to
the actions specified by the computation conditions. On the other hand, proof-
search in GCLAII is really a matter of equation-solving and rules and strategies
are functions which are run “backwards”.

From a practical point of view the key differences are:

e Gisela does not permit us to write new inference rules, e.g., change the set
of ways to move from one state definition to the next one. What we could
do is to write a number of method definitions corresponding to the default
rules in GCLA and use these as a basis for programming control. Such a
set of method definitions is given in appendix A.

e In method definitions in Gisela, it is not possible to control explicitly which
equation of the current state definition an operation should be applied to.
In particular, it is not possible to specify that the next operation should be
applied to the same equation as the current operation.

e In Gisela an arbitrary number of data definitions may be used. This opens
up for new programming methodologies which could be used to regain some

40

Gisela—A Framework for Definitional Programming

power lost in other respects, i.e., splitting a program into several data def-
initions and using method definitions to select between these in different
ways. This approach has been explored to some extent in the setting of
definitional program separation [18, 19].

e Gisela can be programmed using object representations through which method
definitions can be modified in a multitude of ways.

o In Gisela, the observer concept for tuning computational behavior is present.
However, so far this concept is rather unexplored.

5.3 Separated Definitional Programming

Separated definitional programming or definitional program separation has been
discussed in [17, 18, 19, 21, 26]. Gisela is in several ways better suited for this
technique than GCLATI. We give a brief description of the technique and demon-
strate with an example.

5.3.1 Background

The central idea in definitional program separation is a program separation
scheme based on the notions of form and content of an algorithm. Since many
different algorithms can be expressed using the same form and varying the con-
tent, definitional program separation has also been proposed as a candidate for
higher order definitional programming.

Definitional program separation relies heavily on the use of multiple data
definitions. Since GCLAII only supports a single data definition it was not par-
ticularly well-suited for implementing separated programs. In [18, 19] an idealized
definitional programming language based on GCLAII was used. Essentially, this
language augmented GCLAII with the possibility of having multiple data defi-
nitions and a number of provisos like in_dom/1. To test programs an interpreter
was written using GCLAIIL The way Gisela supports program separation is closer
to the original descriptions given in [26] than to the GCLA inspired notations of
the idealized language in [18, 19].

When developing a separated version of an algorithm we try to split the
description of the algorithm into its form and content. In other words, we try
to separate the global structure or (recursive) form of the algorithm from the
operations needed to compute the algorithm. One of the interesting things about
this is that many algorithms share the same form, but use different operations.
Thus, it becomes possible to classify algorithms in new ways.

In Gisela the form of an algorithm is expressed using a method definition and
the content in a number of data definitions.

41

On GCLA, Gisela, and MedView

5.3.2 A Separated Algorithm

Consider the primitive recursive definition of addition:

{plus(O,m) = m.
plus(s(n),m) = s(plus(n,m)).

A stepwise description of the intended algorithm computing plus(n, m) associated
with this definition could be:

1. If n = 0, then the result is D(plus(n, m)), that is, m.

2. If n = s(z), then first compute plus(z,m) to y and then apply s to get the
result s(y).

In a separated program the local operations should be separated from the global
content. The operations involved in this example are:

1. From plus(0,m) move to m.
2. From plus(s(z), m) move to plus(xz,m).
3. From a number y compute s(y).

Expressed as two simple definitions:

{ plus(0,m) m.
plus(s(n),m) = plus(n,m).

N {n = s(n).

Now, given these operations we need a form which will compute the algorithm
implicit in D. Such a form, F', described entirely in definitional terms is:

P {F(m) = P(z) #P(z) & Dom(P).
F(zx) = NFP(x) #P(x)€ Dom(P).

So, F' defines the form of an algorithm adding two natural numbers and P and
N provide the content.

5.3.3 Separated Gisela programs

The examples given in this section are described as functions, that is, what we
want to do is to evaluate a functional expression to a value. Following the ap-
proach in [18, 19, 21], where the expression to evaluate was given in the antecedent
of sequents, the expression to evaluate will be the left-hand side in a state defi-
nition containing a single equation.

First, we look at the separated program discussed in the previous section. We
rename the definitions P and N plus and nats, respectively:

42

Gisela—A Framework for Definitional Programming

definition plus:matching.

M

plus(zero, M) .
plus(X, M).

plus(s(X), M)

definition nats:matching.

zero = s(zero).

s(X) = s(s(X)).

Since in this case we are interested in computing answers only, not solving equa-
tions, we have declared that plus and nats are matching definitions, that is, the
definiens operation can be applied only to fully instantiated terms.

Describing the form F' in Gisela is also rather straightforward. F' can be
implemented using a method definition with two equations, corresponding to
the two equations of F'. The implementation uses the built-in guard constraint
def_in_dom. Also, the data definitions nats and plus are imported into the
method definition, which has no parameters:

import_definition(nats) .
import_definition(plus).

method formi.

forml = [1:plus] # all not(l:def_in_dom(plus)) .
formi [1:nats, forml, 1l:plus] # some 1l:def_in_dom(plus).

What formi does is to reduce the expression on the left-hand side of the chosen
equation to its value. For instance,

G3> formi{plus(s(zero),s(zero)) = value}.

will compute the flattened result definition {s(s(zero)) = value}.

Of course, things become more interesting if we parameterize the method
definition form1, since then several algorithms sharing the same form can be
computed, simply by switching data definitions. The parameterized version be-
comes:

method formi:[D1, D2].

[1:D1] # all not(l:def_in_dom(D1)).
[1:D2, forml, 1:D1] # some 1l:def_in_dom(D1).

forml
formi

With this version of form1 we use a slightly modified query which computes the
same answer as before:

43

On GCLA, Gisela, and MedView

G3> forml(plus,nats){plus(s(zero),s(zero)) = valuel}.

Although we can tell what the sum of two numbers is from a result such as
{s(s(zero)) = value}, it is arguable that it is not the most intuitive of answers.
An alternative is to use a variable in the right-hand side of the equation and bind
it to the result of the computation. This method is in accordance with the
technique used in GCLA. To be able to do this we modify form1 somewhat and
add an extra step which unifies the left and right-hand sides of the equation after
a result has been computed:

method f1:[D1, D2].

f1
f1

[1:D1] # all not(l:def_in_dom(D1)).
[1:D2, f1, 1:D1] # some l:def_in_dom(D1).

method forml:[D1, D2].
f = instance(f1, [D1, D2]).

forml = [D1, f].

In this version forml simply uses the method f which corresponds to previous
versions of forml to compute a value and then the two sides of the resulting state
definition are unified with each other. Now, if we decide to view only the answer
substitution, the answer to the query

G3> forml(plus,nats){plus(s(zero),s(zero)) = N}.

is the substitution {N = s(s(zero))}.

We round up the example by showing, len and min, two more recursive func-
tions having the same form as plus but different content. Both can be split in a
manner very similar to plus and use nats to get the successor of a natural num-
ber. We simply show the data definitions providing the content and a sample

query:

definition min:matching.
min(zero,N) = zero.

min(s (M), zero) = zero.
min(sM), s(N)) = min(M, N).

definition len:matching.

len([]) = zero.
len([X[Xs]) = len(Xs).

44

Gisela—A Framework for Definitional Programming

Compute the length of [a,b,c]:

G3> forml(len,nats){len([a,b,c]) = N}.

N = s(s(s(zero)))

5.3.4 Discussion

Definitional program separation, and especially the way to describe methods and
computations used in [26], has had a major influence on the development of Gisela.
It was a programming technique which required use of several data definitions, a
feature not available in GCLA.

Most of the work on definitional program separation so far is presented in
[18, 19] which goes through a large number of examples and presents a number
of different forms. As mentioned above, all examples are given in an idealized
definitional programming language similar to GCLA.

We have not, as yet, thoroughly tested how well the developed techniques
may be transferred to Gisela. Some examples use specialized provisos testing
properties and performing operations on terms not present in Gisela. However,
in most cases we believe that program separation is handled in a cleaner way
using Gisela.

5.4 Computing Similarity Measures

Assume that we have the following two partial cases adopted from MedView:

definition sl:constant. definition s2:constant.
anamnesis = common. anamnesis = common.

common = drug. common = drug.

common = allergy. common = allergy.

common = smoke. common = smoke.

drug = no. drug = no.

allergy = oranges. allergy = lemons.

smoke = ’8 cigarettes/day’. smoke = ’4 cigarettes/day’.

Suppose we wish to compute somehow how similar the cases are to each other.
One possibility is to compare all the common attributes pair-wise and run the

query
G3> cm(s1,s2){drug=drug, allergy=allergy, smoke=smoke}.

where cm is the same as the method definition used in Section 3.6. The flattened
result definition for this query is

{no=no, oranges=lemons, ’8 cigarettes/day’=’4 cigarettes/day’}

45

On GCLA, Gisela, and MedView

If the interpretation of the result is obvious we can stop here. However, if an
interpretation is not abvious we can use the computed result definition as the
initial state definition in a new query to get a better estimation of how similar s1
and s2 are. For instance, we may have additional knowledge in a data definition
groups:

definition groups:constant.

oranges = citrus_fruits.
lemons = citrus_fruits.
’8 cigarettes/day’ = ’< 10 cigarettes/day’.
’4 cigarettes/day’ = ’< 10 cigarettes/day’.

One way to learn more about the similarity of s1 and s2 is to use the result
definition computed above and a single-stepping method ss which replaces some
left or right-hand side by its definition in groups:

G3> ss(groups){no = no, oranges = lemons,
’8 cigarettes/day’ = ’4 cigarettes/day’}.

{no = no, citrus_fruits = lemons,
8 cigarettes/day = 4 cigarettes/day}

We take the result as the initial state definition in a new computation:

G3> ss(groups){no = no, citrus_fruits = lemons,
’8 cigarettes/day’ = ’4 cigarettes/day’}.

{no = no, citrus_fruits = lemons,
< 10 cigarettes/day = 4 cigarettes/day}

Repeating this process, we will finally arrive at a result definition containing
identities only. Now, the similarity can be defined as follows: The fewer steps we
need to arrive at a definition which consists of identities only, the more similar s1
is to 2. Alternatively, we could use some more complicated method and query
and take the size of the full result definition as a similarity measure.

5.5 Functional Logic Programming

Functional logic programming using GCLA has been covered in depth in [55, 56,
57]. In particular [57] covers a wide range of topics from how to go about writing
functional logic programs to generating specialized rule definitions for efficient
evaluation. The functional logic programming methodology is based on a few
crucial restrictions to the general GCLA machinery, namely:

e at most one condition is allowed in the antecedent,

46

Gisela—A Framework for Definitional Programming

e rules that operate on the consequent can only be applied if the antecedent
is empty,

e the axiom rule, can only be applied to atoms with circular definitions,

e if the condition in the antecedent is (Cy,Cy) then Cy and Cy are tried from
left to right by backtracking.

With these restrictions, evaluation of functional logic programs becomes deter-
ministic in the sense that only one inference rule can be applied to each sequent.
The functional logic programming methodology following from this is not aimed
at general equation solving, but at combining functions and predicates in a nat-
ural way.

Now, the restrictions above can be directly applied to Gisela:

e cach state definition contains exactly one equation,

e rules that operate on the right-hand side of equations can only be applied
if the left-hand side is true,

e the identity rule can only be applied to atoms in the domain of a special
data object definition,

e if the condition in the left-hand side is (C,Cs) then C; and Cy are tried
from left to right by backtracking.

5.5.1 A Computation Method for Functional Logic Programs

Expressing the above evaluation strategy as a method definition in Gisela is rela-
tively straightforward. To give an illustration of how computations are performed
we give a number of deduction rules in Figure 2 showing state definition trans-
formations in functional logic computations. To distinguish data from functions
and predicates we use one data definition D to define canonical data objects, and
another data definition P to define functions and predicates. A method definition
which implements functional logic computations along the lines of the calculus in
Figure 2 is £1, which takes two parameters, a program definition P, and a data
object definition D:

method f1:[P,D].

// t, done when true to the right.

f1 = [] # some 1l:matches(true) &
some r:matches(true).

/!
f1

Hh

, both sides false.
[# some l:matches(false) &
some r:matches(false).

47

On GCLA, Gisela, and MedView

—{true =0} r o c om c
(true = c} d € Dom(P),C € P(c)
{4,=C} ... {A,=C}

(a=0) dl a€ Dom(P),P(a) = Ay,..., A,

ax a € Dom(D)

{a=a}

{true = true} t {false = false} /

{A =B} {true = A} {B=C}
(true=A4 > B} (A= B=0)
{true =} {true=Cy} or {C;=C} ol i

{true = (C1, 03)) [@ncy=cy " e

Figure 2: Schematic state definition transformations for functional logic compu-
tations using a data object definition D and a program definition P.

// ax, data, unify left and right.
fl = [D] # some 1l:in_dom(D).

// al, vl, conditions to the left.
f1l = [f1, 1:P] # some l:matches((_, _));l:matches((_->_)).

// ar, vr, conditions to the right.
fl = [fl, r:P] # some l:matches(true) &
some r:matches((_, _));r:matches((_-> _)).

// dl, definiens
fl = [f1, 1:P] # some 1l:in_dom(P).

// dr, clause
fl = [f1l, r:P] # some l:matches(true) & some r:in_dom(P).

5.5.2 Writing Functional Logic Programs

As mentioned above, [57] covers functional logic programming using GCLAII in
detail. Among other things, a calculus called FL for handling functional logic
programming is given. The method f1 makes it possible to reuse the general
methodology using the Gisela framework. Since most of the basic material on

48

Gisela—A Framework for Definitional Programming

writing functional logic programs carries right over to Gisela we only give a brief
overview and refer to [57] for details. Certain extensions of FL, such as using
generated specialized rule definitions, cannot be applied to Gisela. We discuss
alternative approaches in Section 5.5.3 below.

Queries In the following we use the terminology from [57] and call data canon-
ical objects. Assume that we have a data definition P defining a number of
functions and predicates, and a data definition D defining the canonical objects
of the application domain. Using the method f1 there are two kinds of queries:

1. Functional queries:
f1(P, D){FunEzp = C},

where FunFzp is a condition and C a variable or a (partly instantiated)
canonical object.

2. Predicate (logic) queries:
f1(P, D){true = PredExp},
where PredFExp is a condition.

The intended meaning of the functional query is “evaluate FunEzp to C”. The
intended meaning of the predicate query is “does PredExp hold?”. We see that
conditions to the left are understood as expressions to evaluate, and conditions
to the right as predicates to be proved.

Canonical Objects The computation method f1 is intended for use with data
definitions of type f1 (5.1.1). The canonical objects of an application are defined
in a special data definition. Since the only thing this definition is used for is to
test whether a term is in its domain or not, it does not really matter how the
canonical objects are defined. However, following the approach of [57] we use
circular definitions. For instance:

definition nats:fl.

Zero = zero.
s (X) s(X).

Defining Functions A function definition, defining the function F', consists of
a number of equations

F(tl,...,tn) :Cl.

: n>0,m>0.
F(tl,,tn):Cm

49

On GCLA, Gisela, and MedView

Two observations of interest are: (i) If the heads of two or more equations are
overlapping then the corresponding bodies must have the same value, (ii) If C; =
A — B then it is understood as “the value of C; is B if A holds”.

Defining Predicates The method f1 handles pure Prolog programs. Thus,
defining predicates is just like writing a program in pure Prolog. The interesting
thing is how to use functions in predicates. Just as in function definitions the
arrow, ‘—’, works as a switch between functions and predicates. For instance, if
we have an equation like

P=F—C.

in a predicate definition it should be understood as “P holds if F' can be evaluated
to C”. The arrow can also be used in the context of negation as in Section 5.2.2.

Examples In [57] a large number of example programs dealing with functional
logic programming in GCLA are given. Most of these can be more or less directly
transferred to the Gisela setting. We show such an example here.

Let the definition nats be as above. We will define a (partial) function
double_odd which doubles all odd numbers but computes no value for even num-
bers. First, we state that if X is odd then the value of double_odd (X) is computed
by the function double/1:

double_odd(X) = odd(X) -> double(X).
Then we define the predicate odd and the function double:

0dd(s(X)) = even(X).

even(zero) .
even(s (X)) = odd(X).

double(zero) = zero.

double(s(M)) =
(double(M) -> K)
-> s(K).

With this we are done and can proceed to ask queries:

G3> fl(fldemo,nats){double_odd(s(zero)) = X}.
X = s(s(zero))
? .

H

no
G3> fl(fldemo,nats){double_odd(zero) = XI}.

20

Gisela—A Framework for Definitional Programming

no

G3> fl(fldemo,nats){double_odd(N) = M}.

N = s(zero),

M = s(s(zero))

7

N = s(s(s(zero))),

M = s(s(s(s(s(s(zero))))))
?

yes

where all functions and predicates are defined in the data definition f1ldemo.

5.5.3 Discussion

The most significant restriction on queries imposed in functional logic programs is
that the state definition must contain exactly one equation. Due to the properties
of Gisela and the method f1, this means that all goals throughout the computa-
tion will contain exactly one equation. This of course eliminates the need for an
observer to choose the equation, and makes evaluation very simple indeed.

We have only showed the most basic methods for using Gisela for functional
logic programming here. To test Gisela we have written one major functional logic
program which generates text summaries in HT ML or KTEX format from patient
data gathered in the MedView project. The in-depth description of functional
logic programming using GCLA in [57] covers a number of topics not mentioned
here. Some of these are:

e Methodology for writing lazy and strict functions.

e Extensions to FL such as efficient arithmetics, if-then-else, negation as fail-
ure, and I0O.

e Generation of specialized rule definitions for management of nested function
calls and more efficient computations.

We discuss how these issues could be handled in Gisela.

Evaluation strategies In [57] programming methods were presented for both
strict and lazy evaluation of functions. In principle, all this material can be
applied to Gisela without modification. It should be noted that “lazy” in this
setting does not mean that expressions are evaluated at most once (sharing), but
simply that they are only evaluated when needed.

ol

On GCLA, Gisela, and MedView

Extensions The implementations of if-then-else and negation as failure pre-
sented in [57] rely on a built-in if-then-else at the meta-level of GCLA. This
built-in meta-level if-then-else works as the built-in if-then-else of Prolog, that is,
the if part is only evaluated once if successful. Gisela so far has no such primitive.
We would rather try to find a more declarative solution. From a practcial point
of view, however, the need for an if-then-else construct is obvious. The other
extensions of F'L mentioned can be implemented through extra definitions.

Nested Function Calls If we have a data definition like

double(zero) = zero.

double(s(M)) =
(double(M) -> K)
-> s(K).

and try to use it to evaluate double(double(s(zero)) it will not work since
there is nothing in the definition or in the method definition £1 which tells us
how to evaluate the argument to double. In GCLA two approaches were used
to handle this. Either adding an extra clause to the definition of double or using
a specialized rule definition which ensured that arguments were evaluated. The
second approach cannot be used in Gisela since it is not within reach of what can
be expressed in method definitions. The first approach can be used, but yields
rather complicated data definitions.

A better alternative might be to use the Gisela framework as a low-level engine
for functional logic programming and build a programming language on top of it.
In its most naive form such a language could simply add clauses for evaluation of
arguments to a definition. For instance, a definition like:

min(zero,N) = zero.
min(s (M), zero) = zero.
min(s(M), s()) succ(min(M, N)).

would become

min(M,N) =
M -> M1),
(N -> N1)

-> min1 (M1, N1).

minl(zero,N) = zero.
minl (s(M), zero) = zero.
minli (s (M), s(N)) = succ(min(M, N)).

From a computational point of view, this corresponds directly to what the spe-
cialized rule definitions used in [57] do. Of course, this is not optimal since it

52

Gisela—A Framework for Definitional Programming

will attempt to re-evaluate already evaluated arguments. However, a lot of work
has been put into finding efficient solutions to this problem, both in the area of
functional [12, 45, 46] and functional logic programming [2, 3, 4, 5, 31, 39, 43|,
which could be applied in a translation of a high-level source language into Gisela.

5.6 Object Representations

At a suitably abstract level, a program in the Gisela framework is just a collection
of data and method definitions, plus a query which is evaluated according to the
rules given in Section 4.2. Thus, whether the data and method definitions are
created using syntactic representations or by some other means is not important.
With this in mind, Gisela was from the start designed to make it simple to build
programs directly as objects, from components and classes in the framework,
instead of using traditional syntactic representations. All that is required to use
the Gisela framework in an Objective-C program is to create a new instance of the
class DFDMachine, some data and method definition objects and start computing.

In this section we give an overview of how Gisela can be used in this manner. A
couple of applications are discussed in Sections 5.7 and 5.8. Some more details are
given in Section 7. The examples use Objective-C, an object-oriented extension
to C. A nice introduction to Objective-C and object-oriented programming is
found in [40]. A very brief overview is given in appendix B.

5.6.1 General Idea

The general idea behind the Objective-C interface to Gisela is that each kind of
entity used to build programs, variables, terms, conditions, definitions, guards
etc., is represented by objects of a corresponding class. Thus, a constant is rep-
resented by an object of the class DFConstant, a guard primitive by an object
of the class DFGuardPrimitive and so on. It follows that if we have a conceptu-
ally clear definitional model of a system it can be realized directly using object
representations.

The aim of Gisela is to provide a general framework for implementing defini-
tional models of various kinds of systems. As such, we want as few restrictions
as possible on what the definitional model permits. To allow for flexibility, the
computation model described in Section 4.2 only gives very abstract descriptions
of certain parts of computations. Specifically, data definitions are described in an
abstract manner, guards in method definitions only as boolean functions, and the
behavior of the observer is essentially left open. The syntactic representations
presented above provide specific implementations of these notions. Using object
representations alone does not extend Gisela in any way, apart from providing a
second API. What we can do, however, is to extend the framework by subclass-
ing existing classes or writing new ones which adhere to the restrictions of the
Gisela computation model. It is mainly through the mentioned parameters, data

23

On GCLA, Gisela, and MedView

definitions, guards, and observers, the framework is open for modification. Given
specific implementations of data definitions, guards and observers, the behavior
of the system is fully defined by the model in Section 4.2.

5.6.2 Creating Data and Method Definitions

Since this paper is not a manual or reference for using the Gisela framework we
will only give some brief examples. We start by showing how to build data and
method definitions from objects.

Assume that we want to create a data definition defining the identity function,
id/1, for use as part of a definitional computation in an Objective-C program.
That is, an object representing the data definition having the syntactic represen-
tation:

definition id:matching.
id(X) = X.

There are two ways to create the data definition id of which only one will be
shown here. First, we can use the classes of the Gisela framework and build up
the definition from objects of these classes step by step. Second, it would be
trivial to write a definition class, implementing the required methods, which for
any term id(X) returned {X} as the definiens.

We illustrate the API for building the data definition id from objects of
classes in the framework. The definition is built bottom-up starting with the
variable X:

// Declarations of needed variables.
DFVariable *x;

DFCompoundTerm *idX;

NSArray *eqs;

DFDefinition *idDef;

// Create a new variable.

x = [DFVariable variable];

// Create the term id(X)

idX = [DFCompoundTerm compoundTermWithName:@"id"
andArguments: [NSArray arrayWithObject:x]1];

// Create an array containing the equation id(X) = X.
eqs = [NSArray arrayWithObject:[DFEquation equationWithLeft:idX
andRight:x]1];

// Create a definition named id from the equations in egs.
idDef = [[DFMatchingDefinition alloc] initWithName:@"id"

andEquations:eqs];

o4

Gisela—A Framework for Definitional Programming

In the current implementation, the definition idDef constructed above is identical
to a definition resulting from parsing a string containing the syntactic represen-
tation. An alternative way to build the definition is therefore:

// Create a parser object.
DFDefinitionParser *parser = [[DFDefinitionParser alloc] init];
DFDefinition *idDef;

// Create the definition from its syntactic representation.
idDef = [parser parseDefinitionWithString:
@"definition id:matching. id(X) = X."
1;

To build a method definition is no different, just slightly more cumbersome. As an
example let us create the method definition that has the syntactic representation:

method rightAx.

rightAx = [id,r:id].
The following Objective-C code builds the corresponding object representation:

// Declarations of needed variables.
NSString *rAx = @"rightAx";

DFOperator *an(Op;

DFWord *word;

DFDefinition *idDef; // created as above
DFGuardedEquation *eq;

DFMethod *raMethod;

// Create the method definition.
raMethod = [[DFMethod alloc] initWithName:rAx];

word = [[DFWord alloc] initWithCapacity:2];

// Create the operator id used in the syntactic representation.
anOp = [DFOperator operatorWithDefinition:idDef

andOperatorType:DFBothOperator] ;
[word addConstituent:anOp];

// Create the operator r:id and add it to word.

anOp = [DFOperator operatorWithDefinition:idDef
andOperatorType:DFRightOperator] ;

[word addConstituent:an0p];

95

On GCLA, Gisela, and MedView

// Create the single equation and add it to the method definition.
eq = [DFGuardedEquation equationWithLeft:
[DFMethodConstant constantWithName:rAx]
andRight :word] ;
[raMethod addEquation:eq];

The structural similarity between syntactic and object representations should
be clear from the examples. Also, the fact that syntactic representations are
generally easier to handle, which of course is the reason why we use them in the
first place.

5.6.3 Using a D-Machine

The heart of the definitional machinery is the DFDMachine which is a class im-
plementing the calculus in Section 4.2.

The machine may be set up in different ways depending on the context where
it is to be used. It is possible to have a machine that runs in the same thread
as the object creating the machine or in a separate thread, which might be more
appropriate for interactive applications. It is also possible to set the machine’s
observer to any object implementing the appropriate methods. Some of the meth-
ods available to initialize a DFDMachine are:

// Create a machine that uses the default observer.
- (id)initWithDelegate: (id)anObject;

// Create a machine that uses the default observer

// and runs computations in a separate thread.

// Messages from the computation are handled by the delegate.
- (id)initWithInteractiveDelegate: (id)anObject;

// Create a machine that uses a custom observer
// which does not interact with other objects.
- (id)initWithDelegate: (id)anObject
andObserver: (id<DFComputingObserver>)anObserver;

// Create a machine that uses a custom observer
// that may interact with the calling application.
// Computations are run in a separate thread.
- (id)initWithDelegate: (id)anObject
andInteractiveObserver: (id<DFComputingObserver>)anObserver;

// Create a machine where the delegate and the observer

// are the same object.
// Computations are run in a separate thread.

o6

Gisela—A Framework for Definitional Programming

- (id)initWithInteractiveObserverDelegate:
(id<DFComputingQObserver>)anObserver;

The delegate is an object which handles certain things for the machine and re-
ceives notifications at times. It can be the same as the observer or another object.

5.6.4 Extending the Framework

So, if using object representations is just a more cumbersome way to write pro-
grams, why bother? The answer, of course, is that by providing means to in-
troduce new behavior we can easily extend the framework to allow more general
definitional models. We give a few examples of how this can be done.

Introducing New Data Definitions String constants are allowed in Gisela.
With the current representation, they are just atomic constants which cannot
be modified.> To handle strings the Gisela framework provides a built-in data
definition class called DFStringsDefinition which implements common string
operations. Some of the operations available are:

// Convert a char code to a string
restrict char_string/1:matching.
char_string(97) = "a"

// Split a string into a list of characters
restrict char_string/1:matching.
explode_string("foo") = ["f","0"."0"]

// Append two strings.
restrict string_append/1:matching.
string_append("foo", "bar") = "foobar"

// Compare two strings
restrict equals_string/1:matching.
equals_string("foo", "foo") = true.

Note that all entities defined have a matching restriction. Recall that a definition
D is given by the sets dom(D) and com(D) and the definiens operation (Section
3.1). Using informal pseudo-code we can describe the definiens operation for a
definition with the four operations above:

def (char_string(N)) = {string_for_char(N)}.
def (explode_string(S)) = {explode(S)}.

3Taking the common approach of letting string constants be syntactic sugar for lists of
characters is an alternative to consider for the future, of course.

57

On GCLA, Gisela, and MedView

def (string_append(A,B)) = {A++B}.

def (equals_string(A,B)) = if A==B
then {true}
else {}.

A good choice for dom(D) is the set of all terms having the same principal functor
as any of the given operations. As com(D) we can use the set of all conditions.
That the class DFStringsDefinition can be implemented in Objective-C should
be obvious. It also fulfills the requirements the computation model sets on def-
initions. Thus, for all purposes, a DFStringsDefinition is no different from a
definition created using syntactic representations or a definition built up from
objects as in Section 5.6.2

Adding a Guard Primitive In the computational model for Gisela, guards
in method definitions are only defined to be boolean functions. The framework
provides a number of classes from which guards corresponding to the description
in 5.1.2 can be built. This provides a reasonable set of building-blocks suffi-
cient for most applications. However, it does not attempt to cover all possible
guards needed. If some new guard is needed it can be programmed using object
representations, preferrably using the provided classes as a basis.

The framework includes a guard primitive which tests if the two sides of an
equation are identical. A more general operation, which is not included, is to test
whether the left-hand side matches the right-hand side. A simple subclass of the
general class DFGuardPrimitive can handle this. In principle we only have to
override the method holds:

- (BOOL)holds: (DFEquation *)eq {
return [[eq right] matches:[eq leftl];
}

Another Observer The observer is responsible for selecting the order in which
equations are selected for rule application. If we want to restrict rule application
to the left-most equation only, we can introduce a new observer class. In this class
we override the appropriate method from the default observer to ensure that only
the left-most equation is selected:

// A LeftMostObserver inherits from DFDefault(Observer.
Q@interface LeftMostObserver:DFDefaultObserver

{

}
Q@end

@implementation LeftMostObserver

o8

Gisela—A Framework for Definitional Programming

- (NSArray *)selectEquationsWithWord: (DFWord *)aWord
stateDefinition: (DFStateDefinition *)stateDef
andHints: (NSArray *)hints
{
return [NSArray arrayWithObject:[NSNumber numberWithInt:0]];
}
Q@end

The left-most equation is the one at index 0. The power of object-oriented pro-
gramming, in general, and inheritance in particular, lets us experiment with def-
initional computations using the Gisela framework as a basis.

5.6.5 Other Possibilities

Sometimes it might be better to use only part of the Gisela framework and develop
the rest of an application directly in the surrounding programming language. The
typical scenario is that some data definition classes are used to represent domain
knowledge but that the general computing machinery is replaced by hard-wired
behavior.

An example of this is the application MedSummary developed in the Med-
View project. In MedSummary definition classes of Gisela are used to represent
examination records and parts of text templates for text generation. The appli-
cation also implements a number of specialized subclasses for data definitions.
The definition objects are glued together by Objective-C code. The result is a
system with excellent performance partly based on a framework for declarative
programming.

5.7 ExaminationFinder—A Simple Application

In this section we discuss a simple application with a graphical user interface
which uses Gisela for definitional computations.

5.7.1 Using ExaminationFinder

ExaminationFinder, a simple prototype application, lets the user enter a pattern

of attribute-value pairs, and then searches a MedView database for examination

records matching the pattern. The search panel is shown in Figure 3. The selected

records can be used for different tasks by viewing them in different applications.
ExaminationFinder allows two kinds of searches:

1. To look for records having the values of attributes specified in the search
panel. It is possible to look for records matching all or some given criteria.
For instance: “Find all records for patients born in Sweden who have the
diagnosis oral lichen planus”.

29

On GCLA, Gisela, and MedView

=] MucosRedWhite.mvi — .sicsioloftiLibraryfMedFinder/Pattems [X]

Dzl
| fusersscsiolomMy Databases/web Summary/English.myd Set... | ‘

_Juse wiew | Sat.. ”
Search Critetia ———

| [Attribute Value

ucos-calr it

Filter
I

Add

Removel

(‘ Some
Al

1999-05-04 07:25:48 Charts |
04199260 1999-06-29 11:52:15
Cube |
Text |
Save.. |
1l

98-03-25 11:24:31

Figure 3: ExaminationFinder search panel.

2. To look for records in the same way but using an extra definition which
collects values into different groups. For instance, if we have a definition
where countries are grouped into regions we might try: “Find all records
for patients born in Europe”.

If a search pattern is found useful it can be saved for future use.

5.7.2 Set Up

ExaminationFinder is written in Objective-C using OpenStep’s AppKit frame-
work [44]. An application developed using this framework consists of an exe-
cutable and a number of resources needed by the application. The resources can
be pretty much anything, including text files containing Gisela definitions. Thus,
data and method definitions needed for definitional computations can be put into
the application’s resources folder and then be loaded by the application at run
time.

The general methodolgy to use Gisela to build applications including syntactic
representations is:

e Decide what data and method definitions are needed for the definitional
part of the application.

e Write the syntactic representations of the Gisela program part and add the
resulting files to the application’s resources.

e At run time, load the definitional resources into objects representing them
and create the desired number of DFDMachine objects for running queries.

60

Gisela—A Framework for Definitional Programming

e Build a DFQuery object, representing the query, from user input somehow.

e Send a message with the DFQuery object to a DFDMachine and ask it to run
the query.

e Present the result, represented by a DFAnswer object, to the user somehow.

ExaminationFinder uses a single definitional resource file containing method def-
initions for the computation methods used to search the database.

A MedView database is represented by an object of the class MVDatabase.
This class knows how to read the database from disk and present it as a number
of data definitions, each representing a single examination. ExaminationFinder
uses a multi-document architecture, that is, any number of search panels, or doc-
uments, can be used at the same time. Each search panel has its own DFDMachine
object performing definitional computations.

When a new search panel is opened, its controller object creates a new object
of the DFDMachine class and loads the method definitions to use for computations.
This is done with a few lines of code:

// Create a method definition parser.
DFMethodParser *mParser = [[DFMethodParser alloc] init];

methods = [mParser parseMethodsAtPath:mPath];

// Create and initialize a machine for definitional computing.
dMachine = [[DFDMachine alloc] initWithDelegate:self];

// Use flat result definitions.

[dMachine setResultSystemType:DFFlatSystemResultTypel;

where methods is an array which holds the loaded method definition objects and
mPath is the path to the text file, in the application’s resources folder, where the
methods are defined.

5.7.3 Finding Matches

In ExaminationFinder, the user enters attribute-pairs using an ordinary table
view. In definitional terms, as used in MedView, that an attribute A has a value
V means that there is a connection from A to V using an examination record
R. To examine if such a connection exists, we use a state definition {V = A}
and reduce the right-hand side as far as possible, or until both sides are equal.
When there are several attribute-value pairs ExaminationFinder creates a state
definition {V] = Ay, ..., V, = A, } for some queries and a separate state definition
for each attribute-value pair for all queries.

The attributes and values entered by the user are represented by strings and
stored in a special object which works as a data source for the table view. Before
we can send a query to the DFDMachine these strings must of course be turned into

61

On GCLA, Gisela, and MedView

suitable definitional objects. Since Gisela constants are built from strings this is
easy to do. The following code creates an equation from the strings attribute
and value:

eq = [DFEquation equationWithLeft:
[DFConstant constantWithName:value]
andRight: [DFConstant constantWithName:attributel];

Using other methods from the Gisela frameworks, some of which were shown in
Section 2.5, an object representing the query is constructed.

ExaminationFinder uses two different method definitions, sri shown in Sec-
tion 2.5, and the method definition srfi (for some right filter identity) shown
below. Which method definition to use depends on whether a grouping or fil-
tering of values is used or not. When filtering is on srfi is used. The meaning
of the equations in srfi is: (i) if there is an equation with identical left and
right-hand sides, the computation is finished (ii) if some attribute can be reduced
using Record, reduce it and continue (iii) if a value can be grouped using Filter,
do that and continue.

method srfi:[Record,Filter].

srfi = [] # some identity.

srfi = [srfi, r:Record] # some r:in_dom(Record) &
all not(identity) .

srfi = [srfi, r:Filter] # some r:in_dom(Filter) &

all not(identity) &
all not(r:in_dom(Record)).

5.8 An Interactive System

Following the tradition of declarative programming systems, we have written a
(simple) interactive system useful for developing and testing Gisela programs.
Since the framework contains almost all functionality needed, the interactive
system is written using a few hundred lines of code only. Most of the code
is for parsing commands and queries. Parsers for data and method definitions
are provided by the Gisela framework. Also, all classes for terms, conditions,
equations, methods etc. have a method stringValue which gives the syntactical
representation of the object.

The architecture of the interactive system is the same as that for Examina-
tionFinder, e.g. a DFDMachine is created to handle computations. The machine
is connected to a default observer. While simple, the interactive system does
its job. Adding a DFDMachine class suitable for debugging would of course be a
valuable improvement.

62

Gisela—A Framework for Definitional Programming

5.9 Discussion

Of course, most declarative programming languages have foreign-language inter-
faces which allow them to call, or be called from, imperative programming lan-
guages, typically C or Java. There are also several implementations [34, 52, 13]
which compile programs into an object-oriented model, again typically using Java
as the target language. Some of these feature a programming model similar to the
object representations discussed here. Jinni [52, 53, 54] is an interesting attempt
to combine ideas from Prolog and Java into a tool for gluing together knowledge
processing components and Java objects in distributed applications.

The special thing about Gisela is that we take neither representation as be-
ing the language. Instead, there is a framework providing a number of tools to
implement definitional programs. The tools can be used to write programs using
syntactic representations and running them in the interactive system. On the
other hand, they can be used as an extensible API for building definitional com-
ponents in Objective-C programs. How to use the tools is up to the user of the
framework.

More programs must be written to evaluate the system and we might expect
this to lead to some revision of Gisela. To increase the usefulness of the system
we must also provide a suitable set of built-in data definitions and standard
computation methods to build programs from. Generally, this is one of the areas
where existing declarative programming systems are lacking in comparison to
traditional imperative or object-oriented ones.

6 Towards a D-Machine

The set of inference rules given in Section 4.2 is a suitable representation to
provide an understanding of how definitional computing is realized in Gisela.
However, they are at a somewhat too high level to be used as a basis for an
implementation. Therefore, we provide a number of state transition rules, which
at a lower level, describe how an initial state definition is transformed into a
final result definition. The rules describe a machine using depth-first search with
backtracking and are the basis for the actual implementation of Gisela. The most
notable difference compared to the rules in Section 4.2 is that a computation is
described as rewriting an initial goal into a final result definition.

6.1 Rewrite Rules

The notations used are based on the ones in Sections 3 and 4. We only describe
modifications and extensions:

e A goal is of the form W:S where W is a computation condition and S a
state definition.

63

On GCLA, Gisela, and MedView

e An indez-set is a sequence {Iy,...,I,} where the elements are conditions
or computation conditions.

o A computation element is either a goal, an equation, or an index set.

o A computation stack is a list of computation elements. We use A to denote
a computation stack. [Y|A] is the stack with top Y.

o A result stack is a list of result definitions.

e A computation frame is a triple (A, R,), consisting of a computation stack
A, a result stack R, and a substitution 6.

e A computation state is a stack F'; ® of computation frames. F' is the active
or topmost frame, and ® the rest of the stack. Each computation frame
represents an alternative way to compute a solution. We write {} for the
empty computation state.

The final states of the transition system are yes(X,), where X is the computed
result definition and 6 a substitution, and no which indicates that no answer
could be computed.

(1) Init
M:S — ([M:S],]],0) .

At the top level only a single method is allowed.

(2) Success
(0, [X],0); @ — yes(X, 0) .

Alternative solutions are computed by restarting the machine from the state ®.

(3) Failure

{} = no.

(4) Goal Success
([eS|A], R, 0); @ — (A, [S|R], 0); P .

When a goal is fully evaluated the result S is moved to the result stack.

64

Gisela—A Framework for Definitional Programming

(5) Index
(KL, ..., I,}A] [X1, ..., Xa|R],0); @ — (A, [X|R],0); 9,

where n > 0, X = Opans({l1 = Xpn, ..., I, = X1}). When an index-set is on top
of the computation stack a new result definition is built from pending definitions
previously pushed onto the result stack.
(6) Choice

(W (Wh, Wo): S| AL, R, 6); ® — ((WV:S|A], R, 6);....; (W Vi S|AL R, 0); @
where {V1,...,Vin} = Oseo({Wh, Wa}), m € {1, 2}.

(7) Method
({(WM:S)|A],R,0);® — ((WW:S5),...,(WWn:S), {Wi,...,Wa}|A],R,60); ® |

where M (M) = {W1,...,W,},n > 1. M(M) is the definiens of the method name
M in the method M, that is

If M(M) = {} then
(VM $)A], R, 6@ @

Note that the index-set {W7,..., W,} is pushed onto the computation stack to
make it possible to build the desired result definition once the required goals have
been evaluated.

(8) Equation Left
(WD:S|A],R,0); ® — {[e1, WD:S|A], R, 0); ...;{[en, WD:S|A], R, 6); ® ,
where {eq,...,e,} = O4e(S),n > 1.

(9) Definition Left
((a = B),WD:S|A], R,0); ® —= (G, ..., Gu, | An], Rov, 001); By F @
where we have

® Dyuys(a) ={o1,...,0n}, Di = D(ao;) = {Au, ..., Au},n 2 1,k >0,

o G;j =W:(A;j/a0;)So;,

o I = {Au,..., Au},

o F;=(Gj,...,Gi, L|Acy], Roy, 00;).

Note that k can be different for each n.

65

On GCLA, Gisela, and MedView

(10) Vector Left
([(A,B) = C),WD:S|A],R,0);® — ([W:5,|A], R, 0);...; ({W:S,,|A], R, 0); ® ,
where {C1,...,Cn} = Os(D((4,B))),m € {1,2} and S; = C;/(A, B)S.

(11) Arrow Left

(((A— B) =C),WD:S|A],R,0);® — ([W:S,,W:S5,{A, B}|A], R, 6); ® ,
where S; and S are given by

e S5=((A—=B)eS)] A),

e S, =(B/(A— B))S.

(12) Fail Left
([((A=C),WD:S|A],R,0);® — &,
if Aisa variableor A=T or A= 1.

(13) Equation Right

(WD:S|A] R, 0); @ = ([er, WD: S|A], R, 0); ... ([en, WD:S|A] R, 0); @,
where {eq,...,en} = Ose(S),n > 1.
(14) Definition Right

((B=a), WD:S|A],R,0); ® — Fi1;...; Fuk,; @,

where we have

® Dpgu(a) ={o1,...,0n}, D(ao;) = {Air, ..., Air},n >0,k >0,

o G;j =W:S0,(Aij/a0;),

o F;; = ([Gij|Ac;], Roj, 00;).
Note that k& can be different for each n. If n = 0 or k; = 0 the rules becomes:

((B=a), WD:S|AL R, 0);® — @ .

(15) Vector Right
(((A=(B,C)),WD:S|A],R,0); ® — ([W:S1, W:S,,{B,C} A, R,0); D,
where S} = S(A/(A, B)) and Sy = S(B/(A, B)).

66

Gisela—A Framework for Definitional Programming

(16) Arrow Right
((A=(B— C)),WD:S|A],R,0);® — ([W:5'|A], R, 0); @ ,
where S' = B & (S(C/(B — ())).

(17) Fail Right
(((A=C),WD:S|AL,R,0);® — &,
if CisavariableorC =T orC = 1.

(18) Identity Equation
((WD:S|A|,R,0); ® — ([e1, WD:S|A], R, 0); ...;{[en, WD:S|A], R, 0); D,
where {e1,...,e,} = O4eq(S),n > 1.

(19) Identity
{([(a=b),WD:S|A],R,0);® — ((W:S|A]o, Ro,fo);

if 0 = mgu(a,b).
((A=B),WD:S|A],R,0);® > @,

if A and B are terms which are not unifiable, or A or B is a condition which is
not a term.

6.2 Result Definitions

A good question is whether there is ever any point in building a full result defi-
nition. The introduction of a complex result definition was motivated by a wish
to study properties of computations and a need to find out from what a spe-
cific equation in a flattened result definition was computed. However, very little
work has been done in this area so far. The developed applications and examples
have been either (functional) logic programs, where the result definition is not
needed at all, or programs where the flattened form of the result definition is the
interesting part of the answer.

From an efficiency point of view, the problem with building full result defini-
tions is that the size grows relative to the number of steps in the computation and
thus consumes a very large amount of memory. Even when all result definitions
are flattened, a large number of index sets are created and put on the compu-
tation stack, only to be discarded later on. Whether full result definitions are
needed and exactly what they should contain is an area for future investigations.
That they are present in Gisela is in line with the goal of providing a framework
useful for several different tasks.

67

On GCLA, Gisela, and MedView

6.3 Discussion

We have chosen to implement Gisela as a system which uses depth-first search and
backtracking to find answers to queries. This choice is debatable since, in general,
the search procedure is not complete and may miss obvious answers implied by
the program.

Historically, using depth-first search is the most common approach in pro-
gramming languages involving search for answers, among them Prolog and Mer-
cury [50]. Today, it is possible to discern a trend where other approaches are
used, e.g. systems like Curry [33], Escher [42], and Oz [48, 49].

Breadth-first search was used in an earlier version of Gisela, see Section 8.
However, it was deemed that for a system with a focus on being practical, such
as Gisela, the efficiency gained by using depth-first search instead was more im-
portant than the loss of completeness.

7 Implementation

The Gisela framework has been implemented in Objective-C using the Founda-
tion framework of OpenStep [44]. The Foundation framework provides a level of
operating system independence, to enhance portability. Thus, Gisela runs on any
platform for which the appropriate OpenStep runtime system is available. We are
considering implementing a version of Gisela in Java for even greater portability.
This should be trivial due to the similarity between Java and Objective-C.

The implementation of Gisela is divided into three frameworks, one for data
definitions, one for method definitions and one implementing computations. A
framework in this setting corresponds to a package in Java and is a collection
of classes that are grouped together, since they conceptually form a unit. This
unit should provide some functionality useful for building other frameworks and
applications. All entities of Gisela are represented by objects of various classes. It
follows that, since a definitional machine is just another object, it can be directly
used in any Objective-C application.

It should be noted that the purpose of this section is not to give a detailed
description of the implementation, but rather to hint at the general ideas and the
design philosophy used. We discuss possible alternatives in Section 7.5 below.

7.1 Overall Structure

The main design goal behind the implementation of Gisela is to create a portable
implementation that can easily be integrated into real-world applications with
graphical user-interfaces. The most practical way to achieve this, in our opin-
ion, is to make it very simple to include Gisela as a component for reasoning
in applications using existing frameworks for GUI, not to provide GUI facil-
ities in Gisela. Thus, we have implemented Gisela as a framework (package)

68

Gisela—A Framework for Definitional Programming

which provides all functionality through a number of objects that can be used in
Objective-C applications.
The three frameworks which together make up Gisela are:

e DFDefinitions, where terms, conditions and data definitions are imple-
mented. This framework is the basis for Gisela and is needed by the other
two.

e DFMethods, which implements all classes needed to build method defini-
tions.

e DFComputing, which uses classes from both DFDefinitions and DFMethods
and implements the classes which manage actual definitional computations.

The main motivation for the separation is that definition classes may be useful
by their own without the rest of the definitional computing machinery. The other
motivation is to have reasonably sized frameworks.

The design of the frameworks is not particularly dependent on any specific
features of Objective-C, thus a port to another object-oriented language should
not be to hard to do.

7.2 Implementing Data Definitions

In terms of lines of code and number of public classes, DFDefinitions is by
far the largest of the three frameworks. In part, this is because DFDefinitions
contains a number of classes needed to handle the files used to store examination
records in MedView. From a design point of view, it can be argued that these
classes should not be part of the basic framework but be defined in an extension.
Nevertheless, since Gisela is intended for use in MedView we have put them into
the framework.

7.2.1 Terms and Conditions

Data definitions are built using terms, conditions, and equations. The common
properties of terms are implemented by the abstract class DFTerm, the common
properties of conditions by the abstract class DFCondition. Both these classes
implement the DFConditionProtocol. A protocol in Objective-C corresponds
to an interface in Java. The DFConditionProtocol in turn inherits a number of
methods from the DFVariableCopyingProtocol which describes different kinds
of copying. Thus:

DFVariableCopying
DFCondition
DFTerm

As an example we show DFTerm.h

69

On GCLA, Gisela, and MedView

#import <Foundation/Foundation.h>
#import <DFDefinitions/DFTermProtocol.h>

Q@interface DFTerm : NSObject<DFTerm, NSCoding, NSCopying>
{

}
Q@end

This tells us that DFTerm is a subclass of the root class NSObject which imple-
ments the protocols DFTerm, NSCoding, and NSCopying, but declares no methods
of its own. We have subclasses of DFTerm for constants, variables, and compound
terms, and subclasses of DFCondition for arrow and comma conditions. These
classes are very straightforward. The most interesting is perhaps DFVariable:

@interface DFVariable : DFTerm
{

long timeStamp;

id<DFTerm> value;
}

+(id)variable;
©@end
The instance variable timeStamp represents the time the variable was bound and
is needed to make it possible to undo variable bindings correctly when back-
tracking occurs. The usage of timestamps like this is standard methodology in
implementations of logic programming languages [59].

The implementation is closely related to the description of terms, conditions,
equations, and data definitions given in Section 4.1.1. The reason for this is, of
course, the idea that it should be possible to use Gisela directly by building data

definitions as objects without using any syntactic representation which is parsed
and compiled into a program.

7.2.2 Data Definition Classes

We have implemented a number of different data definition classes. All share the
methods described in the DFDefinition protocol:

@protocol DFDefinition <NSObject>

(NSString *)name;

(BOOL) inDom: (id)anObject;
(BOOL) inCom: (id)anObject;
(NSArray *)def:(id)anObject;
(id)clause: (id)anObject;

70

Gisela—A Framework for Definitional Programming

- (NSArray *)def:(id)anObject evaluator:(id)machine
operationId: (unsigned)opId
redoable: (BOOL *)hasAlts;
- (id)clause: (id)anObject evaluator:(id)machine
operationId: (unsigned)opId

redoable: (BOOL *)hasAlts;
©@end
For a data definition class to be valid, the methods in this protocol should im-
plement the behavior given by the abstract description of a data definition given
in Section 4.1.1. There are two different versions of the methods for def and
clause. The ones with a single argument may be useful if a definition class
is used without the rest of the machinery for definitional computations. The
two last methods are for enumerating all possible results. The D-Machine de-
scribed in Section 7.4 treats data definitions as black boxes. All it knows about
data definitions is that a definition may be used to find the definiens of an ob-
ject. It also knows that there may, in general, be more than one result. If
def:evaluator:operationId:redoable is called multiple times from a machine
using the same opId, all answers are enumerated.

Currently, all data definition classes inherit from the abstract definition class
DFDefinition but this is not a requirement. Other base classes for data defini-
tions may be written as long as they implement the DFDefinition protocol.

In the general case, computing the definiens of a term with respect to a data
definition is a complex operation involving the computation of a-sufficient substi-
tutions. To avoid unnecessary overhead we have implemented several specialized
data definition classes handling various simpler definitions. We have also sepa-
rated the definition classes into static and modifiable definitions since operations
may be implemented in a more efficient manner if we know that the definition
will not change over time. The most common classes are:

e DFDefinition, abstract definition class from which all other definition
classes in the framework inherits.

e DFConstantDefinition, subclass of DFDefinition, suitable to use when
the left-hand sides of all equations are constants. This class is used when a
data definition is declared constant using the syntactic representations of
Section 5.1.

e DFMatchingDefinition, subclass of DFDefinition, suitable to use when
matching, and not unification, should be applied in the definiens operation.
This class is used when a syntactically represented data definition is declared
as matching.

71

On GCLA, Gisela, and MedView

e DFUnifyingDefinition, subclass of DFMatchingDefinition, used for gen-
eral data definitions. This class also allows specifications which describe
how each equation may be used, e.g., matching only. Therefore a unifying
definition really subsumes the two classes above.

e DFGCLAUnifyingDefinition, subclass of DFUnifyingDefinition. For com-
patibility with GCLA, this class includes all terms in the domain of a data
definition and returns false instead of the empty set for terms not de-
fined. This is the class used when a syntactically described data definition
is declared gcla.

e DFModifiableDefinition, an abstract subclass of DFDefinition which
implements common behavior of mutable definitions.

All of the above definitions are created from a list of equations using the method:

- (id)initWithName: (NSString *)aString
andEquations: (NSArray *)someEquations;

DFUnifyingDefinition also allow directives for how the equations should be
handled:

- (id)initWithName: (NSString *)aString
equations: (NSArray *)someEquations
andDirectives: (NSDictionary *)aDict;

When a definition is created, an internal representation of the equations suitable
for computing definiens and clause of terms is built. The resources required for
building this and the efficiency of the resulting representation are the parameters
to consider when deciding what kind of data definition to use.

DFConstantDefinition uses a simple hash table to find the definiens of a
given constant. DFMatchingDefinition and DFUnifyingDefinition use one
hashtable indexed on the principal functor of a term and then one hashtable
indexed on the first argument of a term. Thus, given a definition like

f(a) = a.
f(b) =D
f(c) = c.

performing clause(f(b)) is done by two lookups and leaves no choice points.
This is not very complicated. Performing definiens in matching definitions is
not particularly complicated either. Currently, to find D(a), a linear search
among the equations with the same principal functor as a is performed to collect
all matching clauses. The hard part is to implement the definiens operation of
DFUnifyingDefinition in the general case involving computation of a-sufficient
substitutions. Various algorithms for this are described in [7, 30, 38]. To the best

72

Gisela—A Framework for Definitional Programming

of our knowledge, all previous implementations are implemented in Prolog using
built-in unification and backtracking. In addition, the descriptions of algorithms
are expressed in a manner heavily influenced by the intended implementations.

The algorithm currently in use for computing definiens in the general case is
adopted from Algorithm 3, without guards and constraints, in [7]. The general
idea of this algorithm is that it is possible to build a representation of the def-
inition which in essence pre-computes all possible a-sufficient substitutions for
all terms defined in the definition. There are two advantages with this in the
Gisela setting. First, it makes performing definiens more efficient, and second, it
makes it possible for a definition object to tell if there are any more alternatives
to consider. The backside is that creating the representation is exponential with
respect to the number of equations with unifiable heads. For large databases this
is not feasible. Therefore, if a term will only be used to the right in equations it
is possible to turn off the pre-computation of a-sufficient substitutions using the
restrict right directive.

A project for the future is to allow guards in unifying definitions and not only
matching definitions. This would involve implementing some algorithm similar
to Algorithm 3, with guards and constraints, in [7]. The algorithm as such is
quite similar to the current pre-computation of a-sufficient substitutions. The
hard part would most likely be to extend variables to handle constraints in an
efficient manner. The algorithms presented in [7, 38| rely heavily on features of
SICStus Prolog to handle constraints on variables.

Finally, the strictly modular construction of Gisela where data definitions are
treated as black boxes by the rest of the machinery makes it possible to introduce
new improved definition classes without affecting any other part of the framework.

7.3 Implementing Method Definitions

As with data definitions, the implementation of method definitions is closely
related to previous descriptions, particularly the one in Section 5.1.2. The reason
is the same: it should be possible to build method definitions directly using the
various classes in the framework. To achieve this, the framework is built to map
the conceptual description of method definitions directly onto a number of classes.

The general structure of a method definition is that it is a sequence of equa-
tions

M = Word#Guard

where Word is computation condition describing a sequence of operations to per-
form, and Guard contains restrictions with respect to the current state definition
on when the equation may be applied. Guards are built using guard-primitives
describing tests with respect to a single equation. In principle methods are im-
plemented through the classes:

e DFGuardConstraint, tests on a single condition.

73

On GCLA, Gisela, and MedView

DFGuardPrimitive, tests on a single equation.

DFGuard, tests on a state definition.

DFWord, a sequence of operations.

DFMethodScheme and DFMethod for method definitions with and without
parameters respectively.

The computation model of Gisela really says nothing more about guards than
that they implement tests with respect to the current state definition. Thus,
the framework classes implement all the guard functionality described in Section
5.1.2 but there are no restrictions on the possibility of adding new classes.

All that is required of a class to introduce a new guard primitive is that it
implements the following protocol:

@protocol DFGuardPrimitive<DFMethodObject, NSCopying, NSCoding>
- (BOOL)holds: (DFEquation *)eq;
@end

A new guard class must implement the protocol:

@protocol DFGuard<DFMethodObject, NSCopying, NSCoding>
- (BOOL)isTrue: (DFStateDefinition *)stateDef;
- (BOOL)isTrue: (DFStateDefinition *)stateDef
indexes: (NSMutableArray *)indexes;
Q@end

The second method of the DFGuard protocol is used to communicate which equa-
tions of the given state definition make the guard hold. This is used in computa-
tions to help the observer select an equation for reduction.

The class DFMethod is a subclass of DFModifiableDefinition. What is spe-
cial about method definitions is that given a method definition M, it is always
used to lookup the definiens of the constant M with respect to a given state
definition. Therefore, two new methods are added:

Oprotocol DFMethod<DFMethodObject>

- (NSArray *)defWithStateDefinition:(DFStateDefinition *)stateDef;

- (NSArray *)defWithStateDefinition: (DFStateDefinition *)stateDef
indexHints: (NSMutableArray *)idxHints;

Qend

As with guards and many other objects, users using the Gisela frameworks may
implement new method definition classes as long as they implement the DFMethod
protocol. Of course subclassing is also possible.

All the classes of DFDefinitions and DFMethods implement the protocol
NSCoding, which means that objects may be archived for permanent storage.

74

Gisela—A Framework for Definitional Programming

7.4 Implementing a D-Machine

The framework DFComputing provides a rather limited number of classes for def-
initional computing, most notably the DFDMachine class. A D-machine is an
interpreter which takes a query, as described in Section 5.1.3 and evaluates it
according to the rewrite rules given in Section 6.1. While an interpreter, we have
tried not to make it unnecessarily inefficient. One exception from this, in the
current implementation, is the heavy use of objects for everything. For example
it would be faster to use C arrays instead of array objects. As the structure of
the implementation stabilizes, we expect to move to a lower level and use more
pure C code. This can be done piecemeal since C is a subset of Objective-C.

The DFDMachine, as such, is only a shell that is used to set up computations
and connections in various ways. The actual computations are performed by
an object of the private class DFComputor. A DFDMachine object connects the
computor object with its observer, decides whether computations should be run in
a separate thread, handles communication between the computor and the calling
application etc.

7.4.1 The Computor

Computing a result definition from the initial goal is handled by a DFComputor.
After some initializations it starts a loop which runs until the goal is stopped for
some reason, e.g., a result is computed or the caller decides that the computation
should stop. In a simplified form the loop looks like this:

- (id)runMainLoopBreakAtAnswer: (BOOL) returnAnswer {
while (continueComputing) {
switch ([self selectRule]) {
case DFSuccessRule:
[self performSuccess];
break;

case DFDefiniensRule:
[self performDefiniens];
break;

}

return result;

The current state of the computation is inspected by the method selectRule,
and depending on this the correct rule (as described in Section 6.1) is applied.
The most important variables describing the state of a computor are:

75

On GCLA, Gisela, and MedView

timeStamp the current timestamp of the computor.
activeFrame a pointer to the current computation frame.
choicePointStack what the name indicates.

trailStack stack with variables which might be undone.
observer a pointer to the current observer.

csReg the element on top of the computation stack
cs2Reg the element below csReg .

wReg pointer to currently selected computation condition.
1cReg pointer to last element of wReg.

iReg selected equation index.

eReg pointer to selected equation.

cReg pointer to selected condition.

The choicePointStack stores DFChoicePoint objects containing all the infor-
mation necessary to create the next frame, in case an alternative should be tried.

7.4.2 Choice Points

When there are alternative paths in a computation, a DFChoicePoint object is
created and pushed onto the choice point stack. The choice point object stores a
copy of the current computation frame, the current timestamp, an index into the
trail stack indicating where to undo variable bindings from, what kind of choice
caused the choice point, and some extra information depending on the kind of
choice point.

A DFChoicePoint object knows how to create the sequence of computation
frames representing all possible alternatives available from the choice point. These
alternatives are enumerated one by one by calling the method nextAlternative.
When the computor needs a new frame to continue computing it uses its method
popFrameStack:

- (void)popFrameStack {
BOOL stillBuilding = YES;
DFFrame *newFrame = nil;
while (stillBuilding && ![choicePointStack isEmpty]) {
DFChoicePoint *currentChoicePoint = [choicePointStack top];
// clear variables bound since current choice
[self untrail:[currentChoicePoint trailStackPointer]];
if (newFrame = [currentChoicePoint nextAlternative])
stillBuilding = NO;
else
[choicePointStack popl];
}

[self pushActiveFrame:newFrame];

76

Gisela—A Framework for Definitional Programming

7.4.3 The Observer

The framework provides a default observer as described in Section 4.3. Imple-
menting the default observer is trivial. The methods an observer must implement
are declared in the protocol DFComputingObserver. New observers may be cre-
ated either by subclassing the default observer or by implementing new objects
that adhere to the observer protocol.

7.5 Discussion

The use of a proprietary framework such as OpenStep in the development of
a programming system like Gisela is somewhat unusual. OpenStep was chosen
for two reasons: (i) at the time the implementation was started we believed that
MedView would remain based on OpenStep for at least a few years, (ii) OpenStep
is arguably one of the most well designed object-oriented frameworks around and
provides both access to C and a fully dynamic runtime system. As mentioned
above, the design of the implementation is such that it should be easily portable
to Java, Ada95 or C++. A port to Java would be easiest, and will most likely
be made once the computation model is fixed. So far, Objective-C remains faster
than Java though.

One place where many unnecessary computations are performed is in the eval-
uation of guards in method definitions. Typically, method definitions are written
in such a way that at most one equation can be applied to the current state defini-
tion. However, all guards are always evaluated. Unnecessary computations could
be avoided if it was possible to declare that a method definition was deterministic,
meaning that at most one guard could hold.

8 Conclusions

We have presented the Gisela framework for definitional programming. As any
reasonably ambitious programming system it is a compromise between different,
and, at times, conflicting, requirements. The system has been implemented and
a number of applications have been written to test performance and try out pro-
gramming methodologies. Next, Gisela will be used to re-model the definitional
machinery used in the MedView project. Our belief is that, although some re-
finements will be needed when Gisela is applied to a real-world project such as
MedView, the basic computational machinery will remain.

The Gisela framework is our fourth attempt in a series of experiments for
finding a definitional programming model which can serve both as a successor to
GCLA, allow for new programming methodologies, and be useful for knowledge
representation and reasoning in MedView. The overall idea goes back to [22]
where a model for computing with definitions radically different from the GCLA

7

On GCLA, Gisela, and MedView

approach was described. Another important input were the ideas put forward in
[58].

The first system we built was implemented in Prolog and allowed only compu-
tations using atoms. It was followed by an implementation in Objective-C using
breadth-first search which always computed all answers to queries. Like the Pro-
log system, it did not use any constructed conditions, but did allow matching
in the definiens operation. This second system was discarded due to some fun-
damental flaws due to misunderstandings of the intended behavior. However, it
could be used for things like computing basic separated programs.

A problem during the early phases of development was that it was very unclear
how separated programs, and programs doing things like computing definitional
similarity measures should be understood. Another was that we tried hard to
avoid introducing logical variables. Instead, the vision was to develop a kind
of “declarative assembler” on top of which conditions and variables should be
programmed. The third prototype developed fixed the problems with the second
one and was built on a concept of an abstract search-tree from which different
concrete search algorithms, e.g., depth-first search could be derived by subclassing
the abstract machinery. Actually, a fair amount of code, in particular most of
the code for implementing method definitions and simple data definitions, was
inherited into the Gisela framework from this system.

However, the problems of the “declarative-assembler” approach remained.
There was something which made it very hard to see how it would be possible
to realize the goal of building higher-level programming methodologies on-top of
the basic system in a nice manner. Our goal of building a practical system was
nowhere near being realized.

We then decided to opt for the definitional computing model that we have
described here as the Gisela framework. Compared to the previous attempts, the
difference is the presence of logical variables in data definitions and built-in rules
for handling constructed conditions. The rules for constructed conditions were
modeled after the standard GCLA rules. Finally, we had a system that came
reasonably close to our original goals and which we felt would be possible to use
for building practical applications.

If we look back at the goals set up in Section 1 and in [22, 58] some things
worth noting are:

e Gisela keeps the distinction between declarative and procedural parts used
in GCLAII. Programming Gisela is similar enough to programming GCLA
to allow reuse of many techniques. On the other hand, Gisela is different
enough to allow things like separated programming in a natural way.

e The abstract way in which definitions are introduced solves the problem of
the definiens operation being too general. Gisela does provide several dif-
ferent built-in data definition classes of different complexity. Furthermore,
the framework is open for the addition of new data definition classes.

78

Gisela—A Framework for Definitional Programming

e In [58], an important goal was that computations should be able to inter-
act in a natural way with the outside world. The Gisela framework is less
oriented towards interactive computations than the original vision. Inter-
action can mainly be handled through specialized observers. However, the
observer only gets called at specific points during computations.

e In [58], it was stated that programs should be compiled to C for portability.
What we had in mind was a Gisela to C compiler which would allow easy
porting to essentially any platform. The use of Objective-C instead restricts
portability but has greatly simplified development. Also, the notion of a
compiler does not really apply in the current setting.

e Another goal which has not been realized is to give explicit control of the
system’s general search behavior. In Gisela depth-first search with back-
tracking is always used. Providing means for other search-strategies is an
area for future work.

There are two things that sets Gisela apart from other systems for declarative
programming: (i) Gisela does not attempt to be a general-purpose programming
language, rather it is a system for realizing a certain set of definitional models, (ii)
Gisela is a framework with a rather loose definition, specifically aimed at allowing
experiments and modifications within the general model set up in Section 3. The
aim of declarative systems such as Prolog [15], Haskell [35], Mercury [50], Curry
[33], and Oz/Mozart [48, 60] is to provide full-fledged programming languages
suitable as alternatives to the commonly used imperative and object-oriented
ones. The outspoken aim of Mercury is to provide an alternative to C for large
scale projects. Mozart is geared towards distributed applications. Being general-
purpose languages, they also provide libraries to build GUIs [14, 32]. There is
also a need for sophisticated programming environments and software libraries,
an area where the mentioned systems so far are not on par with imperative
languages. Since Gisela is only aimed at realizing definitional models of systems
we have instead focused on simplifying the use of Gisela in combination with
object-oriented industrial-strength tools for building GUI-based, user-friendly
applications. For our purposes this gives us the most practical set of tools.

Finally, for the future an interesting question is: Will declarative programming
ever be a widespread generally used programming paradigm? We believe that a
crucial factor for the success of declarative programming is easy integration with
commonly used imperative and object-oriented systems and some serious work
on programming environments and library modules. Gisela is our attempt at
providing a useful declarative programming component for, among other things,
future work in the MedView project.

79

On GCLA, Gisela, and MedView

References

1]

2]

3]

[4]

[5]

[6]

7]

8]

[9]

[10]

[11]

80

Y. Ali, G. Falkman, L. Hallnds, M. Jontell, N. Nazari, and O. Torgersson.
Medview: Design and adoption of an interactive system for oral medicine. In

Proceedings of Medical Informatics Europe (MIE’00), Hannover, Germany,
August 2000, 2000. To appear.

S. Antoy. Lazy evaluation in logic. In Proc. of the 3rd Int. Symposium
on Programming Language Implementation and Logic Programming, number
528 in Lecture Notes in Computer Science, pages 371-382. Springer-Verlag,
1991.

S. Antoy. Definitional trees. In Int. Conf. on Algebraic and Logic Program-
ming ALP’92, number 632 in Lecture Notes in Computer Science, pages
143-157. Springer-Verlag, 1992.

S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. In Proc.
21st ACM Symposium on Principles of Programming Languages, pages 268—
279, 1994.

S. Antoy and A. Middeldorp. A sequential reduction strategy. Theoretical
Computer Science, To Appear.

M. Aronsson. Methodology and programming techniques in GCLA II. In
Extensions of logic programming, second international workshop, ELP’91,
number 596 in Lecture Notes in Artificial Intelligence. Springer-Verlag, 1992.

M. Aronsson. GCLA, The Design, Use, and Implementation of a Program
Development System. PhD thesis, Stockholm University, Stockholm, Sweden,
1993.

M. Aronsson. Implementational issues in GCLA: A-sufficiency and the
definiens operation. In Eztensions of logic programming, third international
workshop, ELP’92, number 660 in Lecture Notes in Artificial Intelligence.
Springer-Verlag, 1993.

M. Aronsson, L.-H. Eriksson, L. H. A. Géredal, and P. Olin. GCLA-
generalized horn clauses as a programming language. In Proceedings of
SCAI-89, 1989.

M. Aronsson, L.-H. Eriksson, A. Géredal, L. Hallnés, and P. Olin. The pro-
gramming language GCLA: A definitional approach to logic programming.
New Generation Computing, 7(4):381-404, 1990.

M. Aronsson, L.-H. Eriksson, L. Hallnds, and P. Kreuger. A survey of gcla: A
definitional approach to logic programming. In P. Schroeder-Heister, editor,

Gisela—A Framework for Definitional Programming

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

Extensions of logic programming: Proceedings of a workshop held at the SNS,
Unwversitat Tubingen, 8-9 december 1989, number 475 in Lecture Notes in
Artificial Intelligence. Springer-Verlag, 1991.

L. Augustsson. Compiling Pattern Matching. In Proceedings 1985 Conference
on Functional Programming Languages and Computer Architecture, pages
368-381, Nancy, France, 1985.

N. Benton, A. Kennedy, and G. Russel. Compiling Standard ML to Java
bytecodes. In Proceedings of the 3rd ACM SIGPLAN Conference on Func-
tional Programming. ACM Press, 1998.

M. Carlsson and T. Hallgren. Fudgets: A graphical user interface in a lazy
functional language. In FPCA ’93 - Conference on Functional Programming
Languages and Computer Architecture, pages 321-330. ACM Press, 1993.

P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Standard. Springer-
Verlag, 1996.

L.-H. Eriksson. Finitary Partial Inductive Definitions and General Logic.
PhD thesis, University of Stockholm, May 1993.

G. Falkman. Program separation as a basis for definitional higher order
programming. In U. Engberg, K. Larsen, and P. Mosses, editors, Proceedings
of the 6th Nordic Workshop on Programming Theory. Aarhus, 1994.

G. Falkman. Definitional program separation. Licentiate thesis, Chalmers
University of Technology, 1996.

G. Falkman. Program separation and definitional higher order programming.
Computer Languages, 23(2-4):179-206, 1997.

G. Falkman. Similarity measures for structured representations: a defini-
tional approach. In E. Blanzieri and L. Portinale, editors, EWCBR-2K,
Advances in Case-Based Reasoning, Lecture Notes in Artificial Intelligence.
Springer—Verlag, 2000. To appear.

G. Falkman, L. Hallnés, and O. Torgersson. Program separation in GCLA. In
A. Momigliano and M. Ornaghi, editors, Proceedings of the Post-Conference
Workshop on Proof-Theoretical Extensions of Logic Programming, pages 31—
37, June 1994.

G. Falkman, L. Hallnds, and O. Torgersson. Computing equalities.
Manuscript, 1997.

81

On GCLA, Gisela, and MedView

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

31]

32]

[33]

82

G. Falkman and O. Torgersson. Programming methodologies in GCLA. In
R. Dyckhoff, editor, Extensions of logic programming, ELP’93, number 798
in Lecture Notes in Artificial Intelligence, pages 120-151. Springer-Verlag,
1994.

G. Falkman and J. Warnby. Technical diagnoses of telecommunication equip-
ment: An implementation of a task specific problem solving method (TDFL)
using GCLA II. Research Report SICS R93:01, Swedish Institute of Com-
puter Science, 1993.

L. Hallnds. Partial inductive definitions. Theoretical Computer Science,
87(1):115-142, 1991.

L. Hallnds. WM94: program separation in GCLA. In Proceedings of La
Wintermote 94, pages 93-94. Department of Computing Science, Chalmers
University of Technology, 1994.

L. Hallnds. Classifying algorithms — definitions, intensionality, algorithms,
the classification problem. Manuscript, 1997.

L. Hallnas, M. Jontell, and N. Nazari. MEDVIEW - formalisation of clin-
ical experience in oral medicine and dermatology: The structure of basic
data - abstract. In Proceedings of the Das Wintermadte’96. Department of
Computing Science, Chalmers University of Technology, 1996.

L. Hallnds and P. Schroeder-Heister. A proof-theoretic approach to logic
programming. Journal of Logic and Computation, 1(2):261-283, 1990. Part
1: Clauses as Rules.

L. Hallnds and P. Schroeder-Heister. A proof-theoretic approach to logic
programming. Journal of Logic and Computation, 1(5):635-660, 1991. Part
2: Programs as Definitions.

M. Hanus. Combining lazy narrowing and simplification. In Proc. 6th Inter-
national Symposium on Programming Language Implementation and Logic
Programming, pages 370-384. Springer LNCS 844, 1994.

M. Hanus. A functional logic programming approach to graphical user inter-
faces. In Proc. of the Second International Workshop on Practical Aspects
of Declarative Languages (PADL’00), volume 1753 of Lecture Notes in Com-
puter Science, pages 47-62. Springer-Verlag, 2000.

M. Hanus, H. Kuchen, and J. Moreno-Navarro. Curry: A truly functional
logic language. In Proc. ILPS’95 Workshop on Visions for the Future of
Logic Programming, pages 95-107, 1995.

Gisela—A Framework for Definitional Programming

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

M. Hanus and R. Sadre. An abstract machine for Curry and its concurrent
implementation in Java. Journal of Functional and Logic Programming, 6,
1999.

P. Hudak et al. Report on the Programming Language Haskell: A Non-
Strict, Purely Functional Language, March 1992. Version 1.2. Also in Sigplan
Notices, May 1992.

P. Kreuger. GCLA II: A definitional approach to control. Licentiate thesis,
Chalmers University of Technology, 1992.

P. Kreuger. GCLA II: A definitional approach to control. In Ezxtensions of
logic programming, second international workshop, ELP91, number 596 in
Lecture Notes in Artificial Intelligence. Springer-Verlag, 1992.

P. Kreuger. Computational Issues in Calculi of Partial Inductive Definitions.
PhD thesis, Department of Computing Science, University of Goteborg,
Goteborg, Sweden, 1995.

H. Kuchen, R. Loogen, J. J. Moreno-Navarro, and M. Rodriguez-Artalejo.
Lazy narrowing in a graph machine. In Proceedings of the Second Inter-
national Conference on Algebraic and Logic Programming, number 463 in
Lecture Notes in Computer Science. Springer-Verlag, 1990.

D. Larkin and G. Wilson. Object-Oriented Programming and the Objective
C Language. NeXT Software Inc, 1996.

J. W. Lloyd. Foundations of Logic Programming. Springer Verlag, second
extended edition, 1987.

J. W. Lloyd. Combining functional and logic programming languages. In
M. Bruynooghe, editor, Logic Programming, Proceedings of the 1994 Inter-
national Symposium. MIT Press, 1994.

R. Loogen, F. Léopez-Fraguas, and M. Rodriguez-Artalejo. A demand driven
computation strategy for lazy narrowing. In Proc. of the 5th International
Sympositum on Programming Language Implementation and Logic Program-
ming, PLIP’93, number 714 in Lecture Notes in Computer Science, pages
184-200. Springer-Verlag, 1993.

NeXT Computer, Inc. OpenStep specification. Available at
http://www.gnustep.org/resources/resources.html, October 1994.

S. L. Peyton Jones. The Implementation of Functional Programming Lan-
guages. Prentice Hall, 1987.

83

On GCLA, Gisela, and MedView

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

84

S. L. Peyton Jones and D. Lester. Implementing Functional Languages: A
Tutorial. Prentice Hall, 1992.

H. Siverbo and O. Torgersson. Perfect harmony—ett musikaliskt expertsys-
tem. Master’s thesis, Department of Computing Science, Goteborg Univer-
sity, January 1993. In Swedish.

G. Smolka. The definition of kernel Oz. DFKI Oz documentation series, Ger-
man Research Center for Artificial Intelligence (DFKI), Saarbriicken, Ger-
many, 1994.

G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Current
Trends in Computer Science, number 1000 in Lecture Notes in Computer
Science, pages 441-454. Springer-Verlag, 1995.

Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mer-
cury: an efficient purely declarative logic programming language. Journal of
Logic Programming, 29(1-3):17-64, 1996.

L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, second edition,
1994.

P. Tarau. Jinni: a lightweight Java-based logic engine for internet program-
ming. In K. Sagonas, editor, Proceedings of JICSLP’98 Implementation of
LP languages Workshop, 1998.

P. Tarau. Inference and computation mobility with Jinni. In K. Apt,
V. Marek, and M. Truszczynski, editors, The Logic Programming Paradigm:
a 25 Year Perspective, pages 33-48. Springer, 1999.

P. Tarau. Jinni: Intelligent mobile agent programming at the intersection of
Java and Prolog. In Proceedings of PAAM’99, 1999.

O. Torgersson. Functional logic programming in GCLA. In U. Engberg,
K. Larsen, and P. Mosses, editors, Proceedings of the 6th Nordic Workshop
on Programming Theory. Aarhus, 1994.

O. Torgersson. A definitional approach to functional logic programming. In
R. Dyckhoff, H. Herre, and P. Schroeder-Heister, editors, Ezrtensions of Logic
Programming 5th International Workshop, ELP’96, number 1050 in Lecture
Notes in Artificial Intelligence, pages 273-287. Springer-Verlag, 1996.

O. Torgersson. Definitional programming in GCLA: Techniques, functions,
and predicates. Licentiate thesis, Chalmers University of Technology and
Goteborg University, 1996.

Gisela—A Framework for Definitional Programming

[58] O. Torgersson. A note on declarative programming paradigms and the future
of definitional programming. In Proceedings of Das Wintermote 96. Depart-

ment of Computing Science, Chalmers University of Technology, 1996.

[59] P. Van Roy. 1983-1993: The wonder years of sequential prolog implementa-

tion. Journal of Logic Programming, 1994.

[60] P. Van Roy and S. Haridi. Mozart: A programming system for agent applica-
tions. In International Workshop on Distributed and Internet Programming

with Logic and Constraint Languages, 1999.

A Simulating GCLA

Methods making computations similar to standard GCLA

// Computation methods corresponding to rules

method true_right.
true_right = [] # some r:matches(true).

method false_left.
false_left = [] # some 1l:matches(false).

method d_right: [D].
d_right = [r:D] # some r:in_dom(D).

method d_left:[D].
d_left = [1:D] # some 1l:in_dom(D).

method axiom: [D].
axiom = [D].

method v_right: [D].
v_right = [r:D] # some r:matches((A,B)).
method v_left:[D].

v_left = [r:D] # some 1l:matches((A,B)).

method a_right: [D].

a_right = [r:D] # some r:matches((A->B)).

method a_left:[D].
a_left = [r:D] # some 1l:matches((A->B)).

85

On GCLA, Gisela, and MedView

// Computation methods corresponding to strategies
method left:[D].

dl = instance(d_left,[D]).

vl = instance(v_left,[D]).

al = instance(a_left,[D]).

left = [d1];[v1];[al].

method right: [D].

dr = instance(d_right, [D]).
vr = instance(v_right, [D]).
ar = instance(a_right, [D]).

right = [dr];[vr];[ar].

method arl: [D].
ax = instance(axiom, [D]).
1s = instance(left,[D]).
rs = instance(right, [D]).

arl = [ax];[true_right];[arl,rs]; [false_left];[arl,ls].

method 1lra: [D].
ax = instance(axiom, [D]).
1ls = instance(left,[D]).
rs = instance(right, [D]).

lra = [false_left];[lra,ls]; [true_right];[1lra,rs];[ax].

method gcla: [D].
arlD = instance(arl,[D]).

gcla = [arlD].

B Objective-C

Objective-C is an object-oriented extension of ANSI standard C. Compared to
other popular object-oriented languages, like C++ and Java, Objective-C can be
said to be more “object-oriented” since it is based on the use of dynamic typing
and dynamic binding. Dynamic typing means that the exact type of an object
is not decided when a program is compiled but at run time. Dynamic binding,
likewise, means that the exact method to use to send a message to an object
is decided at run time. This is in contrast to function calls where the compiler
decides exactly which function to call from the code.

86

Gisela—A Framework for Definitional Programming

We give a very brief introduction to Objective-C here. The main purpose is
to explain common syntactic constructions. We assume some familiarity with C
and will only go into object-oriented extensions to C, such as how classes are
defined etc. For a more in-depth description of Objective-C see [40], which is the
basis for the presentation given here.

B.1 Classes and Objects

An object is an instance of a class. An object associates data with the particular
operations that can use or affect that data. The operations are known as the
object’s methods, and the data they operate on as the object’s instance variables.
The essence of an object is that it bundles a data structure (instance variables)
and a group of procedures (methods) into a self-contained unit.

Objects are defined by defining their class. The class definition is a prototype
for a kind of object; it declares the instance variables that become part of every
member of the class, and it defines a set of methods that all objects in the class
can use. Each object gets its own instance variables but the methods are shared
by all objects in the class. Each object of a class is referred to as an instance of
the class.

B.1.1 Inheritance

Much of the power of object-oriented programming comes from the use of in-
heritance. Class definitions are additive, that is, each new class that is defined
is based on another class from which it inherits methods and instance variables.
Inheritance links classes together in a hierarchical tree with a single class, the
root class at its root. Every class (except the root class) has a superclass from
which it inherits, and any class can be the superclass of any number of subclasses.

B.1.2 Defining a Class

A class definition in Objective-C consists of the two parts: the interface and
the implementation, where the interface declares what has to be known to other
objects about instances of the class.

The structure of the interface part is

#import "MySuperClass.h"

@interface MyClass:MySuperClass

{

// Instance Variable Declarations
}

// Method Declarations
@end

87

On GCLA, Gisela, and MedView

The meaning of MyClass:MySuperClass is that MyClass is defined to be a sub-
class of MySuperClass. The syntax for (instance) variable declarations is the
same as in C. Worth noting is that all objects are of the general type id. This
type is defined as a pointer to an object. Thus, if an (instance) variable can be
an arbitrary object the declaration

id anObject;

can be used. If an (instance) variable is known to be of a certain type, it can be
statically typed. For instance

Rectangle *myRect;

declares an object of the Rectangle class (or more precisely a pointer to an object
of the Rectangle class). Each object has a distinguished instance variable self
which, as the name implies, lets the object refer to itself.

The implementation part has the structure:

O@implementation MyClass
// Method Definitions

Q@end

To get an object to do something, a message is sent to the object telling it to
apply a method. Message expressions are enclosed in square brackets

[receiver message]

where receiver is an object and message tells it what to do. For example, the
following message tells the myRect object to perform its display method, which
causes the object to display itself:

[myRect displayl;

The method declaration for the display method in the interface part is given as
follows:

- (void)display;

Methods can also take arguments, for instance to set the height and width of
myRect:

[myRect setWidth:10.0 height:5.0];

The name of the method in this case is setWidth:height: and would be declared
as follows in the interface part:

- (void)setWidth: (float)w height: (float)h;

88

Gisela—A Framework for Definitional Programming

That arguments are inserted after the colons, breaking the name apart, is intended
to make messages more self-documenting. The name of a method usually explains
the purpose of all its arguments. Methods can also return values. For example

BOOL isFilled;
isFilled = [myRect isFilled];

where the declaration of the method isFilled is
- (BOOL)isFilled;

Note that a variable and a method can have the same name. Finally, one message
can be nested within another. Here one rectangle is set to the color of another:

[myRect setColor:[otherRect color]];
where the declarations in the interface of the involved methods would be:

- (NSColor *)color;
- (void)setColor: (NSColor *)aColor;

B.1.3 Creating Objects

The compiler creates just one accessible object for each class, a class object that
knows how to build new objects belonging to the class. To create a new instance
of a class an alloc message is sent to the class object. The following code declares
a variable and tells the Rectangle class to create a new Rectangle instance:

Rectangle *myRect;
myRect = [Rectangle alloc];

The alloc method dynamically allocates a new instance. For an object to be
useful, it generally needs to be initialized. Initialization typically follows imme-
diately after allocation:

myRect = [[Rectangle alloc] init];
Initialization methods often take arguments:
myRect = [[Rectangle alloc] initWithWidth:5.0 height:2.0]]:

For convenience, classes may provide methods that combine allocation and ini-
tialization. Such methods typically start with the name of the class:

myRect = [Rectangle rectangleWithWidth:5.0 height:2.0];

89

On GCLA, Gisela, and MedView

B.1.4 Naming Conventions

It is common practice to begin class names with an uppercase letter and names
of variables and methods with a lowercase letter. All names having the prefix NS
are part of OpenStep [44], which provides an extensive set of classes to use as a
foundation for programming. For instance, the root class is called NSObject.

B.2 Protocols

Class interfaces declare methods that are associated with a particular class. A
protocol, on the other hand, declares methods not associated with a class, but
which any class, and perhaps many classes, might implement. Protocols free
method declarations from dependency on the class hierarchy, so they can be
used in ways that classes cannot. Protocols list methods that are (or may be)
implemented somewhere, but the identity of the class that implements them is
not of interest. What is of interest is whether or not a particular class conforms to
the protocol, that is, whether it has implementations of the methods the protocol
declares. Thus, the use of protocols provides (i) a way to declare properties that
an object should have without creating a class, (ii) the possibility for anyone to
create a class that conforms to the protocol without knowing anything about any
particular class.

A protocol declaration is just a list of method declarations. For instance, a
protocol that declares methods related to reference counting could be:

@protocol ReferenceCounting

- (void)setRefCount: (int)count;
- (int)refCount;

- (void)decrementCount;

- (void)incrementCount;

@end

A class is said to adopt a protocol if it agrees to implement the methods the
protocol declares. Class declarations list the names of adopted protocols within
angle brackets after the superclass name. For example, the following states that
the Rectangle class implements the ReferenceCounting protocol:

@interface Rectangle:Shape <ReferenceCounting>

A class that adopts a protocol must implement all the methods the protocol
declares. Adopting a protocol is somewhat similar to declaring a superclass since
both assign methods to the new class. The superclass declaration tells us that
an object of the class has all the methods present in the superclass, the adoption
of a protocol that it has all the methods declared in the protocol.

90

