A Definitional Approach to Functional Logic
Programming

Olof Torgersson*™

Department of Computing Science
Chalmers University of Technology and Goéteborg University
S-412 96 Goteborg, Sweden
oloft@cs.chalmers.se

Abstract. We describe a definitional approach to the combination of
functional and logic programming based on the theory of Partial Induc-
tive Definitions. The described method produces programs directly exe-
cutable in the definitional programming language GCLA. We show both
a basic calculus for functional logic program definitions and discuss a
refined version where the rules definitional resolution, definitional reflec-
tion, and definitional axiom are altered to be better suited for functional
evaluation and equation solving.

1 Introduction

Through the years there have been numerous attempts to combine the two main
declarative programming paradigms functional and logic programming into one
framework providing the benefits of both. The proposed methods varies from
different kinds of translations, embedding one of the methods into the other,
[21, 26], to more integrated approaches such as narrowing languages [9, 13, 20, 24]
based on Horn clause logic with equality [23], some kind of higher order logic as
in Escher [18], and constraint logic programming as in Life [1].

A notion shared between functional and logic programming is that of a defin:-
tion, we say that we define functions and predicates. The programming language
can then be seen as a formalism especially designed to provide the programmer
with an as clean and elegant way as possible to define functions and predicates
respectively. Of course, these formalisms are not created out of thin air but are
explained by an appropriate theory.

An alternative approach is to study the definitions themselves. In definitional
programming, programs are understood as definitions, more precisely as Partial
Inductive Definitions (PID) [10]. The theory of partial inductive definitions is
general enough to naturally express both (Horn clause) logic programs and (first
order) functional programs. Accordingly it provides a natural theoretical basis
for combing functional and logic programming within the same computational

* This work was carried out as part of the work in ESPRIT working group GENTZEN
and was funded by The Swedish Board for Industrial and Technical Development
(NUTEK).

framework. In this paper we will describe how this integration of functions and
predicates can be carried out. The work presented is inspired by some earlier
work [4, 5, 25] on programming in the definitional programming language GCLA
and has a double purpose: (i) to demonstrate how functional logic programming
comes naturally in GCLA, (ii) to give ideas for how a specialized functional
logic language on a definitional basis could be designed. All example programs
are given in GCLA but we would like to stress the general nature of the material.
Before we proceed we give a small example program.

Ezample 1 (Mixing Functions and Predicates). Consider the following definition
defining addition and comparision of natural numbers in successor arithmetics:

0 <= 0.
s(X) <= s(X).
0 + N <= N.

s(M) + N <= s(M + N).

0 =< X.
s(X) =< s(Y) <= X =< Y.

Here we have defined 0 and s as canonical objects by giving them circular def-
initions. Addition is defined as a function and ‘=<’ as a predicate. To use this
definition we also need four inference rules, of which two are specializations of
the rules (F D) and (D F), also known as the rule of definitional resolution
and definitional reflection [10, 12, 16], and the third is the definitional aziom
introduced in [15]:

MEM, DM, +N)FcC
M+NFC

(D4 k)

XXy YFY, FC
FX<v (f‘Ds) CED(X1§Y1).

Here, D(a), the defininens of the atom a, gives all conditions defining a. A
sequent F'F C' is best understood as evaluate F' to C. A more complete formu-
lation of definitional rules involving variables and substitions is given in Sect. 3.
We are now able to find Z and W such that Z + W =< 0 as follows:

wFx, % {Y; =0}
z+wkx1D+F{Z_o} oFy, D% trge truth

FZ+W<o0 (F D<) {X1 =0}

As an optimization we have omitted the leftmost premise in the rule (D; F)
since it is not needed in this example.

The rest of this paper is organized as follows. Section 2 gives some background on
definitional programming. A basic calculus is presented in Sect. 3. This calculus
shows the basic ideas of definitional functional logic programming. Section 4
shows the structure of programs. In Sect. 5, a refined calculus is given and,
finally, Sect. 6 contains some conclusions and directions for future research.

2 Preliminairies

We recall some basic notions of PID and the programming langnage GCLA?Z.
More details of GCLA, its underlying theory and general programming method-
ology, can be found in [5, 6, 8, 10, 11, 12, 14, 16].

A program in GCLA consists of two (finitary) partial inductive definitions
which we refer to as the definition or the object-level definition and the rule
definition respectively. We will sometimes refer to the definition as D and to the
rule definition as R.. Since both D and R are understood as definitions we speak
of programming with definitions, or definitional programming.

GCLA shares several features with most logic programming languages, like
logical variables. Computations are performed by posing queries to the system
and the variable bindings produced are regarded as the answer to the query.
Search for proofs are performed depth-first with backtracking and clauses of
programs are tried by their textual order. Some familiarity with basic logic
programming concepts [17] and rudimentary knowledge of sequent calculus is
assumed.

2.1 Basic Notions

Atoms, Terms, Constants, and Variables. We start with an infinite signa-
ture, X, of term constructors, and a denumerable set, V, of variables. We write
variables starting with a capital letter. Each term constructor is distinguished
by its name and arity. The term constructor ¢ of arity n is written ¢/n. We omit
the arity when there is no risk of ambiguity. A constant is a term constructor of
arity 0. Terms are built up according to the following:

1. all variables and constants are terms
2. if f is a term constructor of arity n and 1, ..., %, are terms then f(t1,...,1,)
is a term.

An atom 1s a term which is not a variable.

Conditions. Conditions are built from terms and condition constructors. The
set CC of condition constructors always include true and false. We then have:

1. true and false are conditions
2. all terms are conditions

2 To be pronounced “Gisela”

3. if p € CC is a condition constructor of arity n, and C4, ..., C, are conditions
then p(C1,...,Cy) is a condition. Condition constructors can be declared to
appear in infix position like in C7 — Cl.

In R the set of condition constructors is predefined, while in D any symbol can
be declared to become a condition constructor.

Clauses. If a 1s an atom and C a condition then
a<=C.

is a definitional clause, or a clause for short. We refer to a as the head and to
C' as the body of the clause. The clause a. is short for a < true. The clause
a < false. is equivalent to not defining a at all. A guarded definitional clause
has the form

a#{Gl, .. ,Gn} <= C.

where a is an atom, C' a condition, and each G; is a guard. If ¢; and #, are
terms then ¢; # ¢35 and #; = t5 are guards. Guards are used to restrict variables
occurring in the heads of guarded definitional clauses.

Definitions. A definition is a finite sequence of (guarded) definitional clauses:

a; <= Cy.

an, <= Ch.

Note that both D and R are definitions in the sense described here.

Operations on Definitions. The domain, Dom(D), of a definition D, is the
set of all atoms defined in D, that is, Dom(D) = {ac | JA(a < A € D)}. The
definiens, D(a), of an atom a is the set of all bodies of clauses in D whose
heads matches a, that is {Ac | (b & A) € D,bo = a}. If there are several
bodies defining a then they are separated by ‘;’. A closely related notion is that
of a-sufficiency. Given an atom a a substitution o is called a-sufficient if D(ao)
is closed under further substitution, that is, for all substitutions 7 D(aoT) =
(D(ao))r. If a & Dom(D) then D(a) = false. For more details see [7, 12, 14, 16].

Sequents and Queries. A sequent is as usual I' F C, where, in GCLA, I''is a
(possibly empty) list of assumptions and C' is the conclusion of the sequent. A
query has the form

SIF(T+C). (1)

where S is a proofterm, that is some more or less instantiated condition in R.
The intended interpretation of (1) is that we ask for an object-level substitution
o such that S¢ IF (I'oc F C'o). holds for some meta-level substitution ¢.

2.2 The Definition

In D the programmer should state the declarative content of a problem. A
definition D has no procedural interpretation without its associated procedural
part R. R supplies the necessary information to get a program fulfilling the intent
behind D. The programmer can use the predefined set of condition constructors,
or replace or mix them with new ones.

The default set of condition constructors include “,’, ;’, and ‘=’, with an
interpretation given by the standard rule definition. This rule definition imple-

ments the calculus OLD [14], which in turn is a variant of LD given in [12].

2.3 The Rule Definition

The rule definition consists of inference rules, search strategies, and prouvisos,
which together form a procedural interpretation of the definition. The rule defi-
nition implements a sequent calculus giving meaning to the condition construc-
tors in D. The set of condition constructors available in R, is fixed to ¢, ¢;’, —,
true, and false. The interpretation of the condition constructors in R is given
by a fixed calculus, DOLD [14].

Also available in the rule definition are a number of primitives to handle the
communication between R and D. Some of these are described in below.

Inference Rules. The interpretation of conditions in D is given by inference
rules in R.. Inference rules (or rules for short) are coded as functions from the
proofs of the premises of a rule to its conclusion. Generally, the form of an
inference rule is
r(PTy,...,PT,) < P1,..., Py,
(PTh — Seqr),

(PT, — Seqn)
— Seq.

where

— PTy,...,PT, are proof terms, that is, more or less instantiated functional
expressions representing the proofs of the premises, Seq;

— Py, ..., P for k > 0 are provisos, that is, side conditions on the applicability
of the rule

— Seq and Seq; are sequents, I' = C, where I is a list of (object level) condi-
tions and C' is a condition.

We read this as “If P to P hold and each PT; proves Seq; then r(PTy, ..., PTy)
proves Seq.” In actual proof search derivations are constructed bottom-up, so
the functions representing rules are evaluated backwards [5, 14].

Search Strategies. Search strategies are used to combine rules together guiding
search. The basic building blocks of strategies are rules and provisos. Combin-
ing rules, stragies, and provisos together we can build more and more complex
structures. The general form of a strategy is

Strat < P — Seql,

R n>0
P, — Seq,.

Strat < PTy,...,PTy,.

where P; are provisos, PT; proof terms, and Seq; sequents. We read this as “If
P; holds, 2 < n, and some PT}, 1 < j < m, proves Seq; then Strat proves Seq;.”

Provisos. A proviso is a side condition on the applicability of a rule or strategy.
Provisos can be predefined or user defined. User defined provisos are described
in [5]. Among the predefined provisos there are really three provisos handling the
communication between R and D and various provisos implementing different
kinds of simple tests like var, atom, number etc.

The provisos handling the communication between R and D are:

— definiens(a, Dp,n) which holds if D(ac) = Dp, where o is an a-sufficient
substitution and n the number of clauses defining a. If n > 1 then the
different clauses defining a are separated by ;.

— clause(b, B) which holds if ¢ < C € D, 60 = mgu(b,c), and B = Co.

— unify(t, ¢) which unifies the two object level terms ¢ and c.

Ezample 2 (Example 1 continued). The inference rules (D4 &), D-az, and truth
used in Ex. 1 can be coded in GCLA as

'+_d_left’(PT) <= (PT —> ([X] \- X1)),
definiens(X1+Y,Dp,N),
(PT -> ([Dp] \- C))
-> ([X+Y] \- ©).

d_ax <= circular(T), ’=<_d_right’ (PT) <= (PT -> ([X] \- X1)),
unify(T,C) (pT -> ([Y] \- Y1)),

-> ([T] \- C). clause(X1=<Y1,B),

(PT -> (1 \- B))

truth <= ([] \- true). => ([1 \- X=<Y).

where circular is a special proviso that ensures that T can only be bound to
canonical objects (atoms with circular definitions). One suitable strategy for the
definition in Ex. 1 is

s <= ’+_d_left’(s), ’=<_d_right’(s), d_ax, truth.

that simply tells us to try the rules in the given order. The query shown in Ex. 1
becomes

s \\- \- Z + W =<0,
giving the only answer Z = 0, W = 0.

3 A Calculus for Functional Logic Programming

We describe a basic calculus for definitional functional logic programs. In GCLA
this calculus is implemented as a rule definition. We call the calculus FL for
functional logic. FL illustrates the basic ideas of the definitional approach to
functional logic programming. An important property of FL is that it is deter-
manistic in the sense that there is at most one inference rule that apply to each
given sequent. The only source of non-determinism are the definitional rules
where it 1s possible that several clauses in D can be used. FL is very similar
to DOLD[14] used to interpret R which is not very surprising since the rule
definition really is a kind of functional logic program.

3.1 Rules of Inference

The inference rules of FL can be naturally divided into two groups: rules relating
atoms to a definition and rules for constructed conditions.

Rules Relating Atoms to a Definition.

EC% (- D) (b= C)e D o =mgulb,c),Co#co .
D(ac) - Co . . g
—FCc o (DF) o is an a-sufficient substitution, ac # D(ao) .

———— D-az o is an a-suff. substitution, ac = D(ac), 7 = mgu(ac,co) .
atc ot

Note that D-ax may only be applied to atoms with circular definitions. For a in-
depth description and motivation of these rules, in particular D-az, see [15, 16].

Rules for Constructed Conditions. The rules for constructed conditions are
essentially the standard GCLA and PID rules [10, 14] restricted to allow at most
one element in the antecedent. Note also that falsity can only be applied if both
the antecedent and the consequent are false.

Frae Utk False F false 1751
~iog () Toare O
ic(*lchkcgz) (leigi)ic (F) ie{1,2)
ey b e SEe et

'C:;OJ; ‘(Iéj)e (F not) m (not 1)

(pi)f(l\};l)cl— c it F s: g\c (- si)

3.2 A Sample Program

The basic principle when we combine functions and predicates is that we place
functions to be evaluated in the antecedent and get the result in the consequent,
while a predicates are proved to the right using rules operating on the consequent
only. Functions and predicates are glued together by the rules (F—) and (—=F).

Ezample 3 (Computing the size of a list). Let the size of a list be the number of
distinct elements in the list. We express this in D in the following way:

size([]) <= 0.
size([X|Xs]) <= pi Y \ if(mem(X,Xs),
size(Xs),
((size(Xs) —> Y) -> s(Y))).

with the intended reading “the size of the empty list is 0, and the size of [X|Xs]
is size(Xs) if X is a member of Xs, else evaluate size(X) to Y and take as result
of the computation the successor of Y.” The definition of if becomes

if(Pred,Then,Else) <= (Pred -> Then), (not(Pred) —> Else).

Note that Pred represents a predicate, while Then and Else are functional ex-
pressions. The arrow works as a “switch” between functions and predicates. To
complete the program we need the circular definitions of 0 and s given in Ex. 1
plus the definition of the predicate mem:

mem(X, [X]|_]).
mem(X, [Y|Xs])#{X \= Y} <= mem(X,Xs).

Now, using FL we can handle queries like
£f1 \\- (size([0,X,s(0)]1) \- L).

which first gives L. = s(s(0)),X = 0,thenL = s(s(0)),X = s(0), and finally
L = s(s(s(0))), 0 \= X, X \= s(0).

4 Definitional Functional Logic Programs

We give a brief description of how D 1is interpreted by FL. Keep in mind that
a predicate i1s proved by placing it to the right of the turnstyle, = P, while a
function is evaluated to the left with the result given in the consequent, F F C.
All irreducable terms, the canonical objects, are given circular definitions. As can
be seen from FL this is what controls application of the rules (D F) and D-az. We
cannot simply regard undefined atoms as canonical objects since if a ¢ Dom/(D)
then D(a) = false. Generally the definition of the canonical object s/n is

S(Xl,...,Xn) CS(Xl,...,Xn).

where each X; is a variable. Note the distinction between a canonical object and
a canonical value. Any atom which has a circular definition is a canonical object,
while a canonical value is a canonical object where each subpart is a canonical
value (a canonical object of arity zero is also a canonical value).

4.1 Defining Predicates

Predicate definitions are very similar to pure Prolog with two extensions: use of
functions in conditions defining predicates and constructive negation.
A predicate definition defining the predicate p consists of a number of defi-

nitional clauses:
p(tl, - .,tn) = Cl.

: n>0m>0
p(tl,...,tn) <:Cm

where each Cj is a predicate condition. We say that a condition C'is a predicate
condition if:

— (' 1s an atom.

— C =true or C'= false.

C = (Cy,Cy), where both C; and C3 are predicate conditions. We read this

as “C holds if C'; and C5 holds”.

— C = (Cy;Cq), where both C; and C3 are predicate conditions. We read this
as “C holds if C'; or C5 holds”.

— C = Cy7 — (5, where C1 is a functional condition as described below and
(' is a variable or a (partially instantiated) canonical object. We read this
as “C holds if the value of Cq 1s C5”.

— C = not(C1), where C1 is a predicate condition. We read this as “C' holds if
C can be proven false”.

— C = s1 X\C, that is, existensial quantification of X in C.

We may omit si understanding all variables not occurring in the head as exis-
tensially quantified.

4.2 Defining Functions
A definition defining a function f consists of a number of definitional clauses:

f(t1, ... tn) < Ch.

: n>0,m>0
Ft1, .. tn) < Cny.

where each Cj is a functional condition. We say that a condition C'is a functional
condition if:

— (' 1s an atom.

— C' = (C1,Cq), where both Cy and Cy are functional conditions. We read this
as “the value of C is the value of C; or C5”.

— C = (C; = C3), where C is a predicate condition and Cj is functional

condition. We read this as “the value of C' i1s Cy provided that Cy holds”.

C = (Cy;Cy), where both C; and C5 are functional conditions. We read this

as “the value of C' 1s B if B is the value of both C; and C5”.

— C = pi X\C, that is, universal quantification of the variable X in C.

We may omit pi understanding all variables not occurring in the head as uni-
versally quantified. If the heads of two or more clauses defining a function are
overlapping all the corresponding bodies must evaluate to the same value, since
the definiens operation used in (D F) collects all clauses defining an atom.

Ezample 4 (Overlapping Clauses). Overlapping clauses may be used as usual in
predicates but only in special cases in functions. Consider the following definition
of the function max (we assume appropriate definitions of >, =<, and canonical
objects):

max(X,Y) <= X > Y -> X.
max(X,Y) <= X =< Y > Y.

An attempt to compute max(s(0),0) will fail as can be seen below:

: {c=s5(0)} fails fails
Fs(0)>0 (+ D) s rc P (D)

L Fs(0)<0—>0 0F s(0)
s(0) >0—s(0)FC (=F) s(O)SO—)OI—C(.}_)

(s(0) >0 — s(0));(s(0) <0 —>0)FC
max(s(0),0) - C

(=F)

(DF)

To compute max we instead write the definition
max(X,Y) <= (X >Y > X), (X =<Y —> V).

where we have a choice between two conditions in the body. We leave it to the
reader to work out the details of how max can be computed using this definition.
The definition of max reflects a conceptual difference between our approach and
narrowing languages. It can be argued that while we define the function max a
narrowing language allowing the version with overlapping clauses really define a
conditional term rewriting system or the equality predicate. Alternatively, max
can of course be defined and executed as a predicate using overlapping clauses.

Ezample 5 (Lazy Evaluation). FL is well-suited for lazy evaluation since eval-
uation always stops when a canonical object is reached. A simple definition
illustrates this:

[0<=10.
[X|Xs] <= [X|Xs].

from(X) <= [X|from(s(X))].

drop(0,Xs) <= Xs.
drop(s(N),L) <= (L -> [_|Xs]) -> drop(N,Xs).

The function drop removes the first n elements from its second argument. For
instance

drop(s(s(0)),from(0)) \- L.
binds L to [s(s(0)) |from(s(s(s(0))))].

4.3 Queries

There are two general forms of queries: = P proves the predicate condition P
and F F C evaluates the functional condition F. Note that ' may be much more
complex than a simple function call.

Ezample 6 (Complex Queries). Assume that the definition of mem in Ex. 3 is
added to Ex. 5. We may then ask things like “let L be the list [0,s(0),s(s(0))],
if X and Y are members of L, what is then the value of drop(X,from(Y))”:

([0,s(0),s(s(0))] -> L) ,mem(X,L) ,mem(Y,L) —> drop(X,from(Y)) \- C.

5 Specialized Definitional Rules

The definitional rules presented in Sect. 3 are sufficient to handle flat programs.
However, we could not use the definition of size given in Ex. 3 to evaluate
the atom size(append([0], [s(0)])) since there is no clause defining it. One
alternative could of course be to flatten both D and all queries, but we will not
go into that here. Instead, we will show how to refine R. We think that there
are at least two good motivations why nested functional applications should be
allowed in D and the information of how to handle them be kept in R, namely:

1. Nesting functional expressions is an essential feature of a functional pro-
gramming style. Consequently it is desirable to describe a computational
mechanism that can handle them.

2. In a realization in GCLA it is well in line with the basic programming
methodology to have such procedural details as when to evaluate arguments
as part of R in favor of transforming D.

Arguments to functions and predicates can be evaluated by creating specialized
definitional rules — one to each function and predicate. These definitional rules
are refinements of the rules (D F) and (- D) given in Sect. 3.

In the sequel we only consider lazy evaluation and assume that all patterns
in heads of clauses are shallow, that is, if f(t1,...,t,) is the head of a clause
then each ¢; is either a variable, or a canonical object ¢(X71, ..., X,,), where each
X; 1s a variable. We also assume that no variable occurs more than once in any

head.

5.1 Specialized Definitional Rules for Functions

As default, the arguments that have a non-variable pattern in some clause
defining a function f are evaluated before the definiens operation is applied.
If t1,...,t, denotes the arguments having a non-variable pattern and s1,...,s,
denotes the variable patterns we get the rule

tiFur. oty Fun D(f(ur,. . un, S1,...,8m)) F C
f(tl,...,tn,sl,...,sm) '_C

(Df k) -

If the function definition is uniform then this approach will only evaluate needed
arguments. For an example of this kind of rule see (D4 F) in Ex. 1.

5.2 Specialized Definitional Rules for Predicates

We allow functional expressions as arguments to predicates and use the same
default rules for what arguments to evaluate as for functions. It is possible for
the programmer to override the default (both for functions and predicates) and
decide exactly what arguments to evaluate. Generally, if p is a predicate and
t1,...,t, denotes the arguments having a non-variable pattern and sq,..., s,
denotes the variable patterns we get the rule

tll—ul...tnf—un B
Fpti,. o tn, 815, 5m)

('_DP) BED(p(U1,...,Un,Sl,...,Sm)) .

5.3 Refined Axioms

If we had used strict evaluation (strict evaluation is discussed in [25]) then the
definitional axiom D-ax would have been sufficient. Also, if we discard equation
solving completely there i1s no need for anything more sophisticated. However
the combination of lazy evaluation and partially instantiated terms occurring to
the right in sequents gives a need for a new even more restricted axiom and a
special decomposition rule. A very simple example will do to illustrate this:

Ezample 7 (Simple Equation Solving). Consider the definition of addition given
in Ex. 1 and the sequent

X + s(0) \- s(s(0)).

The first (and only) rule to try on this sequent is (D4 F):

{X=1%} fails
XFX 7% S +s(0) F s(s(0))

X+ s(0) - s(s(0))

(D F) {x: =s(V)}

We can get no further since we have no mechanism for looking inside canonical
objects, comparing subparts.

Generally, there are five possible cases to handle a sequent A F C' that each
should have a separete treatment instead of using the rule D-az, namely:

1. Both A and C' are variables. In this case the variables should be unified but
restricted so that they may only be bound to canonical objects.

2. A is a canonical object and C' a variable — unify the two sides.

A is a variable and C' a canonical object — unify the two sides.

4. Both A and C are canonical objects having the same term constructor s/n.
In this case the subparts of A and C' must be checked against each other.

5. Ais a variable or a canonical object and C' a nonvariable functional condition
but not a canonical object. In this case we have to evaluate C' to C7 and
then continue to prove A F C.

w

Expressed as inference rules we get:

V-azr X may only be bound to canonical objects .

XFY {X=VY}

X o Dy -az XFa o Dy-ax D(a) =a,0 = mgu(a, X) .
W (Feval) A€V or D(A)=A,C gV, D(C)#C .

tlf_Sl...tn}_Sn

e(ty, .. tn)Fe(st,. .., 8n)
The simplified test for circularity (without a-sufficient substitutions) in these
rules compared to the one in the rule D-azin Sect. 3.1 is motivated by the simple
structure of definitions of canonical objects. We could use the same condition as
in Sect. 3.1 but it is not needed. Using these rules conditions in equations A - C'
will be evaluated just as much as is needed. The formulation of these rules have
some similarities with the rules of the narrowing calculus LNC [22].

decompose ¢/n is a canonical object .

Ezample 8 (The Last Element of a List). A simple equation solving program is
the following, using append to compute the last element of a list:

append([],Ys) <= Vs.
append([X|Xs],¥s) <= [X|append(Xs,Ys)].

last(Xs) <= (append(_,[E]) -> Xs) -> E.

To this program we create a specialized rule (Dappena F) that evaluates the first
argument of append as described above. A sample query is

last(append([0],[s(0)])) \- E.
giving the expected answer E = s(0) once.

Ezample 9 (Demanded Evaluation). Our refined axiom rules only forces evalu-
ation as much as is needed to give an answer. To compute the first and third
natural number we gan use the definition of from in Ex. 5 and ask the query

from(0) \- [X,_,Y|_].
which computes the answer X = 0, Y = s(s(0)).

6 Concluding Remarks

We have implemented a rule generator that makes it easy to write programs in
line with the ideas described in Sect. 5. This rule generator takes a definition and
perform some analysis to tell function definitions and predicate definitions apart.
It then creates specialized definitional rules to each function and predicate and
also precompile the sequence of rules for constructed conditions as far as possible,
into efficient search strategies. It is possible for the programmer to override the
default evaluation schemes described in Sects. 5.1 and 5.2 and decide exactly
what arguments to evaluate.

Some problems remain though, most notably the restriction to shallow pat-
terns due to lazy evaluation. Another is that, at times, too many arguments to
functions and predicates are evaluated. As far as the evaluation of arguments
is concerned, it is well in line with programming methodology in GCLA to let
the programmer decide this explicitly. The restriction to shallow patterns is
more difficult. We either need to apply some transformation to D or change the
definiens operation. Of course, both these problems would have to be adressed
if one decided to create a definitional functional logic programming language.

A lot of work has been done in the narrowing setting to transform and analyse
certain classes of rewrite systems (function definitions). Several of these, for
instance [3, 19] use the notion of a definitional tree [2] as a basis for program
transformation and finding narrowing strategies. One possibility could be to use
something similiar to transform D. However, the choice is not obvious since it
is possible that some sophisticated rule definition would do.

References

1. H. Ait-Kaci and A. Podelski. Towards a meaning of life. Journal of Logic Pro-
gramming, 16:195-234, 1993.

2. S. Antoy. Definitional trees. In Int. Conf. on Algebraic and Logic Programming
ALP’92, Springer LNCS 632, pages 143—157. Springer-Verlag, 1992.

3. S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. In Proc. 21st
ACM Symposium on Principles of Programming Languages, pages 268-279, 1994.

4. M. Aronsson. A definitional approach to the combination of functional and rela-
tional programming. Research Report SICS T91:10, Swedish Institute of Computer
Science, 1991.

5. M. Aronsson. Methodology and programming techniques in GCLAIIL. In Proc. of
FEzxtensions of logic programming, FLP’91, Springer LNAI 596, 1992.

6. M. Aronsson. GCLA, The Design, Use, and Implementation of a Program Devel-
opment System. PhD thesis, Stockholm University, Stockholm, Sweden, 1993.

7. M. Aronsson. Implementational issues in GCLA: A-sufficiency and the definiens
operation. In Proc. of Fxtensions of logic programming, ELP’92, Springer LNAI
660, 1993.

8. G. Falkman and O. Torgersson. Programming methodologies in GCLA. In FExten-
stons of logic programming, FLP’93, pages 120-151, Springer LNAI 798, 1994.

9. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel-LEAF: A logic plus
functional language. Journal of Computer and System Sciences, 42:139-185, 1991.

10. L. Hallnas. Partial inductive definitions. Theoretical Computer Science, 87(1):115—
142, 1991.

11. L. Hallnas and P. Schroeder-Heister. A proof-theoretic approach to logic program-
ming. Journal of Logic and Computation, 1(2):261-283, 1990. Part 1: Clauses as
Rules.

12. L. Hallnas and P. Schroeder-Heister. A proof-theoretic approach to logic program-
ming. Journal of Logic and Computation, 1(5):635-660, 1991. Part 2: Programs
as Definitions.

13. M. Hanus. The integration of functions into logic programming; from theory to
practice. Journal of Logic Programming, 19/20:593-628, 1994.

14. P. Kreuger. GCLA II: a definitional approach to control. In FEztensions of logic
programming, ELP91, Springer LNAI 596, 1992.

15. P. Kreuger. Axioms in definitional calculi. In Ezxtensions of logic programming,
ELP93, Springer LNAI 798, 1994.

16. P. Kreuger. Computational Issues in Calculi of Partial Inductive Definitions. PhD
thesis, Department of Computing Science, University of Géteborg, Géteborg, Swe-
den, 1995.

17. J. Lloyd. Foundations of Logic Programming. Springer Verlag, second extended
edition, 1987.

18. J. Lloyd. Combining functional and logic programming languages. In Proceedings
of the 199/ International Logic Programming Symposium, 1L P59, 1994.

19. R. Loogen, F. Lépez-Fraguas, and M. Rodriguez-Artalejo. A demand driven com-
putation strategy for lazy narrowing. In Proc. of the 5th Int. Symposium on
Programming Language Implementation and Logic Programming, PLIP’93, pages
184-200, Springer LNCS 714, 1993.

20. J. J. Moreno-Navarro and M. Rodriguez-Artalejo. Logic programming with func-
tions and predicates: The language BABEL. Journal of Logic Programming,
12:191-223, 1992.

21. L. Naish. Adding equations to NU-Prolog. In Proc. of the 3rd Int. Symposium
on Programming Language Implementation and Logic Programming, pages 15-26,
Springer LNCS 528, 1991.

22. S. Okui, A. Middeldorp, and T. Ida. Lazy narrowing: Strong completeness and ea-
ger variable elimination (extended abstract). In TAPSOFT’95: Theory and Prac-
tice of Software Development, pages 394-408. Springer LNCS 915, 1995.

23. P. Padawitz. Computing in Horn Clause Theories, volume 16 of FATCS Mono-
graphs on Theoretical Computer Science. Springer-Verlag, 1988.

24. U. S. Reddy. Narrowing as the operational semantics of functional languages. In
Proceedings of the IEEE International Symposium on Logic Programming, pages
138-151. IEEE Computer Soc. Press, 1985.

25. O. Torgersson. Functional logic programming in GCLA. In Proceedings of the 6th
Nordic Workshop on Programming Theory. Aarhus, 1994.

26. D. H. D. Warren. Higher-order extensions to prolog—are they needed? In
D. Mitchie, editor, Machine Intelligence 10, pages 441-454. Edinburgh University
Press, 1982.

This article was processed using the I¥TEX macro package with LLNCS style

