[Made the code build using recent versions of its dependencies. Nils Anders Danielsson **20161208102317 Ignore-this: 9c1daa1f0d62e146197fb1724ac7c55e ] hunk ./CompositionBased/Exceptions.agda 14 +import Level hunk ./CompositionBased/Exceptions.agda 19 - open module M = RawMonadPlus Maybe.monadPlus + open module M = RawMonadPlus (Maybe.monadPlus {f = Level.zero}) hunk ./CompositionBased/Lambda.agda 5 -open import Level +import Level hunk ./CompositionBased/Lambda.agda 12 - (ext : P.Extensionality zero zero) where + (ext : P.Extensionality Level.zero Level.zero) where hunk ./CompositionBased/Lambda.agda 17 -open import Function +open import Function hiding (_∋_) hunk ./CompositionBased/Lambda.agda 56 - Σ[ x ∶ ⟦ σ ⟧ ] Ctxt-interpretation ⟦_⟧ Γ + Σ[ x ∈ ⟦ σ ⟧ ] Ctxt-interpretation ⟦_⟧ Γ hunk ./CompositionBased/Lambda.agda 134 - infix 2 _∎ + infix 3 _∎ hunk ./DanvyFirstAttempt.agda 15 -open import Function +open import Function hiding (_∋_) hunk ./Exceptions.agda 29 +import Level hunk ./Exceptions.agda 32 -open RawMonadPlus Maybe.monadPlus +open RawMonadPlus (Maybe.monadPlus {f = Level.zero}) hunk ./FailureAndNonDeterminism.agda 15 +import Level hunk ./FailureAndNonDeterminism.agda 20 - module LM = RawMonadPlus List.monadPlus + module LM = RawMonadPlus (List.monadPlus {ℓ = Level.zero}) hunk ./FailureAndNonDeterminism.agda 36 -open RawMonad (Maybe.monadT List.monad) public +open RawMonad (Maybe.monadT (List.monad {ℓ = Level.zero})) public hunk ./ReverseComposition.agda 12 -open import Data.Maybe as Maybe +open import Data.Maybe as Maybe hiding (map) hunk ./ReverseComposition.agda 18 -open import Level +open import Level using (Lift; lift) hunk ./ReverseComposition.agda 65 - As₁ ⇨ B₁ → As₂ ⇨ B₂ → Set (suc ℓ) where + As₁ ⇨ B₁ → As₂ ⇨ B₂ → Set (Level.suc ℓ) where hunk ./ReverseComposition.agda 98 - infix 2 _∎ + infix 3 _∎ hunk ./ReverseComposition.agda 123 - EqualTo : ∀ {ℓ As} {B : Set ℓ} → As ⇨ B → Set (suc ℓ) + EqualTo : ∀ {ℓ As} {B : Set ℓ} → As ⇨ B → Set (Level.suc ℓ) hunk ./ReverseComposition.agda 819 -infixl 5 _⇨M_ +infixl 4 _⇨M_ hunk ./Wand2.agda 23 -open import Function +open import Function hiding (_∋_) hunk ./Wand2.agda 68 - args = ε {NonEmpty _} ▻ ↦ x ▻ ↦ y + args = ε {I = NonEmpty _} ▻ ↦ x ▻ ↦ y