[Made the code a bit more tidy. Nils Anders Danielsson **20091127194434 Ignore-this: 6e4a554add27d8b6d2b68a4683a43aa0 ] hunk ./CompositionBased.agda 11 -open import Data.Vec.N-ary hunk ./CompositionBased.agda 53 - (proof (eval e₂)) - (proof (eval e₁)) ⟩ + (proof (eval e₂)) + (proof (eval e₁)) ⟩ hunk ./CompositionBased.agda 76 - (proof (eval e₁ (sub ⊙ f))) ⟩ + (proof (eval e₁ (sub ⊙ f))) ⟩ hunk ./ReverseComposition.agda 49 --- Heterogeneous equality. +------------------------------------------------------------------------ +-- A specialised variant of _⇨_ + +_↑_ : Set → ℕ → Set +A ↑ n = List.replicate n A ⇨ A + +-- Applies the function to a vector of arguments. + +app : ∀ {A n} → A ↑ n → Vec A n → A +app x [] = ! x +app f (x ∷ xs) = app (f · x) xs + +------------------------------------------------------------------------ +-- Heterogeneous equality hunk ./ReverseComposition.agda 113 ------------------------------------------------------------------------- --- A specialised variant of _⇨_ - -_↑_ : Set → ℕ → Set -A ↑ n = List.replicate n A ⇨ A - --- Applies the function to a vector of arguments. - -app : ∀ {A n} → A ↑ n → Vec A n → A -app x [] = ! x -app f (x ∷ xs) = app (f · x) xs -