[Changed the type of the proof constructor return. Nils Anders Danielsson **20101119150324 Ignore-this: 854c7280d3de71312f0fdc98a7a67c15 ] hunk ./ReverseComposition.agda 57 - return : ∀ {B} {x : B} → return x ≈ return x + return : ∀ {B} {x₁ x₂ : B} → + (x₁≡x₂ : x₁ ≡ x₂) → return x₁ ≈ return x₂ hunk ./ReverseComposition.agda 63 -refl (return x) = return +refl (return x) = return P.refl hunk ./ReverseComposition.agda 68 -sym return = return -sym (Λ f≈g) = Λ (sym ∘ f≈g) +sym (return x≡y) = return (P.sym x≡y) +sym (Λ f≈g) = Λ (sym ∘ f≈g) hunk ./ReverseComposition.agda 74 -trans return return = return -trans (Λ f≈g) (Λ g≈h) = Λ (λ x → trans (f≈g x) (g≈h x)) +trans (return x≡y) (return y≡z) = return (P.trans x≡y y≡z) +trans (Λ f≈g) (Λ g≈h) = Λ (λ x → trans (f≈g x) (g≈h x)) hunk ./ReverseComposition.agda 132 -!-cong return = H.refl +!-cong (return x₁≡x₂) = H.≡-to-≅ x₁≡x₂ hunk ./ReverseComposition.agda 152 - right-identity (return x) = return + right-identity (return x) = return P.refl hunk ./ReverseComposition.agda 167 - return >>=-cong g₁≈g₂ = g₁≈g₂ H.refl - Λ f₁≈f₂ >>=-cong g₁≈g₂ = Λ λ x → f₁≈f₂ x >>=-cong g₁≈g₂ + return x₁≡x₂ >>=-cong g₁≈g₂ = g₁≈g₂ (H.≡-to-≅ x₁≡x₂) + Λ f₁≈f₂ >>=-cong g₁≈g₂ = Λ λ x → f₁≈f₂ x >>=-cong g₁≈g₂