[Broke out some definitions which simplify calculations. Nils Anders Danielsson **20080207022158] addfile ./Derivation.agda hunk ./Derivation.agda 1 +-- Some definitions which simplify the calculations done elsewhere. + +module Derivation where + +open import Logic + +EqualTo : {a : Set} (x : a) -> Set +EqualTo x = ∃₀ (\y -> x ≡ y) + +infix 0 ▷_ + +▷_ : forall {a} {x y : a} -> x ≡ y -> EqualTo x +▷_ = exists hunk ./HuttonsRazor.agda 21 +open import Derivation hunk ./HuttonsRazor.agda 114 -EqualTo : {a : Set} (x : a) -> Set -EqualTo x = ∃₀ (\y -> x ≡ y) - -infix 0 ▷_ - -▷_ : forall {a} {x y : a} -> x ≡ y -> EqualTo x -▷_ = exists -