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Abstract

The aim of this work is to show that (oriented) matroid methods can be applied to
many discrete geometries, namely those based on modules over integral (ordered)
domains. The trick is to emulate the structure of a vector space within the module,
thereby allowing matroid methods to be used as if the module were a vector space.
Only those submodules which are “closed under existing divisors,” and hence behave
like vector subspaces, are used as subspaces of the matroid.

It is also shown that Hübler’s axiomatic discrete geometry can be characterised
in terms of modules over the ring of integers.

1 Introduction

The main approaches to image analysis and manipulation, computational ge-
ometry and related fields are based on continuous geometry. This easily leads
to trouble with rounding errors and algorithms that return erroneous output,
or even fail to terminate gracefully [11]. In view of this we can argue that
the proper framework for many algorithms is not continuous, but discrete.
Furthermore it is preferable if such a framework is axiomatically defined, so
that the essential properties of the system are clearly stated and many models
can share the same theory.

Matroids and related structures such as antimatroids and in particular
oriented matroids (see Sections 2–4) promise to be useful as a basis upon
which we can build an axiomatic discrete geometry [7,13]. In Section 6 we
show that modules over integral domains have a natural matroidal structure,
thereby showing that many discrete geometries can be treated within a frame-
work based on matroids. (The existence of this matroidal structure seems to
be known, but not well-known, and never applied in the context of discrete
geometry. See further Section 6.2.) Matroids capture the essence of inde-
pendence, but lack order and convexity. In Section 7 we extend our work
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to these concepts by showing that modules over ordered domains are easily
turned into oriented matroids. If the modules are torsion free they can also
be viewed as antimatroids. Finally in Section 8 we show that Hübler’s ax-
iomatic discrete geometry [6] can be treated within the framework built up in
the previous sections. Hübler’s geometry, possibly the only axiom system for
discrete geometry presented so far, is introduced in Section 5.

Due to the lack of space many details are omitted. More details can be
found in the first author’s master’s thesis [3].

2 Matroids

From the viewpoint of this article matroids capture the essence of indepen-
dence as found in e.g. linear algebra (linear independence) and affine geometry
(affine independence). This general treatment includes concepts such as bases,
dimension, etc. Note, however, that the subject of matroids is much larger
than this text might indicate.

Usually matroids have a finite ground set, but for treating independence
this is an unnecessary assumption. The following definition is relatively stan-
dard. It is taken from Faure and Frölicher [5], as are the other results and
definitions in this section. Oxley presents an equivalent definition of infinite
matroids [9].

Definition 2.1 A closure space is a pair (M, cl), where M is a set (the ground
set) and cl : ℘(M) → ℘(M) is a function (closure operator) satisfying (for all
A,B ⊆ M)

(i) A ⊆ cl(A) (increasing),

(ii) if A ⊆ B, then cl(A) ⊆ cl(B) (monotone), and

(iii) cl(cl(A)) = cl(A) (idempotent).

A matroid is a closure space satisfying

(iv) if y ∈ cl(A ∪ x)\cl(A) for some x ∈ M , then x ∈ cl(A ∪ y) (the exchange
property), and

(v) if x ∈ cl(A), then x ∈ cl(A′) for some finite A′ ⊆ A (finitary).

A closure space satisfying

(vi) cl(∅) = ∅ and cl(x) = { x } for all x ∈ M

is simple. A geometry is a simple matroid.

The listed axioms/properties are independent. A matroid (M, cl) is often
denoted just by M .

The closed subsets of a matroid are called subspaces. A subset A ⊆ M is
said to generate a subspace E if cl(A) = E, and it is independent if it satisfies
x 6∈ cl(A \ x) for all x ∈ A. If A is independent and generates E, then it is a
basis of E. An important result states that given three sets A ⊆ D ⊆ E ⊆ M ,
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where E is a subspace, A is independent and D generates E, there exists a
basis B of E with A ⊆ B ⊆ D. Furthermore all bases of a subspace are
equipotent. The rank r(E) of a subspace E is the cardinality of any of its
bases. The rank function can be extended to arbitrary subsets S by defining
r(S) := r

(
cl(S)

)
.

Matroids can be characterised uniquely by their subspaces. As an exam-
ple we get a matroid by taking the linear subspaces of any vector space as
subspaces. If we take the affine subspaces instead we get a geometry (even an
affine geometry, see below).

Now let E be a subspace of M . Take the quotient set M/E consisting
of the equivalence classes of the equivalence relation ∼⊆ (M \ E)2, where
x ∼ y iff cl(E ∪ x) = cl(E ∪ y). Let π : M \ E → M/E be the canoni-
cal projection. Define the closure operator clM/E : ℘(M/E) → ℘(M/E) by
clM/E(A) := π (cl(π−1(A) ∪ E) \ E). The pair (M/E, clM/E) obtained in this
way is a geometry, the quotient geometry. The quotient geometry M/cl(∅)
is called the canonical geometry. The lattice of subspaces (introduced below)
of M is isomorphic to that of M/cl(∅). It is instructive to work out some
details about the canonical geometry of the matroid associated to the linear
subspaces of a vector space (we leave this to the reader).

The corank of a subspace E ⊆ M is r(E) := r(M/E). The corank satisfies
r(E) + r(E) = r(M). The matroid M itself has corank 0, and a hyperplane is
defined as a subspace with corank 1.

The subspaces of a matroid, ordered by inclusion, is a lattice. The meet
of two subspaces E and F is simply E ∧F = E ∩F , while the join is E ∨F =
cl(E ∪ F ). For any subspaces E, F we have r(E ∧ F ) + r(E ∨ F ) ≤ r(E) +
r(F ). A matroid is of degree n (n ∈ N) if equality holds in the preceding
equation whenever r(E ∧ F ) ≥ n. A matroid of degree 0 is called modular
since it has a modular lattice of subspaces.

In a geometry of degree 1 the subspaces of rank 2 are called lines, and
the subspaces of rank 3 planes. Two lines `1, `2 are parallel (`1 || `2) iff either
`1 = `2 or `1 ∩ `2 = ∅ and r(`1 ∨ `2) = 3. An affine geometry is a geometry M
of degree 1 for which for every line ` ⊆ M and point p ∈ M \` there is a unique
line `′, parallel to `, with p ∈ `′. We will be liberal and use all the terminology
above even if the matroid is not simple (except for affine geometry, of course).

3 Antimatroids

Convexity is treated abstractly in (at least) two different ways; via antima-
troids and via oriented matroids (see the next section). The definition used
here is taken from Coppel [2], who uses the term anti-exchange alignment.

Definition 3.1 An antimatroid is a finitary closure space (M, cl) satisfying
the anti-exchange property : If x, y ∈ M , x 6= y, S ⊆ M , and y ∈ cl(S ∪ x) \
cl(S), then x 6∈ cl(S ∪ y).
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x y

S

Fig. 1. Illustration of the anti-exchange property for a planar convex hull operator.
The notation used is the same as in Definition 3.1. (This illustration is similar to a
figure in [14].)

The standard example of an antimatroid is a vector space with the standard
convex closure. Figure 1 motivates the definition of the anti-exchange property
in this context.

Another, more discrete, example of an antimatroid is a (possibly infinite)
tree with the closure operator that maps any subset of vertices to the smallest
subtree containing the set.

4 Oriented Matroids

Oriented matroids add extra structure to the ordinary matroids treated in the
last section. From Richter-Gebert and Ziegler we get the following description:
“Roughly speaking, an oriented matroid is a matroid where in addition every
basis is equipped with an orientation” [10].

We define oriented matroids as follows. This definition is a straightfor-
ward extension of one of the definitions for finite oriented matroids [1, Theo-
rem 3.6.1].

Definition 4.1 Let M be a matroid where the complement M \ H of each
hyperplane H is partitioned into two possibly empty sets H− and H+, the
negative and positive side of H. The ordered pair (H−, H+) is a cocircuit.
If necessary we can change the orientation of the cocircuit, i.e. the opposite
(H+, H−) is also a cocircuit. There are, by definition, no other cocircuits. The
matroid M together with its cocircuits is an oriented matroid if the following
requirement is satisfied:

• Let H and K be two hyperplanes intersecting in a subspace of corank 2 and
x a point in M \ (H ∪ K). If it is possible to choose the orientations of
the cocircuits associated with H and K such that x ∈ H+ ∩K− then the
hyperplane L = x ∨ (H ∧K) satisfies L+ ⊆ H+ ∪K+ and L− ⊆ H− ∪K−,
given a suitable choice of its orientation.

All the terminology used for ordinary matroids carries over to the oriented
case. Some intuition behind the definition is given in Figure 2.

As with ordinary matroids there are many equivalent definitions of finite
oriented matroids, and some of these do not give rise to equivalent definitions
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+x

K + H+

L

Fig. 2. The requirement which the hyperplanes and cocircuits of an oriented matroid
have to satisfy. See Definition 4.1.

when relaxed to the infinite case [1,9]. The choice to use the definition above
is motivated by the connection between convexity and half-spaces, which we
turn to now. See Björner et al [1] for a more complete treatment of the subject.

Given a hyperplane H, the sets H− and H+ are called open half-spaces.
The union of an open half-space and the corresponding hyperplane is a closed
half-space. Let HC(M) denote all closed half-spaces in M . We can define a

convex closure operator [·] : ℘(M) → ℘(M) by

[S] =

{⋂ {H ∈ HC(M) | S ⊆ H } , S finite,⋃ { [S ′] | S ′ ⊆ S, S ′ finite } , otherwise.
(1)

Here we use the convention that
⋂ ∅ = M . The reason for having different

cases depending on the cardinality of S is that this definition makes [·] finitary.

5 Hübler’s Axiomatic Discrete Geometry

In this section Hübler’s work about axiomatic discrete geometry [6] is briefly
summarised. Since Hübler’s thesis is unpublished, and in German, this section
is more detailed than the other sections with background material. Unless
otherwise noted, all the results in this section come from Hübler’s thesis.

Let P be a set of points, and L ⊆ ℘(P) a nonempty set of lines. The first
axiom is that for any pair p, q of distinct points there is exactly one line `
for which the points lie on the line (p, q ∈ `). Let `(p, q) denote that unique
line. The second axiom says that for any line ` there exist two different points
p, q ∈ ` and one point r 6∈ `.

The third axiom states that there is an equivalence relation ||, parallelity,
on L for which for any line ` and point p there exists exactly one line `′ with
p ∈ `′ and ` || `′. The corresponding equivalence classes are called directions.

A translation is defined as a bijection T on P that either equals the identity
bijection id or has the following properties (referred to simply as the first,
second, and third translation properties).

(i) For all lines `, T (`) := {T (p) | p ∈ ` } is a line parallel to `.

(ii) For all points p, p 6= T (p).
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(iii) The set { `(p, T (p)) | p ∈ P } is a direction.

The fourth axiom now states that for any two points p, q there exists a trans-
lation T with T (p) = q. This translation can be shown to be unique. Another
result is that two lines ` and `′ are parallel iff there exists a translation T such
that T (`) = `′. Furthermore the set T of all translations on P is an abelian
group under the group operation composition (◦). Hence T can be made into
a Z-module in the standard way.

Now let, for each line, a total order ≤ be defined on the set of points of
the line (together with the standard variations <, > and ≥). A betweenness
relation B is then defined as follows: for three different points p, q and r on
a line, B(p, q, r) holds if p < q < r or r < q < p. The fifth axiom enforces
infinite sets P : For each line ` and point p ∈ ` there are points q, r ∈ ` such
that B(q, p, r).

The next, sixth, axiom introduces discreteness: For any two points p and
p′ there is at most a finite number of points q such that B(p, q, p′). This means
e.g. that every line is a countably infinite set of points.

The seventh axiom is as follows: Let `1, `2 and `3 be different, parallel
lines, and ` and `′ lines that have points pi and p′i, respectively, in common
with all the lines `i, i ∈ { 1, 2, 3 }. Then B(p1, p2, p3) holds iff B(p′1, p

′
2, p

′
3).

This axiom rules out cyclic translations, i.e. translations T 6= id for which, for
some n ∈ Z+, T n = id.

For each line ` there exists a translation G (a generator) such that ` =
{Gn(p) | n ∈ Z } for any point p ∈ `. For such a triple (`, G, p) the relation
B(Gi(p), Gj(p), Gk(p)) holds iff i < j < k or k < j < i (i, j, k ∈ Z). Fur-
thermore each line has exactly two generators (G and G−1), and two lines are
parallel iff they have the same generators.

Let `1, `2, and `3 be different, parallel lines. The line `2 is said to lie
between `1 and `3 (B(`1, `2, `3)) if there are a translation T and i, j ∈ Z+ such
that T i(`1) = `2 and T j(`2) = `3.

A planar set is a point set S

(i) whose points do not all belong to one line, and

(ii) for which for any four, different points pi ∈ S, i ∈ { 1, 2, 3, 4 }, one has
for the lines `i, i ∈ { 1, 2, 3 } with `1 = `(p1, p2), `2 || `1 with p3 ∈ `2, and
`3 || `1 with p4 ∈ `3 that if the lines are different, then one of the lines lies
between the other two lines.

A plane is a planar set P for which P ∪ x is not planar for any x ∈ P \ P .
For each planar set S there is exactly one plane P with S ⊆ P . Furthermore
`(p, q) ⊆ P holds for any two different points p and q in a plane P , and
P1 ∩ P2 = `(p, q) holds for two different planes P1 and P2 whose intersection
contains at least two different points p and q.

In his report Hübler demonstrates a model of the first seven axioms which,
in some sense, is not discrete. This “model” is not a model [3], but nevertheless
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motivates why Hübler introduced an eighth axiom. This axiom states that
there is only a finite number of lines between two parallel lines. The eighth
axiom actually makes axiom six, the other discreteness axiom, unnecessary,
because it can be deduced from the other axioms. The independence of the
remaining axioms does not seem to have been investigated. The axiom system
is consistent; there are models satisfying all the axioms (as we will see later).

A Hübler geometry is a collection of a point set P , a line set L, a parallelity
relation ||, and a set of total orders ≤ for each line ` ∈ L, such that all the
eight axioms are satisfied. Such a geometry is uniquely defined by P and the
set T of all translations on P .

6 Matroids from Modules

This section explores some closure operators defined on modules over integral
domains 2 and the associated matroids and geometries.

6.1 Submodule Closure

The effect of a closure operator is determined by its closed sets (since every set
is mapped to the smallest closed set containing it; this set has to be unique).
As mentioned above, for a vector space you get a matroid by choosing the
vector subspaces as closed sets. Choosing the affine subspaces also yields a
matroid, in fact an affine geometry (naturally). This approach does not in
general work for modules. The submodules do not always yield a matroid, as
we will now prove.

Let us first characterise the closure operator that corresponds to using
submodules as subspaces (proof omitted).

Lemma 6.1 Let M be an R-module, where R is a ring, and let 〈·〉s : ℘(M) →
℘(M) take any subset to the smallest submodule containing it. Then 〈·〉s is a
well-defined closure operator with the explicit characterisation

〈S〉s =

{
n∑

i=1

aisi ai ∈ R, si ∈ S, n ∈ N
}

.

(The empty sum
∑0

i=1 aisi is interpreted as 0.)

Let us now consider the standard Z-module over Z (i.e. the ring of integers).
Define nZ := { nm m ∈ Z }. Observe that 2 ∈ 〈10, 3〉s = Z (since 1 ∈
〈10, 3〉s), 2 6∈ 〈10〉s = 10Z, and 3 6∈ 〈10, 2〉s = { 10m + 2n m, n ∈ Z } =
2 { 5m + n m, n ∈ Z } = 2Z. Hence the exchange property does not hold,
and 〈·〉s is, in general, not a matroidal closure operator.

2 An integral domain is a nontrivial commutative ring R with multiplicative unit satisfying
r1r2 6= 0 for all r1, r2 ∈ R \ 0.
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6.2 D-submodule Closure

We now know that we cannot (in general) use submodules as subspaces of a
matroid. However, by restricting ourselves to d-submodules and modules over
integral domains we get a matroid.

Definition 6.2 A d-submodule of an R-module M is a submodule S with the
property that if rm ∈ S for any r ∈ R \ 0 and m ∈ M , then m ∈ S.

We say that a d-submodule is closed under existing divisors, i.e. under
those divisors which happen to exist. Thus it is easy to see, intuitively, why
this approach works; d-submodules emulate vector subspaces. In Section 6.5
below we formalise this statement.

Theorem 6.3 Let M be an R-module, where R is an integral domain, and let
〈·〉d : ℘(M) → ℘(M) take any subset to the smallest d-submodule containing
it. Then 〈·〉d is a well-defined matroidal closure operator with the explicit
characterisation

〈S〉d =

{
m ∈ M bm =

n∑
i=1

aisi, si ∈ S, ai, b ∈ R, b 6= 0, n ∈ N
}

.

Proof. It is straightforward to show that 〈·〉d is a closure operator with the
explicit characterisation given above (here we use the fact that R is an integral
domain).

For the exchange property we use the explicit characterisation of 〈·〉d. Take
any y ∈ 〈S ∪ x〉d \〈S〉d. Then by =

∑n
i=1 aisi +ax for some a, b, ai ∈ R, b 6= 0,

si ∈ S, and n ∈ N. Furthermore a 6= 0, because otherwise y ∈ 〈S〉d. Thus
we have ax =

∑n
i=1(−ai)si + by where a 6= 0, and hence x ∈ 〈S ∪ y〉d. This

means that the fourth axiom is satisfied.

To show that 〈·〉d is finitary, assume that x ∈ 〈S〉d. Then bx =
∑n

i=1 aisi

for some b, ai ∈ R, b 6= 0, si ∈ S, and n ∈ N, and we have that x ∈ 〈S ′〉d,
where S ′ := { si i ∈ N, 1 ≤ i ≤ n } is a finite subset of S. 2

Aside from an exercise in Faure and Fröhlicher’s book [5, Exercise 3.7.4.5]
the authors have not found any reference to this construction, neither in the
module nor in the discrete geometry literature. In fact the exercise claims that
the construction works for modules over left Ore domains. The ideas behind
a-closure (next to come) also come from [5], but that text only treats the case
of vector spaces over division rings, not modules over integral domains (except
for some specific examples).

6.3 A-submodule Closure

We note immediately that the matroid obtained from 〈·〉d is not simple, since
〈∅〉d = { 0 }. Furthermore all subspaces contain 0, which ensures that they
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cannot be interpreted as affine lines, planes, etc. To get something reminiscent
of an affine geometry we define a-submodules.

Definition 6.4 An a-submodule A of a module M is a subset of the form
A = D + m where D ⊆ M is a d-submodule and m ∈ M is any element.

Addition of an element to a set is defined in the obvious way as D + m :=
{ d + m d ∈ D }. Subtraction of an element from a set is defined analogously.
Do not confuse this subtraction, written using −, with set difference, which
we always write using \.

It is easy to check that if D is a d-submodule with m ∈ D, then D+m = D.
Furthermore, if A is an a-submodule, then for any m ∈ A the set A − m is
a d-submodule, and all d-submodules obtained from A in this way are equal.
We get that A is an a-submodule with a ∈ A iff A−a is a d-submodule. Given
this relation between a- and d-submodules the following theorem is relatively
straightforward to prove.

Theorem 6.5 Let M be an R-module, where R is an integral domain, and let
〈·〉a : ℘(M) → ℘(M) take any nonempty subset to the smallest a-submodule
containing it and ∅ to ∅. Then 〈·〉a is a well-defined matroidal closure operator
with the explicit characterisation

〈S〉a =

{
m ∈ M bm =

n∑
i=1

aisi, si ∈ S, ai, b ∈ R, b =
n∑

i=1

ai 6= 0, n ∈ Z+

}
.

Furthermore 〈S〉a = 〈S − s〉d + s for any s ∈ 〈S〉a, and 〈S〉a = 〈S − s〉a + s
for any s ∈ M .

Corollary 6.6 The matroid defined in Theorem 6.5 is a geometry iff the un-
derlying module is torsion free. 3

Proof. Since 〈∅〉a = ∅ we have to check when we have 〈m〉a = {m } for
arbitrary m ∈ M . Since 〈m〉a = { n ∈ M bn = bm, b 6= 0 } the corollary
follows immediately. 2

Let us simplify the terminology slightly. Every concept relating to d-
submodules is prefixed with d- (d-closure, d-matroids, etc.), and similarly for
a-submodules (a-).

Before we go on note that the d- and a-matroids over a certain module are
closely related. For instance, it is straightforward to check that a module has
d-rank n iff it has a-rank n + 1.

6.4 Representations

From now on let all modules be modules over integral domains.

3 An R-module M is torsion free if r ∈ R \ 0 and m ∈ M \ 0 implies rm 6= 0.
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The following theorem shows that the representation of an element with
respect to a certain basis is uniquely defined up to a scalar factor.

Theorem 6.7 (The Representation Theorem) Let B be an a-basis for
the R-module M . Assume that p ∈ M has the representation

cp =
n∑

i=1

aibi, n ∈ Z+, c, ai ∈ R \ 0, c =
n∑

i=1

ai, bi ∈ B, bi 6= bj if i 6= j

in this basis. Then the only other representations of p in this basis are dp =∑n
i=1

dai

c
bi, where d ∈ R \ 0 and all dai

c
are assumed to be well-defined.

(Here dai

c
is shorthand for any solution x ∈ R to the equation dai = cx;

such a solution is unique if it exists.)

Proof. The theorem is straightforward to prove. Just assume that there are
two different representations and deduce that the basis is not independent.2

Note that if the module is not torsion free, then any particular represen-
tation does not necessarily stand for a unique module element. Note also
that since we require c =

∑n
i=1 ai the representations should really be termed

a-representations. The theorem also holds for d-representations, where the
requirement c =

∑n
i=1 ai is dropped and n = 0 is allowed.

6.5 Embedding

Let M be a module over an integral domain R. Define an equivalence relation
on M × (R \ 0) by (m, r) ∼ (m′, r′) iff there is an s ∈ R \ 0 such that
s(r′m − rm′) = 0. The equivalence classes are the elements of the module
of fractions F (M). Use the notation m

r
for the equivalence class containing

(m, r), and identify m with m
1

for all m ∈ M . By defining addition in this

new structure by m
r

+ m′
r′ := mr′+m′r

rr′ and multiplication by m
r

m′
r′ := mm′

rr′ we
get an F (R)-module, where F (R) is the field of quotients [8] associated with
R. The structure of M is preserved within F (M) iff M is torsion free. This
construction is described by Taylor [12].

The canonical map π : M → F (M) is defined by π(m) := m
1
. Denote the

preimage of π by π−1, i.e. π−1
(

m
r

)
= {m′ ∈ M | π(m′) = m

r
}. For notational

convenience let us use the convention that π−1(S) :=
⋃ { π−1(s) s ∈ S } for

subsets S ⊆ F (M). If M is torsion free then its ground set can be seen as a
subset of F (M), and we get that π is essentially just the identity, while π−1

for subsets S ⊆ F (M) satisfies π−1(S) = S ∩M .

We also need to define another function, µ : F (M) → M , which maps 0
to 0 and an element m′ ∈ F (M) \ 0 to an arbitrary (but fixed) element in the
nonempty set {m ∈ M \ 0 | r ∈ R, m = rm′ }.

Let us now show in what way the d-matroid structure carries over to the
associated vector space. Note first that in a vector space the d-submodule
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closure 〈·〉d equals the vector subspace (linear) closure. Furthermore inde-
pendence, bases, etc. match the corresponding d-matroid concepts exactly.

Theorem 6.8 Let M be an R-module, and let F (M) be the module of frac-
tions associated with M . Denote the d-submodule closure in F (M) by 〈·〉D.
Then we have the following properties.

(i) For any subset S ⊆ M the equality 〈S〉d = π−1
(〈π(S)〉D

)
holds.

(ii) Let D be a d-submodule of M with d-basis B. Then F (R)π(D) = F (D)
is a vector subspace with basis π(B), and the d-rank of D equals the
dimension of F (D).

(iii) Let S be a vector subspace of F (M) with basis B. Then π−1(S) is a
d-submodule of M with d-basis µ(B), and the dimension of S equals the
d-rank of π−1(S).

Proof. Straightforward to prove using the explicit characterisations of 〈·〉d,
〈·〉D, π, and π−1, together with the definition of the equivalence relation that
F (M) is based on. 2

Corollary 6.9 The lattice of subspaces of the d-matroid M is isomorphic to
that of F (M), and the d-rank of M coincides with the dimension of F (M).

Given some knowledge about vector space theory (see e.g. [5]) this corollary
immediately implies that all d-matroids are modular.

Since a-matroids have subspaces which are just translations of d-subspaces
all the results above can be transformed to an a-matroid context. For instance,
for any subset S ⊆ M and any s ∈ 〈S〉a we have

〈S〉a = 〈S − s〉d + s = π−1
(〈π(S − s)〉D

)
+ s

= π−1
(〈π(S)− π(s)〉D + π(s)

)
= π−1

(〈π(S)〉A
)
,

(2)

where 〈·〉A is a-submodule closure in F (M). Furthermore the lattice of sub-
spaces of any a-matroid M is isomorphic to that of the a-matroid over F (M),
and by using some simple theory about matroid degrees which we cannot go
into here (see [5]) we get that all a-matroids are of degree 1.

6.6 Affine Geometry

Given that all a-matroids are of degree 1, and that all a-matroids over modules
that are torsion free are geometries, is an a-geometry an affine geometry? Not
necessarily, as we will show.

Take the standard Z-module over Z2. This module is torsion free and is
hence an a-geometry of degree 1. Take a look at the line configuration in
Figure 3. According to the definition of parallelity (see Section 2) both `1 and
`2 are parallel to `, and since they intersect the geometry is not affine.

11
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``2

`1

Fig. 3. An example demonstrating why the standard Z-module over Z2 is not affine.
The lines `1 and `2 are both parallel to `.

The Z-module over Z2 clearly has an affine feel to it. The reason why it
is not affine is that two lines which are non-parallel in the associated vector
space can be disjoint, and hence parallel; the problem lies in the discreteness
of the structure. The following proposition shows that it is easy to define a
notion of parallelity which at least satisfies some of the usual requirements of
a parallelity relation. Of course this definition is influenced by the fact that
the same approach gives the proper parallelity relation in an a-geometry over
a vector space.

Proposition 6.10 Let M be an R-module. Define a binary relation ||| on the
lines of M by ` ||| `′ iff there is some p ∈ M such that ` + p = `′. Then ||| is
an equivalence relation, and for any point p ∈ M and line ` ⊆ M there is a
unique line `′ such that p ∈ `′ and ` ||| `′.
Proof. Straightforward using the facts that d-submodules are subgroups (since
they contain 0 and are closed under inverse and addition) and two right cosets
of a subgroup are either disjoint or equal. 2

The question about what would make a suitable definition of a discrete
affine geometry remains open. However, we can at least motivate why |||
seems to be a valid parallelity relation (although, in general, it is not). It is
straightforward to show that ||| ⊆ ||, and in an a-geometry over a vector space
we have ||| = ||. By using the module of fractions construction we get the
following result (proof omitted).

Proposition 6.11 Let M be an R-module, and let `1, `2 ⊆ M be two lines.
Then `1 ||| `2 iff π(`1) |||π(`2), i.e. iff π(`1) ||π(`2), where π is the canonical
map into the vector space F (M) as defined in Section 6.5.

6.7 Generators and Isomorphism

The generator properties defined below can perhaps serve as an indication of
whether a geometry is discrete or not. They are based on a generalisation
of Hübler’s generators, see Section 5. Let us say that a set S s-generates a

12
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submodule M if M = 〈S〉s, where 〈·〉s is the closure operator from Lemma 6.1.
(The standard terminology in algebra is just to say that S generates M , but
the prefix s- reduces the risk of confusion.)

Definition 6.12 Let M be a d-matroid over an R-module with d-rank at
least n. This matroid has the rank n generator property if all d-submodules
of d-rank n are s-generated by a set of points of cardinality n. The elements
of this set are called generators.

Note that the rank n generator property implies that all a-submodules of
rank n+1 are s-generated by a set of cardinality n (plus the usual translation).
Hence, when n = 1 we use the term line generator property, or more often just
generator property. For n = 2 we use the term plane generator property.

Let us show that in some cases the properties for different n are not inde-
pendent. In fact, while we are indulging in the theory of finitely s-generated,
torsion free modules over principal ideal domains 4 we might as well throw in
a result about isomorphism as well. A module is finitely s-generated if there
is some finite subset which s-generates the module.

Theorem 6.13 All finitely s-generated torsion free modules of d-rank n over
a principal ideal domain R are isomorphic to the R-module over Rn, and the
corresponding d-matroids satisfy the rank m generator property for all m ≤ n.

Proof. Use the theory about modules over principal ideal domains as pre-
sented by e.g. Taylor [12]. 2

Corollary 6.14 Let M be a d-matroid over a torsion free R-module satisfying
the rank n generator property, where R is a principal ideal domain and n is
finite. Then the rank m generator property holds for all m ≤ n.

7 Modules with Order

In this section we assume that all modules are modules over ordered domains. 5

7.1 Ordered Lines

By using the order of an ordered domain we can easily induce an order on the
set of points of a line.

Theorem 7.1 Let M be an R-module and ` = 〈p, q〉a ⊆ M a line. Take any
two a-rank 1 subspaces r1, r2 ⊆ M with elements r′1 ∈ r1, r′2 ∈ r2 given by
bir

′
i = ai1p+ai2q, bi, aij ∈ R, bi = ai1 +ai2 > 0, i, j ∈ { 1, 2 }. These subspaces

4 A principal ideal domain is an integral domain R in which every ideal (subset closed
under addition and multiplication) I is principal (i.e. I = { r′r | r′ ∈ R } for some r ∈ R).
5 An ordered domain is an integral domain R together with a nonempty subset R+ ⊆ R of
positive elements such that R+ is closed under addition and multiplication and exactly one
of r ∈ R+, r = 0, and −r ∈ R+ holds for any r ∈ R. Given this r1 < r2 iff r2 − r1 ∈ R+.

13
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satisfy r1 = r2 iff a12a21 = a11a22, independently of which members r′1, r′2 were
chosen.

Define r1 < r2 iff a12a21 < a11a22. This is well-defined, and the relation
≤ := <

⋃
= is a total order on the a-rank 1 subspaces of `. By swapping p

and q we get the opposite order (≥), and these two orders are invariant when
going to another basis of `.

Proof. Relatively straightforward using the Representation Theorem 6.7 and
multiplicative isotony. To prove transitivity it might be helpful to pass to
the field of quotients F (R) [8] and use that a12a21 < a11a22 is equivalent to
b1a21 < b2a11. 2

Note that in the case of torsion free modules this result means that the
set of points of any line can be totally ordered. For convenience we define
r′1 < r′2 (r′1 ≤ r′2) iff r′1 ∈ r1, r′2 ∈ r2 and r1 < r2 (r1 ≤ r2). Beware that when
the module is not torsion free these new relations do not have all their usual
properties, though.

7.2 Convexity and Antimatroids

We will now treat convexity. We depart from the procedure used when intro-
ducing the d- and a-closure. Instead of defining the closed sets first, and then
deducing the closure operator, we just define the closure operator. Note that
this convex hull operator is related to the standard vector space convex hull
operator (as given in [5]),

[S]V :=

{
n∑

i=1

aisi si ∈ S, ai ∈ R,

n∑
i=1

ai = 1, 0 ≤ ai ≤ 1, n ∈ Z+

}
, (3)

in the same way as the d- and a-closures are related to the corresponding
vector space closures. Of course the operators are chosen to agree in the case
where the module is a vector space.

Theorem 7.2 Let M be an R-module. Define the convex hull operator [·] :
℘(M) → ℘(M) by

[S] :=

{
m ∈ M

bm =
∑n

i=1 aisi, si ∈ S, b, ai ∈ R,

b =
∑n

i=1 ai > 0, 0 ≤ ai ≤ b, n ∈ Z+

}
.

Then (M, [·]) is a finitary closure space satisfying [∅] = ∅. The subspaces are
called convex. Furthermore the following properties are equivalent:

(i) M is torsion free,

(ii) (M, [·]) is an antimatroid, and

(iii) (M, [·]) is simple.
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Fig. 4. The figure shows an excerpt of the standard Z-module over Z2. The set
consisting of the three circles is betweenness closed, but the convex hull of these
points also includes the square. (This example is presented in e.g. [6].)

Maybe it is inappropriate to use the term convex if the anti-exchange
property does not hold, but that is a minor issue. As an example of why non-
torsion free modules do not yield antimatroids, consider an infinite discrete
cylinder represented as the standard Z-module over Z×Zn for some n ∈ Z+\1.

We get that [(i, j)] = { (i, j′) j′ ∈ Zn }, i.e. the convex hull of a single point is
a “circle” going around the cylinder. This clearly violates the anti-exchange
property.

Most parts of the theorem are easy to prove by using the module of frac-

tions construction, since we know that (F (M), [·]V) is an antimatroid. We
only state the following lemma, the rest of the proof is omitted.

Lemma 7.3 Let M be an R-module with convex hull operator [·], and let [·]V
be the convex hull operator of F (M). Then [S] = π−1

(
[π(S)]V

)
, where π and

π−1 are the functions defined in Section 6.5.

Let us also give some properties of the convex sets. Let M be an R-
module with p, q ∈ M . If { p, q } is a-independent then the line segment
〈p, q〉` is defined by 〈p, q〉` := { r ∈ 〈p, q〉a | p ≤ r ≤ q or p ≥ r ≥ q }. Here
≤ and ≥ are the two point orders for 〈p, q〉a as given in Theorem 7.1. If
{ p, q } is not a-independent then 〈p, q〉` := 〈p, q〉a. It is easy to verify that

〈p, q〉` = [p, q]. It follows that a convex set is betweenness closed; i.e. if

p, q ∈ [S] then 〈p, q〉` ⊆ [S]. The converse is not true, a betweenness closed
set may not be convex. See Figure 4.

7.3 Oriented Matroids

As mentioned before several abstract frameworks for convexity are used. The
antimatroid approach was treated above, and now we will take another ap-
proach by using oriented matroid theory. First we have to show in what way
we get an oriented matroid from a module.

Definition 7.4 Let M be an R-module, H ⊆ M a d-hyperplane, and x ∈
M \H. Define the open half-spaces H+ and H− by

H+ := {m ∈ M bm = h + ax, a, b ∈ R, h ∈ H, ab > 0 } and

H− := {m ∈ M bm = h + ax, a, b ∈ R, h ∈ H, ab < 0 } .
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For ease of reference let us denote x as the positive point of H.

Let us now show that this definition is consistent with oriented matroid
terminology, and that it gives rise to an oriented matroid structure on M .

Lemma 7.5 The open half-spaces of Definition 7.4 are both non-empty, and
they satisfy H+ ∪H− = M \H and H+ ∩H− = ∅. In other words (H−, H+)
is a cocircuit, as is the opposite (H+, H−). Furthermore the half-spaces are
independent of the choice of positive point x ∈ M \H; given another x′ ∈ H+

we get the same cocircuit, and given x′′ ∈ H− we get the opposite cocircuit.

Proof. Straightforward using the Representation Theorem 6.7 and some prop-
erties regarding matroidal bases. 2

Lemma 7.6 Let M be an R-module with two different d-hyperplanes H and K
intersecting in a subspace of d-corank 2. Let x be any point in M \ (H ∪K).
Choose the orientation of the cocircuits associated with H and K such that
x ∈ H+∩K−. Then the hyperplane L = x∨ (H ∧K) satisfies L+ ⊆ H+∪K+

and L− ⊆ H− ∪K−, given a suitable choice of its orientation.

Proof. Relatively straightforward by using x as the positive point for H, −x
for K, and any point in H+ ∩K for L. 2

We can sum up the preceding results in a theorem.

Theorem 7.7 Every module over an ordered domain has an oriented matroid
structure given by its d-matroid structure and the open half-spaces as defined
in Definition 7.4.

Note that for some modules, e.g. the Z-module over (Zn)m, the oriented
matroid structure obtained is trivial. This follows since the underlying matroid
is trivial and does not have any hyperplanes.

It is easy to extend the results above to a-matroids. Given a hyperplane
H of an a-matroid M with h ∈ H and x ∈ M \ H we get that H − h is a
d-hyperplane, and by letting x− h be the positive point we get the cocircuit
((H − h)−, (H − h)+). Hence we can define the cocircuit associated with H
with x as positive point to be (H−, H+) := ((H−h)−+h, (H−h)+ +h). It is
straightforward to check that this is a proper cocircuit, that it is independent
of the choice of h ∈ H, and that the resulting structure is an oriented matroid.

Denote the convex closure obtained from this oriented a-matroid (see Sec-

tion 4) by [·]OM. Using some simple algebraic manipulations it is easy to show

that [S] ⊆ [S]OM for any S ⊆ M . It is unknown whether the converse holds
though, although it seems likely.

8 Modules and Hübler Geometries

Given the previous sections it is relatively straightforward to characterise
Hübler geometries in terms of Z-modules. Due to the lack of space we only
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give the main results. First note that there is a superficially significant differ-
ence between a-geometries and Hübler geometries in that the latter have both
points and translations, while the a-geometries only have points. However,
by choosing an origin we get that each Hübler point corresponds to a unique
translation (by the first four axioms). The following theorem assumes that an
origin has been chosen, thereby avoiding the differences by identifying points
and translations.

Theorem 8.1 The models of Hübler’s first seven axioms are exactly those
a-geometries over Z-modules that exhibit the generator property and have d-
rank at least 2, if the lines of the a-geometries are used as Hübler lines, the
“parallelity” ||| as Hübler parallelity, and the orders as defined in Theorem 7.1
as the orders on the set of points of a line. Furthermore the Hübler planes
are exactly the a-geometry planes. Given a model of the first seven axioms the
eighth axiom is equivalent to the plane generator property.

Recall that it is unknown, at least to the authors, whether the eighth axiom
is independent from the others or not.

Given this result it is possible to show that there are Hübler geometries
of any d-rank greater than or equal to 2, finite or infinite. Just let Dim be
any set with |Dim| ≥ 2, and take the Z-module Dim → Z with the obvious
addition and scalar multiplication. This module is easily seen to be torsion
free with d-rank at least 2. It is trickier to show that the geometry satisfies
the line and plane generator properties, and we omit the proof here.

Hübler also discusses convexity, although most of his discussions are limited
to the d-rank 2 case. Given the results in Section 7 it is easy to see that a
general discussion of convexity is possible for Hübler geometries.

9 Conclusions and Future Work

This exposition makes it pretty clear that many (discrete) geometries can
be treated within a framework based on matroids or oriented matroids, even
though more work clearly needs to be done on the oriented matroid aspect. In
fact infinite oriented matroid theory is a neglected area which deserves more
attention. Even in the finite case the relation between the two approaches to
convexity—antimatroids and oriented matroids—is not fully explored. How-
ever, it has been shown that some finite oriented matroids satisfy the anti-
exchange property [4,1], and given this result it should not be too hard to
relate the two convex closures given here properly.

The class of discrete geometries that are also modules over integral domains
may not be as large as one would wish, it is e.g. hard to model the geometry of
a cylinder as a module, and the same applies to many finite geometries as well.
We hope that a more general framework, one that is still based on matroids
but not on modules, will be capable of handling also those geometries.

Finally it is an open question whether generator properties are the right
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way to go for characterising discreteness.
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