Lightweight Semiformal

Time Complexity Analysis for
Purely Functional Data Structures

Nils Anders Danielsson

Chalmers/Nottingham

Teaser

(#):Seqam— Seq an
— Thunk (1 + 2% m) (Seq a (m+ n))

Focus

» Purely functional (persistent) data structures.

» Complexity results valid for arbitrary usage
patterns, not just single-threaded use.

Focus

» Purely functional (persistent) data structures.

» Complexity results valid for arbitrary usage
patterns, not just single-threaded use.

» PFDSs which are efficient for all usage patterns
often make essential use of laziness
(call-by-need).

Focus

» Purely functional (persistent) data structures.

» Complexity results valid for arbitrary usage
patterns, not just single-threaded use.

» PFDSs which are efficient for all usage patterns
often make essential use of laziness
(call-by-need).

» Complexity analysis becomes subtle;
many details to keep track of.

» This work: Type system and library
which ensure that no details are forgotten.

Library

» Types keep track of time complexity:
f:(n:N)— Thunk (1+n) N

» In dependently typed language (Agda).

e : Thunk ny (Thunk ny...(Thunk ng a)...) means
that it takes at most

m-+n—+...+ng

steps amortised time to evaluate e to WHNF,
if this computation terminates.

» Library based on user-inserted annotations:

Y. Thunk na — Thunk (1+n) a

» Every right-hand side should be ticked:

fx:xs)="...

Machine assistance

» The library only checks correctness.
» Almost nothing inferred automatically.

» Recurrence equations have to be
solved manually.

Example

Sequences

data Seq (a:*): N — x where
nil : Seq a0
(::):a— Seqan— Seq a(l—+n)

(#):Seqam— Seq an
— Seq a (m + n)
nil H ys = ys
(x 11 xs) H ys = x 1 (xs H ys)

(#):Seqam— Seq an
— Seq a (m + n)
nil Hys="ys
(x 2 xs) H ys = Vx:: (xs 4 ys)

V': Thunk na — Thunk (1+n) a

(#):Seqam— Seq an

— Thunk (1 + m) (Seq a (m + n))
nil Hys="ys
(x 2 xs) H ys = ¥V x:: (xs 4 ys)

V': Thunk na — Thunk (1+n) a

(#):Seqam— Seq an
— Thunk (1 + m) (Seq a (m + n))
nil + ys = Yreturn ys
(x:xs)Hys="
XS H ys >= \zs —
return (x :: zs)

return:a — Thunk 0 a
(>=) : Thunk m a — (a — Thunk n b)
— Thunk (m+n) b

(#):Seqam— Seq an
— Thunk (1 + 2% m) (Seq a (m+ n))
nil + ys = Yreturn ys
(xxs)Hys="
xsHys >=\zs — ¥
return (x :: zs)

return:a — Thunk 0 a
(>=) : Thunk m a — (a — Thunk n b)
— Thunk (m+n) b

» Linear time to evaluate to WHNF?
(#):... — Thunk (14 2% m) (Seq a (m+ n))

» Seq does not contain embedded Thunks.

» Linear time to evaluate to WHNF?
(#):... — Thunk (14 2% m) (Seq a (m+ n))

» Seq does not contain embedded Thunks.
» Non-strict sequences also possible:

data S (a: %) (c:N):N — x where
[] :SacO
(::) :a— Thunk c(Sacn)— Sac(l+n)

(#):Sacm—Sacn
— Thunk 2 (S a (3+ c) (m+ n))

Essential
laziness

Pay now, use later

» How can one take advantage of laziness

(memoisation)?
» Let earlier operations pay for thunks which are
forced later (perhaps several times):

/ N s
¥ — S
Create thunk—O—O—Cg — — O« Force it
N

Pay now, use later

» How can one take advantage of laziness
(memoisation)?

» Let earlier operations pay for thunks which are
forced later (perhaps several times):

pay : (m:N) — Thunk n a
— Thunk m (Thunk (n — m) a)

Summary

Library summary

Thunk :N — x — %

v : Thunk na — Thunk (1 +n) a
return :a — Thunk 0 a
(>=) : Thunk m a — (a — Thunk n b)
— Thunk (m+n) b
pay :(m:N)— Thunk n a
— Thunk m (Thunk (n — m) a)

Correctness

» Type system proved correct with respect to
annotated big-step semantics
(for toy language).

» Proof developed and checked using
the Agda proof assistant.

Conclusions

Simple library/type system for analysing
time complexity of lazy functional programs.

v

Well-defined semantics.

v

v

Proved correct.
Limitations:

» Unstable type signatures: Thunk (24 5% n) a.
» Little support for aliasing.

v

v

Applied to real-world examples.

Extra slides

Equality proofs

(#):Sam—San
— Thunk (1 +2xm) (S a(m+ n))
nil H ys = Yreturn ys
XimXs+Hys="
cast (lemma m)
(xs 4+ ys >=Azs — ¥
return (x :: zs))

lemma:(m:N) - (1+2xm)+1=2x%(1+m)

Library summary

Thunk :N — x — %

v : Thunk n a — Thunk (1 + n) a
return :a — Thunk 0 a
(>=) : Thunk m a — (a — Thunk n b)
— Thunk (m+n) b
pay :(m:N)— Thunk n a
— Thunk m (Thunk (n — m) a)

force : Thunk na — a

Library implementation

Thunk na= a
8% = x
return x =X
X>=f =fx
pay _x =X

force x = X

Essential laziness

data Queue (a: x) : x where
empty : Queue a
consyg : a — Queue (a X a) — Queue a
consy; : a — Queue (a X a) — a — Queue a

snoc : Queue a — a — Queue a
snoc empty X1 = Consiy x; empty
snoc (consip X1 XSp) X3 = CONS11 X1 XS2 X3
snoc (consyy X1 XSp X3) X4 =

consyg X1 (snoc xsy (x3,x4))

Essential laziness

data Queue (a: x) : x where
consyg : @ — Queue (a x a) — Queue a

snoc : Queue a — a — Thunk ? (Queue a)
snoc empty x1 = Y cons;y X empty
snoc (consip x1 Xs3) X3 = ¥ €ONs{y X1 XS» X3
snoc (consyy x; xsp x3) Xg = ¥

consyg X1 (snoc xsy (x3,x4))

Essential laziness

data Queue (a: x) : x where
consyg : @ — Queue (a x a) — Queue a

snoc : Queue a — a — Thunk ? (Queue a)
snoc empty x1 = ¥ return (consyg x; empty)
snoc (consig x1 xs3) x3 = Y return (consy x1 X2 x3)
snoc (consyy x; xsp x3) Xg = ¥

return (consyg x1 (snoc xsy (x3,x4)))

Essential laziness

data Queue (a: x) : x where
consyg : @ — Thunk 7 (Queue (a x a)) — Queue a

snoc : Queue a — a — Thunk 7 (Queue a)
snoc empty x1 ="
return (consyg x1 (return empty))
snoc (consyg x1 xs3) x3 = Y return (consiy X1 XS X3)
snoc (consyy x1 xsp X3) x4 = ¥

return (consyg x1 (snoc xs3 (x3, x4)))

Essential laziness

data Queue (a: x) : x where
consyg : @ — Thunk 7 (Queue (a x a)) — Queue a

snoc : Queue a — a — Thunk 7 (Queue a)
snoc empty x1 ="
return (consyg x1 (return empty))

snoc (consyg x3 xs3) x3 ="
XSy = Axsh — ¥
return (consyy X1 XSh X3)
_ v

snoc (consyy X1 XSp X3) Xq =
return (consyg x1 (snoc xs3 (x3, Xs)))

Essential laziness

data Queue (a: x) : x where
consyg : @ — Thunk 7 (Queue (a x a)) — Queue a

snoc : Queue a — a — Thunk 7 (Queue a)
snoc empty x1 ="
return (consyg x1 (return empty))

snoc (consyg x3 xs3) x3 ="
XSy = Axsh — ¥
return (consyy X1 XSh X3)
_ v

snoc (consyy X1 XSp X3) Xq =
pay ? (snoc xsp (x3,Xg)) >= AxSp3q —
return (consyg X1 XS»34)

v

Essential laziness

data Queue (a: x) : x where
consyg : @ — Thunk 2 (Queue (a x a)) — Queue a

snoc : Queue a — a — Thunk 4 (Queue a)
snoc empty x1 =YY
return (consig x1 (¥ return empty))

snoc (consyg x3 xs3) x3 ="
XSy = Axsh — ¥
return (consyy X1 XSh X3)
_ v

snoc (consyy X1 XSp X3) Xq =
pay 2 (snoc xsy (x3,x4)) >= Axspzq — ¥
return (consyg X1 XS»34)

	Library
	Example
	Essential laziness
	Summary
	Extra slides

