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Teaser

(++) : Seq a m→ Seq a n
→ Thunk (1 + 2 ∗m) (Seq a (m + n))



Focus

I Purely functional (persistent) data structures.

I Complexity results valid for arbitrary usage
patterns, not just single-threaded use.

I PFDSs which are efficient for all usage patterns
often make essential use of laziness
(call-by-need).

I Complexity analysis becomes subtle;
many details to keep track of.

I This work: Type system and library
which ensure that no details are forgotten.
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Library



Library

I Types keep track of time complexity:

f : (n : N)→ Thunk (1 + n) N

I In dependently typed language (Agda).



Meaning

e : Thunk n1 (Thunk n2 . . . (Thunk nk a) . . .) means
that it takes at most

n1 + n2 + . . . + nk

steps amortised time to evaluate e to WHNF,
if this computation terminates.



Annotations

I Library based on user-inserted annotations:

X : Thunk n a→ Thunk (1 + n) a

I Every right-hand side should be ticked:

f (x :: xs) = X. . .



Machine assistance

I The library only checks correctness.

I Almost nothing inferred automatically.

I Recurrence equations have to be
solved manually.



Example



Sequences

data Seq (a : ?) : N→ ? where
nil : Seq a 0
(::) : a→ Seq a n→ Seq a (1 + n)



Append

(++) : Seq a m→ Seq a n
→ Seq a (m + n)

nil ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)



Append

(++) : Seq a m→ Seq a n
→ Seq a (m + n)

nil ++ ys = Xys
(x :: xs) ++ ys = Xx :: (xs ++ ys)

X : Thunk n a→ Thunk (1 + n) a



Append

(++) : Seq a m→ Seq a n
→ Thunk (1 + m) (Seq a (m + n))

nil ++ ys = Xys
(x :: xs) ++ ys = Xx :: (xs ++ ys)

X : Thunk n a→ Thunk (1 + n) a



Append

(++) : Seq a m→ Seq a n
→ Thunk (1 + m) (Seq a (m + n))

nil ++ ys = Xreturn ys
(x :: xs) ++ ys = X

xs ++ ys >>= λzs →
return (x :: zs)

return : a→ Thunk 0 a
(>>=) : Thunk m a→ (a→ Thunk n b)

→ Thunk (m + n) b



Append

(++) : Seq a m→ Seq a n
→ Thunk (1 + 2 ∗m) (Seq a (m + n))

nil ++ ys = Xreturn ys
(x :: xs) ++ ys = X

xs ++ ys >>= λzs → X

return (x :: zs)

return : a→ Thunk 0 a
(>>=) : Thunk m a→ (a→ Thunk n b)

→ Thunk (m + n) b



Append

I Linear time to evaluate to WHNF?

(++) : . . .→ Thunk (1 + 2 ∗m) (Seq a (m + n))

I Seq does not contain embedded Thunks.
I Non-strict sequences also possible:

data S (a : ?) (c : N) : N→ ? where
[ ] : S a c 0
(::) : a→ Thunk c (S a c n)→ S a c (1 + n)

(++) : S a c m→ S a c n
→ Thunk 2 (S a (3 + c) (m + n))
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Essential
laziness



Pay now, use later

I How can one take advantage of laziness
(memoisation)?

I Let earlier operations pay for thunks which are
forced later (perhaps several times):

Create thunk

Pay for it

Force it



Pay now, use later

I How can one take advantage of laziness
(memoisation)?

I Let earlier operations pay for thunks which are
forced later (perhaps several times):

pay : (m : N)→ Thunk n a
→ Thunk m (Thunk (n −m) a)



Summary



Library summary

Thunk : N→ ?→ ?

X : Thunk n a→ Thunk (1 + n) a
return : a→ Thunk 0 a
(>>=) : Thunk m a→ (a→ Thunk n b)

→ Thunk (m + n) b
pay : (m : N)→ Thunk n a

→ Thunk m (Thunk (n −m) a)



Correctness

I Type system proved correct with respect to
annotated big-step semantics
(for toy language).

I Proof developed and checked using
the Agda proof assistant.



Conclusions

I Simple library/type system for analysing
time complexity of lazy functional programs.

I Well-defined semantics.

I Proved correct.
I Limitations:

I Unstable type signatures: Thunk (2 + 5 ∗ n) a.
I Little support for aliasing.

I Applied to real-world examples.



Extra slides



Equality proofs

(++) : S a m→ S a n
→ Thunk (1 + 2 ∗m) (S a (m + n))

nil ++ ys = Xreturn ys
x ::m xs ++ ys = X

cast (lemma m)
(xs ++ ys >>= λzs → X

return (x :: zs))

lemma : (m : N)→ (1 + 2 ∗m) + 1 ≡ 2 ∗ (1 + m)



Library summary

Thunk : N→ ?→ ?

X : Thunk n a→ Thunk (1 + n) a
return : a→ Thunk 0 a
(>>=) : Thunk m a→ (a→ Thunk n b)

→ Thunk (m + n) b
pay : (m : N)→ Thunk n a

→ Thunk m (Thunk (n −m) a)

force : Thunk n a→ a



Library implementation

Thunk n a = a

Xx = x
return x = x
x >>= f = f x

pay x = x

force x = x



Essential laziness

data Queue (a : ?) : ? where
empty : Queue a
cons10 : a→ Queue (a × a) → Queue a
cons11 : a→ Queue (a × a)→ a→ Queue a

snoc : Queue a→ a→ Queue a
snoc empty x1 = cons10 x1 empty
snoc (cons10 x1 xs2) x3 = cons11 x1 xs2 x3

snoc (cons11 x1 xs2 x3) x4 =
cons10 x1 (snoc xs2 (x3, x4))
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Essential laziness

data Queue (a : ?) : ? where
cons10 : a→ Thunk 2 (Queue (a × a))→ Queue a

snoc : Queue a→ a→ Thunk 4 (Queue a)
snoc empty x1 = XXXX

return (cons10 x1 (XXreturn empty))
snoc (cons10 x1 xs2) x3 = X

xs2 >>= λxs ′2 → X

return (cons11 x1 xs ′2 x3)
snoc (cons11 x1 xs2 x3) x4 = X

pay 2 (snoc xs2 (x3, x4)) >>= λxs234 → X

return (cons10 x1 xs234)
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