Nils Anders Danielsson (Nottingham)

PAR 2010, Edinburgh, 2010-07-15

Introduction

Guarded corecursion provides a simple principle for
defining productive values:

iterate : (A - A) - A — Stream A
iterate f x = x :: { iterate f (f x)

Many productive, corecursive definitions fail to be
guarded:

fib : Stream N
fib = 0 :: ¢ zipWith _+_ fib (1 :: § fib)

Many productive, corecursive definitions fail to be
guarded:

fib : Stream N
fib = 0 :: ¢ zipWith _+_ fib (1 :: § fib)

Introduction

Many productive, corecursive definitions fail to be
guarded:

fib : Stream N
fib = 0 ::§ zipWith +_ fib (1 :: § fib)

This talk: An ad-hoc, manual (but useful) method
for making productive definitions guarded.

Introduction

Many productive, corecursive definitions fail to be
guarded:

fib : Stream N
fib = 0 ::§ zipWith +_ fib (1 :: § fib)

Simple observation: If zipWith were a constructor,
then the definition would be accepted.

Fibonacci sequence

Streams:

data Stream (A : Set) : Set where
1 A - oo (Stream A) — Stream A

Stream programs:

data Streamp : Set — Set; where
i . A - oo (Streamp A) — Streamp A
zipWith : (A - B - C) -
Streamp A — Streamp B — Streamp C

Fibonacci sequence

Stream programs:

data Streamp : Set — Set; where
s : A - oo (Streamp A) — Streamp A
zipWith : (A - B - C) -
Streamp A — Streamp B — Streamp C

Weak head normal forms:

data Stream\, : Set — Set; where
ii 1 A - Streamp A — Streamy A

Fibonacci sequence

Stream programs:

data Streamp : Set — Set; where
s : A - oo (Streamp A) — Streamp A
zipWith : (A - B - C) -
Streamp A — Streamp B — Streamp C

Weak head normal forms:

data Stream\, : Set — Set; where
:: A — Streamp A — Streamy A

Fibonacci sequence

Turning programs into WHNFs:

whnf : Streamp A — Streamy, A

whnf (x :: xs) = X :bxs

whnf (zipWith f xs ys) =
zipWithy, f (whnf xs) (whnf ys)

zipWithy, : (A - B - C) -
Streamy A — Streamy B — Streamy C
zipWithy, f (x :: xs) (y = ys) =
f xy::zipWith f xs ys

Turning programs into streams:

[-1y : Streamy A — Stream A
[x:xs]yw = x:8[whnf xs]

Fibonacci sequence

Turning programs into streams:

mutual
[-]w : Streamwy A — Stream A
[xxs]yw = x 8 xs]p
[-]p : Streamp A — Stream A
[xs]p = [whnf xs]

The sequence itself:

fibp : Streamp N

fibp = 0 :: ¢ zipWith _+_ fibp (1 :: § fibp)
fib : Stream N

fib = [fibp |p

Fibonacci sequence

Properties (have to be proved manually):

Fib-like : Stream N — Set
Fib-like ns = ns ~ 0 :: ¢ zipWith _+_ ns (1 :: t ns)

Fib-like fib
Fib-like ms — Fib-like ns — ms = ns
[zipWith f xs ys [|p = zipWith f [xs [p [ys [p

The method

SOk w

Construct language including
offending functions as constructors.

Define WHNF type.

Write whnf function.

Write interpreter: [_].

Write programs in language and interpret them.
(Optional.) Prove properties about programs.

Breadth-first
labelling

Potentially infinite trees:

data Tree (A : Set) : Set where
leaf : Tree A
node : oo (Tree A) - A — oo (Tree A) — Tree A

0,1,2,... &

1,2,3,... ‘a’ 't
3,4,5,... ’'q e b 17

0,1,2,... 0 1,2,3,...

1,2,3,. .. ‘a 4

3,4,5... ¢ e b D

0,1,2,... 0 1,2,3,...

1,2,3,. .. 1 23 o)

3,4,5.... °’q e ohr]

Breadth-first labelling

0,1,2,... 0
PN
1,2,3,... 1 23 2
/N /N

3,45... 345.. e45..456. 5
/ \ / \ / \
/! \ /! \ /! \

lab : Tree A — Stream (Stream B) —
Tree B x Stream (Stream B)

Breadth-first labelling

0,1,2,... 0 1,2,3,...
PN
1,2,3,... 1 23 2 3,4,5,. ..
/N /N

3,45,... 345.. e45.456.5 678 ...
/ \ / \ / \
/ \ / \ / \

lab : Tree A — Stream (Stream B) —
Tree B x Stream (Stream B)

label : Tree A — Stream B — Tree B

label t bs = t'
where (t'.bss) = labt (bs :: § bss)

Breadth-first labelling

A small universe:

data U : Set; where

tree U - U

stream : U - U

2. U-U-=U

] : Set - U
El : U — Set
El (tree @) = Tree (El a)
El (stream a) = Stream (El a)
El (a ® b) El a x El b
EI'TA] A

Breadth-first labelling
Programs and WHNFs:

mutual
data Elp : U — Set; where
i . E/V\/ a — E/p d

fst : Elp (a® b) — Elp a

snd : Elp (a® b) — Elp b

lab : Tree A — Elp (stream | Stream B |) —
Elp (tree [B | @ stream [Stream B)

data El\y : U — Set; where

Breadth-first labelling
Programs and WHNFs:

mutual
data Elp : U — Set; where

data Elyy : U — Set; where
leaf : Elw (tree a)
node : oo (Elp (tree a)) — Ely a —
oo (Elp (tree a)) — Ely (tree a)
__ : Elwa - oo (Elp (stream a)) —
Ely (stream a)
. : Elwa- Elwb— Ely (a®b)
] :A-Ew][A]

Breadth-first labelling

Turning programs into WHNFs:

whnf : E/p a — E/W a

whnf (| w) = w

whnf (fst p) = fstw (whnf p)
whnf (snd p) = sndw (whnf p)
whnf (lab t bss) = laby t (whnf bss)

Turning programs into WHNFs:

fstw : Elw (a® b) — Elw a
fstw (x,y) = x
sndw : Elw (a & b) — Elw b
sndw (x.y) =y

Breadth-first labelling

0,1,2,... 0 1,2,3,...
PN
1,2,3,... 1 23 2 3,4,5,. ..
VRN /N

3,4,5,... 345.. e45.456..5 67,8,...
/ \ / \ / \
/ \ / \ / \

laby : Tree A — Ely (stream [Stream B |) —
Ely (tree [B | @ stream | Stream B |)
labyy leaf bss = (leaf,bss)
labyw (node I _r) (| b:: bs | :: bss) =
(node (f fstx) [b | (§fsty),[b bs | ::fsndy)
where x = lab (b /) (b bss);y = lab (b r) (snd x)

Breadth-first labelling

Interpreting programs:

mutual
I-lw : Elwa — Ela
[leaf]y = leaf
[node /' x r]y = node (§ [5/]p) [xJw (4[> rlp)
[X xs Jw = [xIw=glboxs]p

[(x.y) Iw = (I xIw.[¥ Iw)
[T x] 1w = X
[-]p : Elpa — El a

[plp = [whnf ply

Breadth-first labelling

label’ : Tree A — Stream B —
Elp (tree [B | @ stream [Stream B)
label' t bs = lab t (| ([bs | :: f snd (label’ t bs)))

label : Tree A — Stream B — Tree B
label t bs = [fst (label’ t bs)]p

Problems

Problems

» Large interpretive overhead: loss of sharing.
» Properties not proved automatically.

» Less of a problem if the method is used to
make proofs guarded.

Proofs

lterate fusion

map : (A - B) — Stream A — Stream B
map f (x :xs) = fx g mapf (bxs)
iterate : (A - A) - A — Stream A
iterate f x = x :: { iterate f (f x)

fusion : (Vx = h(f; x)=f (hx)) —
V x — map h (iterate f; x) = iterate f, (h x)

lterate fusion

Proof programs:

data _~p_ : Stream A — Stream A — Set where
. V¥ x - oo (bxs mp bys) -
XIXS Rp X:YS
~()_ 1V xs -
XS =p Y5 - VS =p Z5 - XS =p ZS
_d VXS - XS Xp XS

Soundness:

soundp : XS Xp YS — XS X YS

lterate fusion

fusion : (V x — h(f; x) =1f, (hx)) —
V x — map h (iterate f; x) ~p iterate f, (h x)
fusion hyp x =
map h (iterate f; x)
~(by definition)
h x :: § map h (iterate f; (f; x))
~(h x :: § fusion hyp (f; x))
h x :: § iterate f> (h (f; x))
~(h x :: § iterate-cong f, (hyp x))
h x :: § iterate f, (f> (h x))
~(by definition)
iterate f> (h x)
[

Wrapping up

Other examples

» Nested applications
(p (x:xs) = x 8¢ (¢x5)).
» Destructors (tail).

» Non-uniform moduli of production
(Thue-Morse sequence).

Ad-hoc.
Manual.

v

\{

Inefficient.
Useful.

v

v

Conclusions

Ad-hoc.
Manual.

v

v

Inefficient.
Useful.

v

v

