Beating the Productivity Checker Using Embedded Languages

Nils Anders Danielsson (Nottingham)

PAR 2010, Edinburgh, 2010-07-15

Guarded corecursion provides a simple principle for defining productive values:

```
iterate : (A \rightarrow A) \rightarrow A \rightarrow Stream A
iterate f x = x :: \sharp iterate f (f x)
```

Many productive, corecursive definitions fail to be guarded:

```
fib : Stream \mathbb{N}

fib = 0 :: \sharp zipWith \_+\_ fib (1 :: \sharp fib)
```

Many productive, corecursive definitions fail to be guarded:

```
fib : Stream \mathbb{N}
fib = 0 :: \sharp zipWith \_+\_ fib (1 :: \sharp fib)
```

Many productive, corecursive definitions fail to be guarded:

```
fib : Stream \mathbb{N}

fib = 0 :: \sharp zipWith \_+\_ fib (1 :: \sharp fib)
```

This talk: An *ad-hoc*, *manual* (but useful) method for making *productive* definitions guarded.

Many productive, corecursive definitions fail to be guarded:

```
fib : Stream \mathbb{N}

fib = 0 :: \sharp zipWith \_+\_ fib (1 :: \sharp fib)
```

Simple observation: If *zipWith* were a constructor, then the definition would be accepted.

Streams:

```
data Stream(A : Set) : Set where \_::\_: A \rightarrow \infty(Stream\ A) \rightarrow Stream\ A
```

Stream programs:

```
data Stream_P : Set \rightarrow Set_1 where
\_::\_ : A \rightarrow \infty (Stream_P A) \rightarrow Stream_P A
zipWith : (A \rightarrow B \rightarrow C) \rightarrow
Stream_P A \rightarrow Stream_P B \rightarrow Stream_P C
```

Stream programs:

Weak head normal forms:

```
data Stream_W : Set \rightarrow Set_1 where \_::\_: A \rightarrow Stream_P A \rightarrow Stream_W A
```

Stream programs:

```
data Stream_P: Set \rightarrow Set_1 where
\_::\_: A \rightarrow \infty (Stream_P A) \rightarrow Stream_P A
zipWith: (A \rightarrow B \rightarrow C) \rightarrow Stream_P A \rightarrow Stream_P B \rightarrow Stream_P C
```

Weak head normal forms:

```
data Stream_W : Set \rightarrow Set_1 where \_::\_: A \rightarrow Stream_P A \rightarrow Stream_W A
```

Turning programs into WHNFs:

```
whnf: Stream_P A \rightarrow Stream_W A

whnf (x :: xs) = x :: b xs

whnf (zipWith f xs ys) =

zipWith_W f (whnf xs) (whnf ys)
```

```
zipWith_W : (A \rightarrow B \rightarrow C) \rightarrow Stream_W A \rightarrow Stream_W B \rightarrow Stream_W C
zipWith_W f (x :: xs) (y :: ys) = f x y :: zipWith f xs ys
```

Turning programs into streams:

```
[\![-]\!]_{\mathsf{W}}: \mathit{Stream}_{\mathsf{W}} A \to \mathit{Stream} A
[\![x::xs]\!]_{\mathsf{W}} = x::\sharp [\![whnfxs]\!]_{\mathsf{W}}
```

Turning programs into streams:

mutual

```
[-]_{W}: Stream_{W} A \rightarrow Stream A

[x :: xs]_{W} = x :: \sharp [xs]_{P}

[-]_{P}: Stream_{P} A \rightarrow Stream A

[xs]_{P} = [whnf xs]_{W}
```

The sequence itself:

```
fib_{P}: Stream_{P} \mathbb{N}

fib_{P} = 0:: \sharp zipWith \_+\_ fib_{P} (1:: \sharp fib_{P})

fib: Stream \mathbb{N}

fib = \llbracket fib_{P} \rrbracket_{P}
```

Properties (have to be proved manually):

```
Fib-like: Stream \mathbb{N} \to Set

Fib-like ns = ns \approx 0 :: \sharp zipWith \_+\_ ns (1 :: \sharp ns)

Fib-like fib

Fib-like ms \to Fib-like ns \to ms \approx ns

\llbracket \text{ zipWith } f \text{ xs ys } \rrbracket_{\mathsf{P}} \approx \text{ zipWith } f \llbracket \text{ xs } \rrbracket_{\mathsf{P}} \llbracket \text{ ys } \rrbracket_{\mathsf{P}}
```

The method

- 1. Construct language including offending functions as constructors.
- 2. Define WHNF type.
- 3. Write whnf function.
- 4. Write interpreter: [_].
- 5. Write programs in language and interpret them.
- 6. (Optional.) Prove properties about programs.

Breadth-first

labelling

Potentially infinite trees:

```
data Tree (A : Set) : Set where
leaf : Tree A
node : \infty (Tree A) \rightarrow A \rightarrow \infty (Tree A) \rightarrow Tree A
```


 $1, 2, 3, \dots$

 $1, 2, 3, \dots$

 $1, 2, 3, \dots$


```
0, 1, 2, \dots
1, 2, 3, \dots
1, 2, 3, \dots
3, 4, 5, \dots
3, 4, 5, \dots
4, 5, \dots
5, 6, \dots
6, 7, 8, \dots
```

$$lab : Tree A \rightarrow Stream (Stream B) \rightarrow Tree B \times Stream (Stream B)$$

```
0, 1, 2, \dots
1, 2, 3, \dots
1, 2, 3, \dots
3, 4, 5, \dots
3, 4, 5, \dots
4, 5, \dots
4, 5, \dots
5, 6, \dots
6, 7, 8, \dots
```

```
lab: Tree A \rightarrow Stream (Stream B) \rightarrow Tree B \times Stream (Stream B)
label: Tree A \rightarrow Stream B \rightarrow Tree B
label t bs = t'
where (t',bss) = lab t (bs :: \sharp bss)
```

A small universe:

```
data U : Set_1 where
  tree : U \rightarrow U
  stream : U \rightarrow U
  \_\otimes\_ : U \rightarrow U \rightarrow U
  [\_] : Set \rightarrow U
FI: U \rightarrow Set
EI (tree a) = Tree (EI a)
EI (stream a) = Stream (EI a)
EI(a \otimes b) = EIa \times EIb
EI [A] = A
```

Programs and WHNFs:

```
mutual
   data El_P: U \rightarrow Set_1 where
      \downarrow : EI_W a \rightarrow EI_P a
      fst : El_P(a \otimes b) \rightarrow El_P a
      snd : El_P(a \otimes b) \rightarrow El_P b
      lab : Tree A \rightarrow El_P (stream \lceil Stream B \rceil) \rightarrow
               EI_{P} (tree [B] \otimes stream [Stream B])
   data El_W: U \rightarrow Set_1 where
```

```
Programs and WHNFs:
```

```
mutual
   data El_P: U \rightarrow Set_1 where
       . . .
   data El_W: U \rightarrow Set_1 where
      leaf : EI_W (tree a)
      node : \infty (El_P (tree a)) \rightarrow El_W a \rightarrow
                  \infty (EI_P (tree a)) \rightarrow EI_W (tree a)
      \_::\_: El_W a \rightarrow \infty (El_P (stream a)) \rightarrow
                  EI_{W} (stream a)
      \_,\_: El_W a \rightarrow El_W b \rightarrow El_W (a \otimes b)
       |\_| : A \rightarrow EI_{W} \lceil A \rceil
```

Turning programs into WHNFs:

```
\begin{array}{lll} \textit{whnf} & : \textit{El}_{P} \; a \to \textit{El}_{W} \; a \\ \textit{whnf} \; (\downarrow w) & = \; w \\ \textit{whnf} \; (\textit{fst} \; p) & = \; \textit{fst}_{W} \; (\textit{whnf} \; p) \\ \textit{whnf} \; (\textit{snd} \; p) & = \; \textit{snd}_{W} \; (\textit{whnf} \; p) \\ \textit{whnf} \; (\textit{lab} \; t \; \textit{bss}) & = \; \textit{lab}_{W} \; t \; (\textit{whnf} \; \textit{bss}) \end{array}
```

Turning programs into WHNFs:

```
fst_W : El_W (a \otimes b) \rightarrow El_W a

fst_W (x,y) = x

snd_W : El_W (a \otimes b) \rightarrow El_W b

snd_W (x,y) = y
```

```
0, 1, 2, \dots
1, 2, 3, \dots
1, 2, 3, \dots
3, 4, 5, \dots
3, 4, 5, \dots
4, 5, \dots
5, 6, \dots
6, 7, 8, \dots
```

```
\begin{array}{lll} \textit{lab}_{W} : \textit{Tree } A \rightarrow \textit{El}_{W} \ (\texttt{stream} \ \lceil \textit{Stream } B \ \rceil) \rightarrow & \textit{El}_{W} \ (\texttt{tree} \ \lceil B \ \rceil \otimes \texttt{stream} \ \lceil \textit{Stream } B \ \rceil) \\ \textit{lab}_{W} \ (\texttt{leaf} \ bss & = \ (\texttt{leaf},bss) \\ \textit{lab}_{W} \ (\texttt{node} \ l \ \_r) \ (\lceil \ b :: bs \ \rceil :: bss) & = \\ (\texttt{node} \ (\sharp \ fst \ x) \ \lceil \ b \ \rceil \ (\sharp \ fst \ y), \lceil \ \flat \ bs \ \rceil :: \sharp \ snd \ y) \\ \textbf{where} \ x & = \ \texttt{lab} \ (\flat \ l) \ (\flat \ bss); \ y & = \ \texttt{lab} \ (\flat \ r) \ (\texttt{snd} \ x) \\ \end{array}
```

Interpreting programs:

mutual

```
\| \|_{W} : El_{W} a \rightarrow El a
\| \operatorname{leaf} \|_{W} = \operatorname{leaf}
\llbracket \text{ node } I \times r \rrbracket_{W} = \text{ node } (\sharp \llbracket \flat I \rrbracket_{P}) \llbracket \times \rrbracket_{W} (\sharp \llbracket \flat r \rrbracket_{P})
\llbracket x :: xs \rrbracket_{\mathsf{W}} = \llbracket x \rrbracket_{\mathsf{W}} :: \sharp \llbracket \flat xs \rrbracket_{\mathsf{P}}
[(x,y)]_{W}^{W} = ([x]_{W},[y]_{W})
[ [x]]_{W} = x
\llbracket \_ \rrbracket_{\mathsf{P}} : \mathsf{El}_{\mathsf{P}} \ \mathsf{a} \to \mathsf{El} \ \mathsf{a}
[p]_{p} = [whnf p]_{w}
```

```
label': Tree A → Stream B → El_P (tree \lceil B \rceil \otimes stream \lceil Stream \rceil)
label' t bs = lab t (\psi (\psi bs \gamma :: \psi snd (label' t bs)))
label: Tree A → Stream B → Tree B
label t bs = \llbracket fst (label' t bs) \rrbracket_P
```

Problems

Problems

- ► Large interpretive overhead: loss of sharing.
- Properties not proved automatically.
- ► Less of a problem if the method is used to make *proofs* guarded.

Proofs

Iterate fusion

```
map: (A \rightarrow B) \rightarrow Stream A \rightarrow Stream B

map f (x :: xs) = f x :: \sharp map f (\flat xs)

iterate: (A \rightarrow A) \rightarrow A \rightarrow Stream A

iterate f x = x :: \sharp iterate f (f x)
```

fusion :
$$(\forall x \rightarrow h (f_1 x) \equiv f_2 (h x)) \rightarrow \forall x \rightarrow map \ h \ (iterate \ f_1 \ x) \approx iterate \ f_2 \ (h \ x)$$

Iterate fusion

Proof programs:

data
$$_\approx_{P-}$$
 : Stream $A \to S$ tream $A \to S$ et where $_::_$: $\forall x \to \infty \ (\flat xs \approx_P \flat ys) \to x :: xs \approx_P x :: ys$ $_\approx\langle_\rangle_$: $\forall xs \to xs \approx_P ys \to ys \approx_P zs \to xs \approx_P zs$ $_\square$: $\forall xs \to xs \approx_P xs$

Soundness:

$$sound_P$$
: $xs \approx_P ys \rightarrow xs \approx ys$

Iterate fusion

```
fusion: (\forall x \rightarrow h (f_1 x) \equiv f_2 (h x)) \rightarrow
   \forall x \rightarrow map \ h \ (iterate \ f_1 \ x) \approx_{P} iterate \ f_2 \ (h \ x)
fusion hyp x =
    map h (iterate f_1 x)
         \approx \langle by definition \rangle
    h x :: \sharp map \ h \ (iterate \ f_1 \ (f_1 \ x))
         \approx \langle h x :: \sharp fusion hyp (f_1 x) \rangle
    h x :: \sharp iterate f_2 (h (f_1 x))
         \approx \langle h x :: \sharp iterate-cong f_2 (hyp x) \rangle
    h x :: \sharp iterate f_2(f_2(h x))
         \approx \langle by definition \rangle
    iterate f_2 (h x)
```

Wrapping up

Other examples

- Nested applications $(\varphi (x :: xs) = x :: \sharp \varphi (\varphi xs)).$
- Destructors (tail).
- Non-uniform moduli of production (Thue-Morse sequence).

Conclusions

- ► Ad-hoc.
- ► Manual.
- ► Inefficient.
- ▶ Useful.

Conclusions

- ► Ad-hoc.
- ► Manual.
- ► Inefficient.
- ▶ Useful.

