Nils Anders Danielsson (Nottingham)
Joint work with UIf Norell (chaimers)

[FL 2008, 2008-09-10

» Can be abused.
» Can enable compact/domain-specific notation.

If used, then ease of parsing for humans is
important.

(Agda uses mixfix operators.)

Easy to implement with sufficient efficiency.

» Memoising backtracking parser combinators.

Infix I
Prefix if_then_else_
Postfix _[]
Closed -1

Mixfix operators should be easy to parse for humans.

» Precedence graph.
» Simple grammar based on graph.

Easy to declare (in Agda):
k. _[] if then else [_]
But what does it mean? How should
O, n:NF[n+11]:N

be parsed?

Standard solution: Precedence/associativity.

Result of parsing

Precedence Associativity "0, No. Why should _+_ and _A_ be related?
< % x +(y * z) » Not modular.
x < + (x+y) z » Unnecessary design choices.
+ =% Both left (x + y) * z » Fewer related operators =
+ =% Both right x + (y * z) parsing easier for humans?
Otherwise Parse error

» Directed acyclic graphs.

» Cyclic graphs often lead to ambiguities.
A _ » And left (right) recursive grammars.
T } = _N_ <

No.

—t » One or more operators per node.

v

Some operators with associated associativity.
Note that total and partial orders are DAGs.

v

Given a DAG a context-free grammar is constructed.

Nonterminals:

expr Arbitrary expression. g . .
Assume one infix, non-associative, binary operator

i Expression headed by operator from per node.

precedence level i.
iT Expression headed by operator which in=1i1 opi™™ il
binds tighter than precedence level i.

expr := \/{ i is a graph node }

7]
iT::=\/{7‘i<j}

Multiple operators with the same precedence:
The internal part of an expression:

non ..__ 0N on 10N
op;*" = op;11 exprop;1s expr -+ op; i)
non .. __ on on 11011
op; = 0 i1 expr o i2 expr - - - Opi,k
| op expr opi expr -+ opl,

7 e IT Op}.)ostﬁx+
o ;
: -~ . fi
Not left recursive, but parse trees need to be i o= 1 opf"JSt X+
post-processed: i1 (o p}eft "
rest(op---op) = (---(rest op)---)op

Fold left.

expr = \/{7‘ i is a graph node}
o= \/{]‘ i<j}
/I.\ - ’T (o p?ostﬁx ‘ Op}-Eft ’T)+ 7 OP?IOSEd
i1 opi™ il

(opf™™ | il op™™')* if
. ostfix eft -
i (op™™ | op™ i1)*
opf* = \/{Pl expr py expr -+ pic| ...}

Bample Propetties
="

» All name parts unique = unambiguous.
» Neither left nor right recursive.

expr = plus | fac | closed » Implemented in the total language Agda.
plus = plus] (+ plusl)”

plus] = fac| closed
fac = closed '

closed ::= (expr) |0

Possible performance pitfalls:

)) » Grammar often far from being left factorised.
1. Parse the program, treating expressions as

flat lists of tokens. » The graph's sharing might be lost.

2. Scope checking, fixity declarations. With memoising backtracking parser combinators:

3. Parse expressions, using the precedence graphs. » Simple implementation.
» Sufficient efficiency.
(In prototype.)

Aasa's work is close to ours, but trades simplicity
» Lots of work on parsing mixfix operators. for more precedence correct expressions.

» This particular approach appears new:
. . Assume —_ < _A_. What about a A = b?
» Directed acyclic graphs.

» Simple grammar. » Our approach: No parse since _A_ £ —_.
» Aasa: a A (= b).

Summary

An approach to mixfix operators which is
hopefully easy to understand.

» Precedence graph.
» Simple grammar.
» Simple implementation.
Plan to update Agda’s support for mixfix operators.

Agda implementation

mutual
data Expr : Set where
{)_ : forall {assoc} —->
Expr -> Internal (infx assoc) -> Expr -> Expr
() : Expr -> Internal postfx -> Expr
(D Internal prefx -> Expr -> Expr
«“y - Internal closed -> Expr

data Internal (fix : Fixity) : Set where
e : forall {arity} —>
Operator fix arity -> Vec Expr arity ->
Internal fix

(Questions?

Agda implementation

grammar (node (precedence ops is)) =

{-) <$> [closed]
| _{(_) <$> 1 ® [infx non | ® 1
| £flip (foldr _$_) <$> preRight + ® |
| foldl (flip _$.) <$> T ® postLeft +
where
[-] = \fix -> internal (ops fix)

T = ! nodes is

preRight = (_)_ <$> [prefx |
I _(_)- <$> 1 ® [infx right |

postLeft = flip _(_) <$> [postfx |
| (\op e; e1 => e1 (op) ep) <$> [infx left | ® |

