Nested induction and coinduction

Nils Anders Danielsson

2014-06-13

The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement n® 247219
It has also received financial support from EPSRC and (perhaps) the Swedish Research Council. This presentation does not necessarily reflect the views of the ERC or the EU. The EU is not liable for any use of
the presented information.

» Programming: Introducing hand-crafted types.
» Mathematics/logic: Defining sets/types.

» Induction: Finite.
» Coinduction: (Potentially) infinite.

» Combinations.
Example: Liveness properties.

Induction

Values of a certain type are constructed by applying
certain rules. The rules must only be applied a finite
number of times.

» 0,1, 2,3, ..
» Two rules:
n : N
0:N 1+n:N

Two constructors, zero and successor:

n : N
zero : N sucn : N

Two constructors, zero and successor:

n : N
zero : N sucn : N

zero

suc zero

suc (suc zero)

suc (suc (suc zero))

z: A xs : List A
nil : List A consx xs : List A

nil

cons 0 nil

cons 1 nil

cons 0 (cons 1 nil)

Writing programs

Destruction

program : Inductive — W hatever

Values in inductive types can be destructed using
iteration, in which each constructor is uniformly
replaced by a (total) function.

Writing programs

Destruction

program : Inductive — W hatever

Values in inductive types can be destructed using
iteration, in which each constructor is uniformly
replaced by a (total) function.

cons 1 (cons 2 (cons 3 nil))

Y
add 1 (add 2 (add 30))

Writing programs

Destruction

program : Inductive — W hatever

Values in inductive types can be destructed using
iteration, in which each constructor is uniformly
replaced by a (total) function.

cons 1 (cons 2 (cons 3 nil))

U
1+ (24 (3+0))

sum : List N — N
sum nil = 0

sum (cons x xs) = x + sum s

sum @ List N — N
sum nil =0
sum (cons x xs) = x + sum s

sum (cons 5 (cons 3 nil)) =

sum @ List N — N
sum nil =0
sum (cons x xs) = x + sum s

sum (cons 5 (cons 3 nil))
5 + sum (cons 3 nil) =

sum @ List N — N
sum nil =0
sum (cons x xs) = x + sum s

sum (cons 5 (cons 3 nil))
5 + sum (cons 3 nil)
5+ (3 + sum nil)

sum @ List N — N
sum nil =0
sum (cons x xs) = x + sum s

sum (cons 5 (cons 3 nil))
5 + sum (cons 3 nil)
5+ (3 + sum nil)

54 (3+0)

sum @ List N — N
sum nil =0
sum (cons x xs) = x + sum s

sum (cons 5 (cons 3 nil))
5 + sum (cons 3 nil)
5+ (3 + sum nil)

54 (3+0)

8

Scheme for lists:

f: ListA— X
f nil —n
f (consz xs) = cx (f xs)

f (cons 5 (cons 3 nil)) =
C 5% (C 3 n)

primes : List N — List N
primes nil = nil
primes (cons x xs) =
if prime x then cons x (primes xs)
else primes Ts

bad : List A— N
bad nil =0
bad (cons x xs) = bad (cons = xs)

bad : List A— N
bad nil =0
bad (cons x xs) = bad (cons = xs)

bad (cons 0 nil) =

bad : List A— N
bad nil =0
bad (cons x xs) = bad (cons = xs)

bad (cons 0 nil) =
bad (cons 0 nil) =

bad : List A— N
bad nil =0
bad (cons x xs) = bad (cons = xs)

bad (cons 0 nil) =
bad (cons 0 nil) =

Non-termination

» Especially bad in (certain) logics: 2 + 2 = 5.
» lteration guarantees termination.

» lteration can be awkward.
Many other recursion schemes exist.

Induction

Inductive definitions are very common in
computer science:

» Data types (functional programming).

» Predicates used to state program correctness:
“the list xs contains only primes”.

» Semantics (meaning) of programs.
» Syntax of programs.

» Type systems.

> ..

Coinduction

Coinduction

Dual to induction:

Induction Coinduction
Basic concept | Constructors Destructors
Programs Destruct values Construct values

(recursion) (corecursion)

Values of a certain type are destructed by applying
certain rules. The rules must only be applied a finite
number of times.

Two destructors, head and tail:

xs : Stream A xs : Stream A
head zs : A tail zs : Stream A
head zs =0

I
—_

head (tail xs)
head (tail (tail zs)) = 2

zs = 0,1,2,...

Writing programs

Construction

program : Whatever — Coinductive

Values in coinductive types can be constructed
using coiteration, in which each destructor is
uniformly replaced by a (total) function.

Scheme for streams:

f: X — Stream A
head (fx) = hx
tail (fx) = f(tx)

head (tail (tail (f x))) =
h @t @)

nats : N — Stream N
head (natsn) = n
tail (natsn) = nats (1 +n)

nats n =mn, 14+n, 2+n, ..

nats : N — Stream N
head (natsn) = n
tail (natsn) = nats (1 +n)

nats n
nats (1 + n)

n, 14+n, 24+n, ..
1+n, 24+n, ..

nats : N — Stream N
head (natsn) = n
tail (natsn) = nats (1 +n)

nats n
nats (1 + n)

n, 14+n, 24+n, ..
14+n, 24+n, ..

head (tail (tail (nats 0))) =

Example: Constructing a stream

nats : N — Stream N
head (natsn) = n
tail (natsn) = nats (1 +n)

nats n =n, 14+n, 2+n, ..
nats (1 +n) = 1+n, 24+n, ..

head (tail (tail (nats 0))) =

head (tail (nats (1 + 0)))

Example: Constructing a stream

nats : N — Stream N
head (natsn) = n
tail (natsn) = nats (1 +n)

nats n =n, 14+n, 2+n, ..
nats (1 +n) = 1+n, 24+n, ..

head (tail (tail (nats 0))) =
head (tail (nats (1 4+
head (nats (1 + (1+ 0)))

Example: Constructing a stream

nats : N — Stream N
head (natsn) = n
tail (natsn) = nats (1 +n)

nats n =n, 14+n, 2+n, ..
nats (1 +n) = 1+n, 24+n, ..

head (tail (tail (nats
head (tail (nats (1 4+
head (nats (1 + (1+

1+ (1+

inc : Stream N — Stream N
head (inc xs) = 1 + head xs
tail (inc zs) = inc (tail xs)

inc : Stream N — Stream N
head (inc xs) = 1 + head xs
tail (inc xzs) = inc (tail xs)

head (tail (inc (nats 0))) =

inc = Stream N — Stream N
head (inc xs) = 1 + head xs
tail (inc xzs) = inc (tail xs)

head (tail (inc (nats 0))) =
head (inc (tail (nats 0)))

inc = Stream N — Stream N
head (inc xs) = 1 + head xs
tail (inc xzs) = inc (tail xs)

head (tail (inc (nats 0))) =
head (inc (tail (nats 0)))
1 + head (tail (nats 0))

Example: Constructing a stream

inc : Stream N — Stream N
head (inc xs) = 1+ head zs
tail (inc xs) = inc (tail xs)

head (tail (inc (nats 0))) =
head (inc (tail (nats 0))) =
1 + head (tail (nats 0)) =
141

bad : Stream N
head bad = 0
tail bad = tail bad

bad : Stream N
head bad = 0
tail bad = tail bad

head (tail bad) =

bad : Stream N
head bad = 0
tail bad = tail bad

head (tail bad) =
head (tail bad) =

bad : Stream N
head bad = 0
tail bad = tail bad

head (tail bad) =
head (tail bad) =

Coinduction
using
constructors

Values of a certain type are constructed by applying
certain rules.

z: A xs : Stream A

consx xs : Stream A

cons 0 (cons 1 (cons 2 (cons 3 ...)))
cons 2 (cons 3 (cons 5 (cons 7 ...)))

head (cons z zs)
tail (conszx xs) = xs

I
8

Scheme for streams:

f: X — Stream A
fx = cons(hx)(f(tx))

fz
cons (hz) (f (tz))
cons (h z) (cons (h (tz)) (f (t (tx))))

It is always possible to compute the next
constructor in a finite number of steps.

nats : N — Stream N
natsn = consn (nats (1 +n))

nats : N — Stream N
natsn = consn (nats (1 +n))

nats 0 =

nats : N — Stream N
natsn = consn (nats (1 +n))

nats 0
cons 0 (nats 1)

nats : N — Stream N
natsn = consn (nats (1 +n))

nats 0
cons 0 (nats 1)
cons 0 (cons 1 (nats 2))

Example: Constructing a stream

nats : N — Stream N
natsn = consn (nats (1 +n))

nats 0

cons 0 (nats 1)
cons 0 (cons 1 (nats 2)) =
cons 0 (cons 1 (cons 2 (nats 3))) =

Example: Constructing a stream

nats : N — Stream N
natsn = consn (nats (1 +n))

nats 0

cons 0 (nats 1)
cons 0 (cons 1 (nats 2)) =
cons 0 (cons 1 (cons 2 (nats 3))) =

inc : Stream N — Stream N
inc (cons x xs) = cons (1 + x) (inc zs)

inc : Stream N — Stream N
inc (cons x xs) = cons (1 + x) (inc zs)

inc : Stream N — Stream N
head (inc xs) = 1 + head xs
tail (inc xs) = inc (tail xs)

Non-example: Constructing a stream

primes : Stream N — Stream N
primes (cons x xs) =
if prime x then cons x (primes xs)
else pPrimes rs

Example: Potentially infinite lists

xz: A xs : Colist A
nil : Colist A consx xs : Colist A

nil
cons 0 nil
cons 0 (cons 1 nil)

cons 0 (cons 1 (cons 2 (cons 3 ...)))

Coinduction

Examples of uses of coinductive definitions in
computer science:

» Data types.

» Predicates used to state program correctness:
“the stream xs contains only primes”.

Modelling of abstract data types.
Non-terminating programs in total languages.
Semantics (meaning) of non-termination.

vV v v Vv

Nested induction
and coinduction

» SP: Representation of stream processors.
» run : SP — Stream Bit — Stream Bit

Example: Stream processors

x : SP y: SP b : Bit x: SP
getxy : SP putbx : SP

» get x y: Read one bit, continue as x if 0, y if 1.
» put b x: Write b, continue as x.

copy : SP
copy = get (put 0 copy) (put 1 copy)

not : SP
not = get (put 1 not) (put 0 not)

copy : SP
copy = get (put 0 copy) (put 1 copy)

not : SP
not = get (put 1 not) (put 0 not)

Are these definitions OK?

How should this mixed definition be interpreted?

x : SP y: SP b : Bit x: SP
getxy : SP putbx : SP

Example: Stream processors

How should this mixed definition be interpreted?

x : SP y : SP b : Bit x: SP
getxy : SP putbx : SP

QOuter inductive definition, inner coinductive one:
» Only finite number of gets.
» Cannot define copy or not.

Example: Stream processors

How should this mixed definition be interpreted?

x : SP y : SP b : Bit x: SP
getxy : SP putbx : SP

Outer coinductive definition, inner inductive one:
» Only finite number of consecutive gets.
» Total number of gets can be infinite.
» Can define copy and not.

run : SP — Stream Bit — Stream Bit
run (get z y) (cons 0 bs) = run x bs

run (get x y) (cons 1 bs) = runy bs

run (put b z) bs = cons b (run x bs)

Example: Stream processors

What if get were coinductive?

x: SP y : SP b : Bit x : SP
getxy : SP putbx : SP

Could define sink:

sink : SP
sink = get sink sink

Could not define run: not productive.

Example: Stream processors

By combining induction and coinduction,
rather than using only coinduction:

» Fewer stream processors allowed.
» But can define run.

Trade-off: Less data, more functions.

Nested induction and coinduction

Other examples:
» Parser combinators.
» Program equivalences.
» Subtyping.
> ..

Summary

» Induction: Finite.
» Coinduction: (Potentially) infinite.

» Nested induction and coinduction:
Both finite and infinite.
Precise control over size of data.

Bonus slides

Example: Potentially infinite lists

x: A xs : O
nil : Colist, AO consx xs : Colist; A O

xs : Colist A
destruct zs : Colist; A (Colist A)

destruct zs = cons 0 ys
destruct ys = cons 1 zs
destruct zs = nil

zs = 0,1

Example: Stream processors

Outer coinductive definition, inner inductive one:

r: SP; O y: SP,O p: Bit xz : O

getzy : SP, O putbzx : SP, O

x : SP
destruct z : SP; SP

Example: Stream processors

Outer inductive definition, inner coinductive one:
x O y : O b : Bit x: SP; O
getxy : SP;, O putbz : SP, O

x : SP; SP

construct z : SP

QOuter inductive definition, inner coinductive one:

xs : Stream xs : Stream

cons-zero xs : Stream cons-one xs : Stream

	Introduction
	Induction
	Coinduction
	Coinduction using constructors
	Nested induction and coinduction
	Summary
	Bonus slides

