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» Programming: Introducing hand-crafted types.
» Mathematics/logic: Defining sets/types.



» Induction: Finite.
» Coinduction: (Potentially) infinite.

» Combinations.
Example: Liveness properties.



Induction



Values of a certain type are constructed by applying
certain rules. The rules must only be applied a finite
number of times.



» 0,1, 2,3, ..
» Two rules:
n : N
0:N 1+n:N



Two constructors, zero and successor:

n : N
zero : N sucn : N



Two constructors, zero and successor:

n : N
zero : N sucn : N

zero

suc zero

suc (suc zero)

suc (suc (suc zero))



z: A xs : List A
nil : List A consx xs : List A

nil

cons 0 nil

cons 1 nil

cons 0 (cons 1 nil)



Writing programs

Destruction

program : Inductive — W hatever

Values in inductive types can be destructed using
iteration, in which each constructor is uniformly
replaced by a (total) function.



Writing programs

Destruction

program : Inductive — W hatever

Values in inductive types can be destructed using
iteration, in which each constructor is uniformly
replaced by a (total) function.

cons 1 (cons 2 (cons 3 nil))

Y
add 1 (add 2 (add 30))



Writing programs

Destruction

program : Inductive — W hatever

Values in inductive types can be destructed using
iteration, in which each constructor is uniformly
replaced by a (total) function.

cons 1 (cons 2 (cons 3 nil))

U
1+ (24 (3+0))



sum : List N — N
sum nil = 0

sum (cons x xs) = x + sum s



sum @ List N — N
sum nil =0
sum (cons x xs) = x + sum s

sum (cons 5 (cons 3 nil)) =



sum @ List N — N
sum nil =0
sum (cons x xs) = x + sum s

sum (cons 5 (cons 3 nil))
5 + sum (cons 3 nil) =



sum @ List N — N
sum nil =0
sum (cons x xs) = x + sum s

sum (cons 5 (cons 3 nil))
5 + sum (cons 3 nil)
5+ (3 + sum nil)



sum @ List N — N
sum nil =0
sum (cons x xs) = x + sum s

sum (cons 5 (cons 3 nil))
5 + sum (cons 3 nil)
5+ (3 + sum nil)

54 (3+0)



sum @ List N — N
sum nil =0
sum (cons x xs) = x + sum s

sum (cons 5 (cons 3 nil))
5 + sum (cons 3 nil)
5+ (3 + sum nil)

54 (3+0)

8



Scheme for lists:

f: ListA— X
f nil —n
f (consz xs) = cx (f xs)

f (cons 5 (cons 3 nil)) =
C 5% (C 3 n)



primes : List N — List N
primes nil = nil
primes (cons x xs) =
if prime x then cons x (primes xs)
else primes Ts



bad : List A— N
bad nil =0
bad (cons x xs) = bad (cons = xs)



bad : List A— N
bad nil =0
bad (cons x xs) = bad (cons = xs)

bad (cons 0 nil) =



bad : List A— N
bad nil =0
bad (cons x xs) = bad (cons = xs)

bad (cons 0 nil) =
bad (cons 0 nil) =



bad : List A— N
bad nil =0
bad (cons x xs) = bad (cons = xs)

bad (cons 0 nil) =
bad (cons 0 nil) =



Non-termination

» Especially bad in (certain) logics: 2 + 2 = 5.
» lteration guarantees termination.

» lteration can be awkward.
Many other recursion schemes exist.



Induction

Inductive definitions are very common in
computer science:

» Data types (functional programming).

» Predicates used to state program correctness:
“the list xs contains only primes”.

» Semantics (meaning) of programs.
» Syntax of programs.

» Type systems.

> ..



Coinduction



Coinduction

Dual to induction:

Induction Coinduction
Basic concept | Constructors Destructors
Programs Destruct values Construct values

(recursion) (corecursion)



Values of a certain type are destructed by applying
certain rules. The rules must only be applied a finite
number of times.



Two destructors, head and tail:

xs : Stream A xs : Stream A
head zs : A tail zs : Stream A
head zs =0

I
—_

head (tail xs)
head (tail (tail zs)) = 2

zs = 0,1,2,...



Writing programs

Construction

program : Whatever — Coinductive

Values in coinductive types can be constructed
using coiteration, in which each destructor is
uniformly replaced by a (total) function.



Scheme for streams:

f: X — Stream A
head (fx) = hx
tail (fx) = f(tx)

head (tail (tail (f x))) =
h @t @ )



nats : N — Stream N
head (natsn) = n
tail (natsn) = nats (1 +n)

nats n =mn, 14+n, 2+n, ..



nats : N — Stream N
head (natsn) = n
tail (natsn) = nats (1 +n)

nats n
nats (1 + n)

n, 14+n, 24+n, ..
1+n, 24+n, ..



nats : N — Stream N
head (natsn) = n
tail (natsn) = nats (1 +n)

nats n
nats (1 + n)

n, 14+n, 24+n, ..
14+n, 24+n, ..

head ( tail ( tail (nats 0))) =



Example: Constructing a stream

nats : N — Stream N
head (natsn) = n
tail (natsn) = nats (1 +n)

nats n =n, 14+n, 2+n, ..
nats (1 +n) = 1+n, 24+n, ..

head ( tail ( tail (nats 0))) =

head ( tail (nats (1 + 0)))



Example: Constructing a stream

nats : N — Stream N
head (natsn) = n
tail (natsn) = nats (1 +n)

nats n =n, 14+n, 2+n, ..
nats (1 +n) = 1+n, 24+n, ..

head ( tail ( tail (nats 0))) =
head ( tail (nats (1 4+
head (nats (1 + (1+ 0)))



Example: Constructing a stream

nats : N — Stream N
head (natsn) = n
tail (natsn) = nats (1 +n)

nats n =n, 14+n, 2+n, ..
nats (1 +n) = 1+n, 24+n, ..

head ( tail ( tail (nats
head ( tail (nats (1 4+
head (nats (1 + (1+

1+ (1+



inc : Stream N — Stream N
head (inc xs) = 1 + head xs
tail (inc zs) = inc (tail xs)



inc : Stream N — Stream N
head (inc xs) = 1 + head xs
tail (inc xzs) = inc (tail xs)

head (tail (inc (nats 0))) =



inc = Stream N — Stream N
head (inc xs) = 1 + head xs
tail  (inc xzs) = inc (tail xs)

head (tail (inc (nats 0))) =
head (inc (tail (nats 0)))



inc = Stream N — Stream N
head (inc xs) = 1 + head xs
tail  (inc xzs) = inc (tail xs)

head (tail (inc (nats 0))) =
head (inc (tail (nats 0)))
1 + head (tail (nats 0))



Example: Constructing a stream

inc : Stream N — Stream N
head (inc xs) = 1+ head zs
tail (inc xs) = inc (tail xs)

head (tail (inc (nats 0))) =
head (inc (tail (nats 0))) =
1 + head (tail (nats 0)) =
141



bad : Stream N
head bad = 0
tail bad = tail bad



bad : Stream N
head bad = 0
tail bad = tail bad

head (tail bad) =



bad : Stream N
head bad = 0
tail bad = tail bad

head (tail bad) =
head (tail bad) =



bad : Stream N
head bad = 0
tail bad = tail bad

head (tail bad) =
head (tail bad) =



Coinduction
using
constructors



Values of a certain type are constructed by applying
certain rules.



z: A xs : Stream A

consx xs : Stream A

cons 0 (cons 1 (cons 2 (cons 3 ...)))
cons 2 (cons 3 (cons 5 (cons 7 ...)))



head (cons z zs)
tail (conszx xs) = xs

I
8



Scheme for streams:

f: X — Stream A
fx = cons(hx)(f(tx))

fz
cons (hz) (f (tz))
cons (h z) (cons (h (tz)) (f (t (tx))))



It is always possible to compute the next
constructor in a finite number of steps.



nats : N — Stream N
natsn = consn (nats (1 +n))



nats : N — Stream N
natsn = consn (nats (1 +n))

nats 0 =



nats : N — Stream N
natsn = consn (nats (1 +n))

nats 0
cons 0 (nats 1)



nats : N — Stream N
natsn = consn (nats (1 +n))

nats 0
cons 0 (nats 1)
cons 0 (cons 1 (nats 2))



Example: Constructing a stream

nats : N — Stream N
natsn = consn (nats (1 +n))

nats 0

cons 0 (nats 1)
cons 0 (cons 1 (nats 2)) =
cons 0 (cons 1 (cons 2 (nats 3))) =



Example: Constructing a stream

nats : N — Stream N
natsn = consn (nats (1 +n))

nats 0

cons 0 (nats 1)
cons 0 (cons 1 (nats 2)) =
cons 0 (cons 1 (cons 2 (nats 3))) =



inc : Stream N — Stream N
inc (cons x xs) = cons (1 + x) (inc zs)



inc : Stream N — Stream N
inc (cons x xs) = cons (1 + x) (inc zs)

inc : Stream N — Stream N
head (inc xs) = 1 + head xs
tail (inc xs) = inc (tail xs)



Non-example: Constructing a stream

primes : Stream N — Stream N
primes (cons x xs) =
if prime x then cons x (primes xs)
else pPrimes rs



Example: Potentially infinite lists

xz: A xs : Colist A
nil : Colist A consx xs : Colist A

nil
cons 0 nil
cons 0 (cons 1 nil)

cons 0 (cons 1 (cons 2 (cons 3 ...)))



Coinduction

Examples of uses of coinductive definitions in
computer science:

» Data types.

» Predicates used to state program correctness:
“the stream xs contains only primes”.

Modelling of abstract data types.
Non-terminating programs in total languages.
Semantics (meaning) of non-termination.

vV v v Vv



Nested induction
and coinduction



» SP: Representation of stream processors.
» run : SP — Stream Bit — Stream Bit



Example: Stream processors

x : SP y: SP b : Bit x: SP
getxy : SP putbx : SP

» get x y: Read one bit, continue as x if 0, y if 1.
» put b x: Write b, continue as x.



copy : SP
copy = get (put 0 copy) (put 1 copy)

not : SP
not = get (put 1 not) (put 0 not)



copy : SP
copy = get (put 0 copy) (put 1 copy)

not : SP
not = get (put 1 not) (put 0 not)

Are these definitions OK?



How should this mixed definition be interpreted?

x : SP y: SP b : Bit x: SP
getxy : SP putbx : SP




Example: Stream processors

How should this mixed definition be interpreted?

x : SP y : SP b : Bit x: SP
getxy : SP putbx : SP

QOuter inductive definition, inner coinductive one:
» Only finite number of gets.
» Cannot define copy or not.



Example: Stream processors

How should this mixed definition be interpreted?

x : SP y : SP b : Bit x: SP
getxy : SP putbx : SP

Outer coinductive definition, inner inductive one:
» Only finite number of consecutive gets.
» Total number of gets can be infinite.
» Can define copy and not.



run : SP — Stream Bit — Stream Bit
run (get z y) (cons 0 bs) = run x bs

run (get x y) (cons 1 bs) = runy bs

run (put b z) bs = cons b (run x bs)



Example: Stream processors

What if get were coinductive?

x: SP y : SP b : Bit x : SP
getxy : SP putbx : SP

Could define sink:

sink : SP
sink = get sink sink

Could not define run: not productive.



Example: Stream processors

By combining induction and coinduction,
rather than using only coinduction:

» Fewer stream processors allowed.
» But can define run.

Trade-off: Less data, more functions.



Nested induction and coinduction

Other examples:
» Parser combinators.
» Program equivalences.
» Subtyping.
> ..



Summary

» Induction: Finite.
» Coinduction: (Potentially) infinite.

» Nested induction and coinduction:
Both finite and infinite.
Precise control over size of data.



Bonus slides



Example: Potentially infinite lists

x: A xs : O
nil : Colist, AO  consx xs : Colist; A O

xs : Colist A
destruct zs : Colist; A (Colist A)

destruct zs = cons 0 ys
destruct ys = cons 1 zs
destruct zs = nil

zs = 0,1



Example: Stream processors

Outer coinductive definition, inner inductive one:

r: SP; O y: SP,O  p: Bit xz : O

getzy : SP, O putbzx : SP, O

x : SP
destruct z : SP; SP




Example: Stream processors

Outer inductive definition, inner coinductive one:
x O y : O b : Bit x: SP; O
getxy : SP;, O putbz : SP, O

x : SP; SP

construct z : SP




QOuter inductive definition, inner coinductive one:

xs : Stream xs : Stream

cons-zero xs : Stream  cons-one xs : Stream
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