Nils Anders Danielsson

Division meeting, Aspenas, 2019-09-20



@0

v

v

v

v

@0 is used to mark arguments and definitions
that should be erased at run-time.
Agda is supposed to make sure that:
» Things marked as erased are
actually erased.
» There is never any data missing
at run-time.

The typing rules are based on work by
McBride and Atkey.

Andreas is working on the implementation.



ok: {C0OA:Set} >A—- A
ok x = x

-— not-ok : {@0 A : Set} - @0 A — A
-- not-ok x = x

-— Not-ok : @0 Bool — Set
-— Not-ok true = T
—-— Not-ok false 1



A type-level variant of @0:

record Erased (@0 A : Set a) : Set a where
constructor [_]
field
@0 erased : A

open Erased public



Erased is a monad:

return : {@0 A : Set a} -~ @0 A — Erased A
return x = [ x |

== .
{©@0 A : Set a} {@0 B : Set b} —
Erased A - (A — Erased B) — Erased B
x >= = [ erased (f (erased x)) ]



An
application



An application

| have tried to define natural numbers that compute
(roughly) like unary natural numbers at
compile-time, but like binary natural numbers at
run-time.



The underlying representation

Binary natural numbers:

Bin' : Set
Bin' = List Bool

The representation of a given natural number is not
unique. A split surjection:

to-N : Bin' -+ N



Indexed binary numbers

Binary natural numbers representing
a given natural number:

abstract

Bin-[_] : @0 N — Set
Bin-[ n] =
| (X Bin" A b — Erased (to-N b = n)) ||

» Abstract so the underlying representation can
be changed without breaking client code.

» Truncated so that the representation is unique.



Binary natural numbers:

Bin : Set
Bin = X (Erased N) A n — Bin-[ erased n |

Returns the erased index:

©@ | _]: Bin—>N
L[n], _J=n



A key lemma:

[]_{Cgér(‘)g/; - Set a} {0 xy: A} »
Erased (x=y) > [ x| =[y]



A key lemma:

[]-cong :
{@0 A:Set a} {0 xy: A} —»
Erased (x=y) > [x]| = [ y]
With the K rule and propositional equality:

[]-cong [ refl | = refl



[]-cong

A key lemma:

[]-cong
{@0 A:Seta} {0 xy: A} —
Erased (x=y) > [x] = [ y]
With the K rule and propositional equality:
[]-cong [ refl | = refl
With Cubical Agda and paths:

[]-cong [eq| = A i—[eqi]



[]-cong

A key lemma:

[]-cong :
{@OgA :Set a} {@0 xy: A} -
Erased (x=y) = [x]| =[y]

With the K rule and propositional equality:
[]-cong [ refl | = refl

With Cubical Agda and paths:
[]-cong [eq| = A i—[eqi]

In both cases []-cong is an equivalence that
maps [ refl x| to refl [ x|.



Non-indexed binary numbers

Recall:

Bin : Set
Bin = ¥ (Erased N) A n - Bin-[ erased n |

@ |_|: Bin—N
LIn]. _]=mn

Equality follows from equality for the erased indices:

Erased ([ x | =]y ]) 2 (x=y)



abstract

plus : {@0 m n: N} —
Bin-[ m| - Bin-[ n] - Bin-[ m + n|
plus = ... == Add with carry.

@ _: Bin -+ Bin = Bin
([m].x)@(n].y)=[m+n] plusxy



Goal:
» Bin =~ N (in a non-erased context).

» With the forward direction pointwise equal to
|_| (in an erased context).



Stability



Stability

A type A is stable if Erased A implies A:

Stable : Set a — Set a
Stable A = Erased A -+ A

A type is very stable if [ | is an equivalence:

Very-stable : Set a —+ Set a
Very-stable A = Is-equivalence ([_| {A = A})



Double negation

Erased A implies = — A. Thus types that are stable
for double negation are stable for Erased:

{@0 A: Set a} » (—— A~ A) — Stable A

Types for which it is known whether or not they are
inhabited are also stable:

{@G0 A:Seta} + AW — A — Stable A



Stability of equality

Variants of Stable and Very-stable:

Stable-=: Set a —» Set a
Stable-= A = {xy: A} - Stable (x = y)

Very-stable-= : Set a —+ Set a
Very-stable-= A = {xy: A} - Very-stable (x = y)



Decidable equality

Stable propositions are very stable:
Stable A - Is-proposition A — Very-stable A

Thus types for which equality is decidable have
very stable equality:

(xy: A) > x=yl4d — x=y) - Very-stable-= A



Propositions

However, it is not the case that every very stable
type is a proposition:

— ({A : Set a} - Very-stable A — Is-proposition A)

Erased Bool is not a proposition, but it is
very stable:

{@0 A : Set a} - Very-stable (Erased A)



Closure properties for Stable, Very-stable, Stable-=
and Very-stable-=.



Back to the
application



An equivalence

A lemma:

{0 y: A} »
Very-stable-= A —
Is-proposition (X A A x — Erased (x = y))

This lemma is used below (where n is erased):

Bin-[ n |

| (X Bin" A\ b — Erased (to-N b = n)) ||
| (£ N X\ m— Erased (m = n)) |

(X N A m— Erased (m = n))

21 R



Another equivalence

Finally we can prove that the binary natural
numbers are equivalent to the unary ones:

Bin
(X (Erased N) A n — Bin-[ erased n )
(X (Erased N) An— XN A m-—

Erased (m = erased n))
(ENAm-— X (Erased N) A n -

Erased (m = erased n))
(XN A m-— Erased (XN XA n— m= n))
N x Erased T
N x T
N

1

12

1R 1R R



Another equivalence

Finally we can prove that the binary natural
numbers are equivalent to the unary ones:

Bin ~ N

In an erased context the forward direction is pointwise
equal to |_| (i.e. it returns the index).



Discussion

» There is currently no compiler for Cubical
Agda, so the run-time performance of the
binary numbers has not been tested.

» | have also used the same technique to
implement a FIFO queue transformer:

» The enqueue function computes (roughly)
like the corresponding list function, but
not dequeue.

» The dequeue function requires that
equality is very stable for the carrier type.



» A surprising amount of theory for something as
simple as Erased?



Some theory



Some equivalences

Easy to prove:

Erased L ~ |
Erased T ~ T
Erased ((x: A) - P x) ~ ((x: A) - Erased (P x))
Erased (X A P) =~
Y (Erased A) (A x — Erased (P (erased x)))

If equality is extensional and the
pattern [ sup x f ] is OK:

Erased (W A P) =~
W (Erased A) (A x — Erased (P (erased x)))



Some preservation lemmas

For erased A : Set a and B : Set b:

©0 (A~ B) — Erased A+ Erased B
©0A < B — Erased A< Erased B
© A —-» B — Erased A — Erased B
©0A < B — Erased A <+ Erased B
©0A ~ B — Erased A~ Erased B
© A »>» B — Erased A > Erased B
©0 Embedding A B -
Embedding (Erased A) (Erased B)



Erased commutes with H-level n:

Erased (H-level n A) < H-level n (Erased A)



Closure
properties



For Stable:

Stable L
Stable T
(V x — Stable (P x)) — Stable ((x: A) » P x)

For Very-stable and Stable:

Very-stable A - (V x — Stable (P x)) -
Stable (X A P)



Closure properties

For Very-stable (in some cases assuming that
equality is extensional):

Very-stable |

Very-stable T

(V x - Very-stable (P x)) —
Very-stable ((x: A) = P x)

Very-stable A - (V x — Very-stable (P x)) —
Very-stable (X A P)

Very-stable A - Very-stable (W A P)



If Ais very stable, then equality is very stable for A:

Very-stable A — Very-stable-= A



Closure properties

For Stable-= (in one case assuming that equality is
extensional):

Stable-= A — Stable-= B — Stable-= (A W B)
(V x - Stable-= (P x)) — Stable-= ((x: A) - P x)
Stable-= A — Stable-= (List A)

For Very-stable-= and Stable-=:

Very-stable-= A - (V x - Stable-= (P x)) —
Stable-= (X A P)



Closure properties

For Very-stable-= (in some cases assuming that
equality is extensional):

Very-stable-= A - Very-stable-= B -
Very-stable-= (A & B)

(V x - Very-stable-= (P x)) -
Very-stable-= ((x: A) - P x)

Very-stable-= A - (V x — Very-stable-= (P x)) —
Very-stable-= (L A P)

Very-stable-= A — Very-stable-= (W A P)

Very-stable-= A — Very-stable-= (List A)



	Erased
	An application
	Stability
	Back to the application
	Discussion
	Some theory
	Closure properties

