
Some theory about nothing

Nils Anders Danielsson

Division meeting, Aspenäs, 2019-09-20

@0

▶ @0 is used to mark arguments and definitions
that should be erased at run-time.

▶ Agda is supposed to make sure that:
▶ Things marked as erased are

actually erased.
▶ There is never any data missing

at run-time.
▶ The typing rules are based on work by

McBride and Atkey.
▶ Andreas is working on the implementation.

@0

ok : {@0 A : Set}→ A→ A
ok x = x

-- not-ok : {@0 A : Set} → @0 A → A
-- not-ok x = x

-- Not-ok : @0 Bool → Set
-- Not-ok true = ⊤
-- Not-ok false = ⊥

Erased

A type-level variant of @0:

record Erased (@0 A : Set a) : Set a where
constructor []
field

@0 erased : A

open Erased public

Monad

Erased is a monad:

return : {@0 A : Set a}→ @0 A→ Erased A
return x = [x]

>>= :
{@0 A : Set a} {@0 B : Set b}→
Erased A→ (A→ Erased B)→ Erased B

x >>= f = [erased (f (erased x))]

An
application

An application

I have tried to define natural numbers that compute
(roughly) like unary natural numbers at
compile-time, but like binary natural numbers at
run-time.

The underlying representation

Binary natural numbers:

Bin’ : Set
Bin’ = List Bool

The representation of a given natural number is not
unique. A split surjection:

to-ℕ : Bin’→ ℕ

Indexed binary numbers

Binary natural numbers representing
a given natural number:

abstract

Bin-[] : @0 ℕ→ Set
Bin-[n] =

∥ (Σ Bin’ 𝜆 b→ Erased (to-ℕ b ≡ n)) ∥

▶ Abstract so the underlying representation can
be changed without breaking client code.

▶ Truncated so that the representation is unique.

Non-indexed binary numbers

Binary natural numbers:

Bin : Set
Bin = Σ (Erased ℕ) 𝜆 n→ Bin-[erased n]

Returns the erased index:

@0 ⌊ ⌋ : Bin→ ℕ
⌊ [n] , ⌋ = n

[]-cong
A key lemma:

[]-cong :
{@0 A : Set a} {@0 x y : A}→
Erased (x ≡ y)→ [x] ≡ [y]

With the K rule and propositional equality:

[]-cong [refl] = refl

With Cubical Agda and paths:

[]-cong [eq] = 𝜆 i→ [eq i]

In both cases []-cong is an equivalence that
maps [refl x] to refl [x].

[]-cong
A key lemma:

[]-cong :
{@0 A : Set a} {@0 x y : A}→
Erased (x ≡ y)→ [x] ≡ [y]

With the K rule and propositional equality:

[]-cong [refl] = refl

With Cubical Agda and paths:

[]-cong [eq] = 𝜆 i→ [eq i]

In both cases []-cong is an equivalence that
maps [refl x] to refl [x].

[]-cong
A key lemma:

[]-cong :
{@0 A : Set a} {@0 x y : A}→
Erased (x ≡ y)→ [x] ≡ [y]

With the K rule and propositional equality:

[]-cong [refl] = refl

With Cubical Agda and paths:

[]-cong [eq] = 𝜆 i→ [eq i]

In both cases []-cong is an equivalence that
maps [refl x] to refl [x].

[]-cong
A key lemma:

[]-cong :
{@0 A : Set a} {@0 x y : A}→
Erased (x ≡ y)→ [x] ≡ [y]

With the K rule and propositional equality:

[]-cong [refl] = refl

With Cubical Agda and paths:

[]-cong [eq] = 𝜆 i→ [eq i]

In both cases []-cong is an equivalence that
maps [refl x] to refl [x].

Non-indexed binary numbers

Recall:

Bin : Set
Bin = Σ (Erased ℕ) 𝜆 n→ Bin-[erased n]

@0 ⌊ ⌋ : Bin→ ℕ
⌊ [n] , ⌋ = n

Equality follows from equality for the erased indices:

Erased (⌊ x ⌋ ≡ ⌊ y ⌋) ≃ (x ≡ y)

Addition

abstract

plus : {@0 m n : ℕ}→
Bin-[m]→ Bin-[n]→ Bin-[m + n]

plus = … -- Add with carry.

⊕ : Bin→ Bin→ Bin
([m] , x) ⊕ ([n] , y) = [m + n] , plus x y

Conversion to/from
unary natural numbers?

Goal:
▶ Bin ≃ ℕ (in a non-erased context).
▶ With the forward direction pointwise equal to

⌊ ⌋ (in an erased context).

Stability

Stability

A type A is stable if Erased A implies A:

Stable : Set a→ Set a
Stable A = Erased A→ A

A type is very stable if [] is an equivalence:

Very-stable : Set a→ Set a
Very-stable A = Is-equivalence ([] {A = A})

Double negation

Erased A implies ¬ ¬ A. Thus types that are stable
for double negation are stable for Erased:

{@0 A : Set a}→ (¬ ¬ A→ A)→ Stable A

Types for which it is known whether or not they are
inhabited are also stable:

{@0 A : Set a}→ A ⊎ ¬ A→ Stable A

Stability of equality

Variants of Stable and Very-stable:

Stable-≡ : Set a→ Set a
Stable-≡ A = {x y : A}→ Stable (x ≡ y)

Very-stable-≡ : Set a→ Set a
Very-stable-≡ A = {x y : A}→ Very-stable (x ≡ y)

Decidable equality

Stable propositions are very stable:

Stable A→ Is-proposition A→ Very-stable A

Thus types for which equality is decidable have
very stable equality:

((x y : A)→ x ≡ y ⊎ ¬ x ≡ y)→ Very-stable-≡ A

Propositions

However, it is not the case that every very stable
type is a proposition:

¬ ({A : Set a}→ Very-stable A→ Is-proposition A)

Erased Bool is not a proposition, but it is
very stable:

{@0 A : Set a}→ Very-stable (Erased A)

Closure properties

Closure properties for Stable, Very-stable, Stable-≡
and Very-stable-≡.

Back to the
application

An equivalence
A lemma:

{@0 y : A}→
Very-stable-≡ A→
Is-proposition (Σ A 𝜆 x→ Erased (x ≡ y))

This lemma is used below (where n is erased):

Bin-[n] ≃
∥ (Σ Bin’ 𝜆 b→ Erased (to-ℕ b ≡ n)) ∥ ≃
∥ (Σ ℕ 𝜆 m→ Erased (m ≡ n)) ∥ ≃
(Σ ℕ 𝜆 m→ Erased (m ≡ n))

Another equivalence
Finally we can prove that the binary natural
numbers are equivalent to the unary ones:

Bin ≃
(Σ (Erased ℕ) 𝜆 n→ Bin-[erased n]) ≃
(Σ (Erased ℕ) 𝜆 n→ Σ ℕ 𝜆 m→

Erased (m ≡ erased n)) ≃
(Σ ℕ 𝜆 m→ Σ (Erased ℕ) 𝜆 n→

Erased (m ≡ erased n)) ≃
(Σ ℕ 𝜆 m→ Erased (Σ ℕ 𝜆 n→ m ≡ n)) ≃
ℕ × Erased ⊤ ≃
ℕ × ⊤ ≃
ℕ

Another equivalence
Finally we can prove that the binary natural
numbers are equivalent to the unary ones:

Bin ≃ ℕ

In an erased context the forward direction is pointwise
equal to ⌊ ⌋ (i.e. it returns the index).

Discussion

▶ There is currently no compiler for Cubical
Agda, so the run-time performance of the
binary numbers has not been tested.

▶ I have also used the same technique to
implement a FIFO queue transformer:
▶ The enqueue function computes (roughly)

like the corresponding list function, but
not dequeue.

▶ The dequeue function requires that
equality is very stable for the carrier type.

Discussion

▶ A surprising amount of theory for something as
simple as Erased?

Some theory

Some equivalences
Easy to prove:

Erased ⊥ ≃ ⊥
Erased ⊤ ≃ ⊤
Erased ((x : A)→ P x) ≃ ((x : A)→ Erased (P x))
Erased (Σ A P) ≃

Σ (Erased A) (𝜆 x→ Erased (P (erased x)))

If equality is extensional and the
pattern [sup x f] is OK:

Erased (W A P) ≃
W (Erased A) (𝜆 x→ Erased (P (erased x)))

Some preservation lemmas

For erased A : Set a and B : Set b:

@0 (A→ B)→ Erased A→ Erased B
@0 A ⇔ B → Erased A ⇔ Erased B
@0 A ↠ B → Erased A ↠ Erased B
@0 A ↔ B → Erased A ↔ Erased B
@0 A ≃ B → Erased A ≃ Erased B
@0 A ↣ B → Erased A ↣ Erased B
@0 Embedding A B→

Embedding (Erased A) (Erased B)

H-levels

Erased commutes with H-level n:

Erased (H-level n A) ⇔ H-level n (Erased A)

Closure
properties

Closure properties

For Stable:

Stable ⊥
Stable ⊤
(∀ x→ Stable (P x))→ Stable ((x : A)→ P x)

For Very-stable and Stable:

Very-stable A→ (∀ x→ Stable (P x))→
Stable (Σ A P)

Closure properties

For Very-stable (in some cases assuming that
equality is extensional):

Very-stable ⊥
Very-stable ⊤
(∀ x→ Very-stable (P x))→

Very-stable ((x : A)→ P x)
Very-stable A→ (∀ x→ Very-stable (P x))→

Very-stable (Σ A P)
Very-stable A→ Very-stable (W A P)

Closure properties

If A is very stable, then equality is very stable for A:

Very-stable A→ Very-stable-≡ A

Closure properties

For Stable-≡ (in one case assuming that equality is
extensional):

Stable-≡ A→ Stable-≡ B→ Stable-≡ (A ⊎ B)
(∀ x→ Stable-≡ (P x))→ Stable-≡ ((x : A)→ P x)
Stable-≡ A→ Stable-≡ (List A)

For Very-stable-≡ and Stable-≡:

Very-stable-≡ A→ (∀ x→ Stable-≡ (P x))→
Stable-≡ (Σ A P)

Closure properties

For Very-stable-≡ (in some cases assuming that
equality is extensional):

Very-stable-≡ A→ Very-stable-≡ B→
Very-stable-≡ (A ⊎ B)

(∀ x→ Very-stable-≡ (P x))→
Very-stable-≡ ((x : A)→ P x)

Very-stable-≡ A→ (∀ x→ Very-stable-≡ (P x))→
Very-stable-≡ (Σ A P)

Very-stable-≡ A→ Very-stable-≡ (W A P)
Very-stable-≡ A→ Very-stable-≡ (List A)

	Erased
	An application
	Stability
	Back to the application
	Discussion
	Some theory
	Closure properties

