
Correct-by-Construction Pretty-Printing

Nils Anders Danielsson
University of Gothenburg & Chalmers University of Technology

nad@cse.gu.se

Abstract
A new approach to correct-by-construction pretty-printing is pre-
sented. The basic methodology is the one of classical (not neces-
sarily correct) pretty-printing: users convert values to pretty-printer
documents, and a general rendering algorithm turns documents into
strings. The main novelty is that dependent types are used to ensure
that, for each value, the constructed document is correct with re-
spect to the value and a given grammar. Other parts of the develop-
ment use well-established technology: the pretty-printer document
interface is basically that of Wadler (2003), but with more precise
types, and a single additional primitive combinator; and Wadler’s
rendering algorithm is used.

It is proved that if a given value is pretty-printed, and the
resulting string parsed (with respect to the same, unambiguous
grammar), then the original value is obtained. No guarantees are
made about “prettiness”.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and Reason-
ing about Programs—Mechanical verification; F.4.2 [Mathemati-
cal Logic and Formal Languages]: Grammars and Other Rewriting
Systems

Keywords dependent types; pretty-printing

1. Introduction
Pretty-printing is concerned with formatting text in a “pretty” way,
given a bounded line width. For instance, given a line width of at
least 23 the expression 1 + 2 ∗ (3 + 4) + 5 ∗ 6 may be formatted
as follows:

1 + 2 * (3 + 4) + 5 * 6

However, if the line width is smaller (but at least 13), then the
following layout may be used instead:

1 +
2 * (3 + 4) +
5 * 6

Other options are possible.
There are several programs/combinator libraries that can be

used to construct pretty-printers, for instance those due to Oppen

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DTP ’13, September 24, 2013, Boston, MA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2384-0/13/09. . . $15.00.
http://dx.doi.org/10.1145/2502409.2502410

(1980), Hughes (1995), Wadler (2003), and Swierstra and Chitil
(2009). Libraries based on Hughes’ approach tend to be set up more
or less in the following way: There is a type Doc of pretty-printer
documents, and a renderer render : Doc → String; the renderer
often takes additional arguments, for instance the line width. There
are also a number of combinators for constructing documents. A
library user who wants to pretty-print values of type A can write a
function of type A → Doc, using the combinators, and compose
this function with render to get a function of type A → String.

Often a pretty-printer is constructed together with a parser. In
this case one is typically interested in at least one round-tripping
property: the result of pretty-printing some value x, and then pars-
ing the resulting string, should be x. Rendel and Ostermann (2010)
argue that separate definitions of parsers and pretty-printers lead
to redundancy and perhaps inconsistencies, and present combina-
tors that allow the simultaneous definition of parsers and printers.
Matsuda and Wang (2013) attack the problem in a somewhat differ-
ent way. They show how, starting from an extended pretty-printer,
one can use program inversion techniques to automatically derive a
parser that satisfies the round-tripping property (assuming that the
underlying grammar is unambiguous). A typical pretty-printer does
not contain enough information to construct a parser, so they intro-
duce a biased choice operator: p <+ q means “pretty-print accord-
ing to p, but be ready to parse also according to q”. This makes it
possible to encode many grammars in their extended pretty-printing
language.

In this paper I propose a different approach to correct-by-
construction pretty-printing. I do not (always) want to conflate
grammars and pretty-printers, because there are situations in which
I do not want to make grammars harder to construct or understand.
Furthermore, as pointed out by Boulton (1996), one may want to
support several different pretty-printers corresponding to a given
grammar.

Instead of using hybrid pretty-printers/grammars I follow the
approach due to Hughes, but with a twist. The library user is not
only asked to convert values to documents, but is also asked to
define a grammar. Types are used to ensure that, for each value,
the generated document matches the grammar and the value.

Section 2 presents a grammar data type: Grammar A stands for
grammars with semantic actions, where the results have type A. In
the paper I do not focus on parsing, but give a formal semantics for
grammars: x ∈ g · s means that the string s and corresponding
result x are generated by the grammar g. The type family ∈ · is
defined as a data type, and values of type x ∈ g · s can be seen
as parse trees.

Pretty-printers for the grammar g : Grammar A are defined as
functions from values to corresponding pretty-printer documents:

(x : A) → Doc g x

Here the simple type A → Doc used by Hughes has been refined
to a dependent type. Doc, defined in Section 3, is based on the
document type used by Wadler (2003), but is indexed by a grammar

and a value. Note that, unlike a parse tree of type x ∈ g · s,
a document of type Doc g x is not indexed by a string: a given
document can (potentially) be turned into a string in many different
ways.

When a user has defined a grammar g : Grammar A and a
corresponding pretty-printer pretty : (x : A) → Doc g x the re-
maining job is taken care of by a renderer:

render : Doc g x → String

The renderer turns documents into strings, and may, depending
on its inputs, have some leeway in deciding how to handle line
breaks and indentation. Note that, unlike the type of pretty, the type
of render does not ensure that render is correct by construction.
Renderers are instead required to satisfy the following property,
which can be proved once per renderer:

(d : Doc g x) → x ∈ g · render d

If we instantiate d with pretty x, then we get

(x : A) → x ∈ g · render (pretty x),

which for unambiguous grammars g implies the round-tripping
property: the result of parsing render (pretty x) is x. The paper
does not contain any new rendering algorithm; the focus is on
grammatical correctness. However, two renderers are presented in
Section 5, one of them based on Wadler’s pretty-printing algorithm
(2003).

In short, the paper makes the following contributions:

• A framework for correct-by-construction pretty-printing, based
on indexed pretty-printer documents, is presented. Note that
correctness only concerns grammatical correctness: no guaran-
tee is made that the output will be pretty.
• Several small examples, indicating that the framework is usable

in practice, are presented (see Section 4). Larger examples are
available in the accompanying code.
• As far as I am aware this is the first example of a formal,

mechanised correctness proof for a pretty-printer (as opposed
to an “ugly-printer” that ignores line widths, word wrapping,
indentation, etc.).

Related work is discussed in Section 6.
The pretty-printing framework and examples described in the

paper (along with omitted proofs, and with minor differences) have
been made available to download. The code is implemented in
the dependently typed programming language Agda (Norell 2007;
Agda Team 2013). In the paper I deviate somewhat from Agda
notation in order to avoid clutter and aid readability; for instance,
Agda’s somewhat idiosyncratic notation for coinductive types and
corecursive definitions is not used.

2. Grammars
This section presents the type of grammars that is used. I have
chosen to use monadic, potentially infinite grammars in order to
emphasise that the approach can handle very general grammars.
However, the approach is not restricted to such grammars. It is for
instance possible to use regular expressions (extended with seman-
tic actions) instead. Regular expressions are not general enough to
handle all of the examples in Section 4, but the basic ideas carry
over unchanged.

I use two definitions of grammars. A simple one presented
here, and an equally expressive variant with more constructors,
defined in the accompanying code. The extra constructors are used
for some proof automation described in Section 4.3, but are not

strictly necessary.1 The simple type of grammars is defined in the
following way:2

data Grammar : Set → Set1 where -- Coinductive.
return : A → Grammar A
token : Grammar Char
| : Grammar A → Grammar A → Grammar A
>>= : Grammar A → (A → Grammar B) →

Grammar B

The constructor return x accepts only the empty string, and returns
x; token accepts and returns arbitrary single tokens (characters);
| is symmetric choice; and >>= is monadic sequencing.

The type of grammars should be read coinductively. This means
that one can construct infinite grammars, for instance a grammar for
the empty language:

fail : Grammar A
fail = fail | fail

If the grammar type were read inductively, then the grammar for-
malism would be quite restrictive: it would be impossible to con-
struct a grammar that accepted strings of arbitrary length (assum-
ing that the number of characters is finite). However, the coinduc-
tive grammars above are very expressive: they can represent ev-
ery recursively enumerable language (using grammars of the form
g0 | (g1 | (g2 | . . .))). This means that it is not always possible to
implement a parser for these grammars. In practice one may want to
restrict attention to a smaller class of grammars, for which parsing
is always possible or perhaps even efficient.

The semantics of a grammar is defined by the following data
type, which should be read inductively; x ∈ g · s means that the
string s and corresponding result x are generated by the grammar g:

data ∈ · : A → Grammar A → String → Set1 where
return-sem : x ∈ return x · []
token-sem : t ∈ token · [t]
>>=-sem : x ∈ g1 · s1 → y ∈ g2 x · s2 →

y ∈ g1 >>= g2 · s1 ++ s2
left-sem : x ∈ g1 · s → x ∈ g1 | g2 · s
right-sem : x ∈ g2 · s → x ∈ g1 | g2 · s

(Strings are taken to be lists of characters: String = List Char.)
Readers who are unfamiliar with this kind of definition may want
to see it as an inductively defined inference system, as in Figure 1.

An alternative reading of x ∈ g · s is “one of the results of
parsing the string s using the grammar g is x”, but note that it may
not be possible to implement a (total) parser for g. As mentioned in
Section 1, values of type x ∈ g · s can be seen as parse trees. In
some cases it may also be appropriate to see the values x as abstract
syntax trees.

As an example we can show that the language defined by fail is
empty, or, in other words, that for any x and s it is impossible that
x ∈ fail · s is inhabited (Empty is the empty type):

fail-empty : x ∈ fail · s → Empty
fail-empty (left-sem p) = fail-empty p
fail-empty (right-sem p) = fail-empty p

1 The extra constructors also have a second use: Agda’s productivity
checker requires corecursive definitions to be syntactically guarded, and
the extra constructors can make it easier to write guarded definitions. In the
paper I ignore guardedness, and present some corecursive definitions that
are not syntactically guarded (but still productive).
2 Set is a type of small types, and Set1 is a type of types that includes Set.
Here and later I omit most implicit argument declarations; for instance, the
full type of return is {A : Set} → A → Grammar A. (If a function has
type {x : A} → T , then its first argument x is implicit, and does not need
to be given explicitly as long as Agda can infer it.)

x ∈ return x · []
(return-sem)

t ∈ token · [t]
(token-sem)

x ∈ g1 · s1 y ∈ g2 x · s2
y ∈ g1 >>= g2 · s1 ++ s2

(>>=-sem)

x ∈ g1 · s
x ∈ g1 | g2 · s

(left-sem)
x ∈ g2 · s

x ∈ g1 | g2 · s
(right-sem)

Figure 1. Alternative presentation of the definition of the seman-
tics of grammars (∈ ·).

The proof proceeds by induction on the structure of the parse tree:
Assume that we have a parse tree q : x ∈ fail · s. Our goal is
to show that the empty type is inhabited. The grammar fail can
be unfolded to fail | fail, so we get q : x ∈ fail | fail · s. By
case analysis we get that q either has the form left-sem p, with
p : x ∈ fail · s, or right-sem p, also with p : x ∈ fail · s. In
both cases the inductive hypothesis (fail-empty p) gives us an in-
habitant of the empty type.

Given the basic grammar combinators above we can define a
number of derived ones—taken more or less directly from the
world of parser combinators—including the following ones for
mapping and sequencing:

<$> : (A → B) → Grammar A → Grammar B
f <$> g = g >>= λ x→ return (f x)
<$: A → Grammar B → Grammar A

x <$ g = (λ → x) <$> g
~ : Grammar (A → B) → Grammar A → Grammar B

g1 ~ g2 = g1 >>= λ f → f <$> g2

<~ : Grammar A → Grammar B → Grammar A
g1 <~ g2 = g1 >>= λ x→ x <$ g2

~> : Grammar A → Grammar B → Grammar B
g1 ~> g2 = g1 >>= λ → g2

Here f <$> g is “map”: if g generates s and x, then f <$> g
generates s and f x. The application x <$ g generates exactly the
same strings as g, but always returns x. If g1 generates s1 and f ,
and g2 generates s2 and x, then g1 ~ g2 generates s1 ++ s2 and
f x. The combinators <~ and ~> are variants of ~ that
discard the second and first argument’s result, respectively. All
these operators should be parsed left-associatively. For instance,
f <$> g1 ~ g2 should be parsed as (f <$> g1) ~ g2.

We can also define the Kleene star and plus operators, which are
taken to bind tighter than the mapping and sequencing operators
above; these operators are in turn taken to bind tighter than | :

mutual
? : Grammar A → Grammar (List A)

g ? = return []
| (uncurry ::) <$> g +

+ : Grammar A → Grammar (List+ A)
g + = (::) <$> g ~ g ?

Here List A stands for lists of finite length containing As, and
List+ A stands for non-empty lists: List+ A = A × List A. I over-
load cons, :: , so that its second argument and its result can both
be either regular or non-empty lists. The application uncurry ::
above has type List+ A → List A.

It is also possible to define combinators with dependent types.
The function True maps booleans to types:

True : Bool → Set
True true = Unit
True false = Empty

True true is the unit type (with a single inhabitant tt), and True
false is the empty type. True is used in the types of if-true and sat:

if-true : (b : Bool) → Grammar (True b)
if-true true = return tt
if-true false = fail
sat : (p : Char → Bool) →

Grammar (6 Char (λ t→ True (p t)))
sat p = token >>= λ t→

(λ x→ (t, x)) <$> if-true (p t)

The grammar if-true b stands for the empty string if b is true, and
otherwise the empty language. The sat combinator takes a boolean-
valued predicate p as argument, and accepts single tokens t for
which p t is true. The result of sat p is a pair consisting of a token
t plus a proof of True (p t), witnessing the truth of p t. (If B has
type A→ Set, then 6 A B consists of pairs (x, y) where x : A and
y : B x.)

We can use sat to define a combinator for a given token:

tok : Char → Grammar Char
tok t = t <$ sat (λ t′ → t == t′)

Here the witness of equality is thrown away. (See Section 4.4 for
an example where the witness is retained.) Using tok we can define
a combinator for whitespace, for simplicity taken to mean “space
or newline”:

whitespace : Grammar Char
whitespace = tok ’ ’ | tok ’\n’

We can also define string s, a grammar for the string s:

string : String → Grammar String
string [] = return []
string (t :: s) = (::) <$> tok t ~ string s

3. Pretty-Printers
The type of pretty-printer documents is defined (inductively) in the
following way:3

data Doc : Grammar A → A → Set1 where
3 : Doc g1 x → Doc (g2 x) y →

Doc (g1 >>= g2) y
text : Doc (string s) s
line : Doc (tt <$ whitespace +) tt
group : Doc g x → Doc g x
nest : N → Doc g x → Doc g x
emb : {x1 : A1 } → {x2 : A2 } →

(∀ {s} → x1 ∈ g1 · s → x2 ∈ g2 · s) →
Doc g1 x1 → Doc g2 x2

As mentioned in the introduction a pretty-printer for a grammar
g : Grammar A is a function that transforms all values x : A to
documents matching g and x:

Pretty-printer : Grammar A → Set1
Pretty-printer g = ∀ x → Doc g x

3 The notation ∀ {x} → T means the same as {x : A} → T , except
that Agda is asked to try to infer the domain type A. A similar nota-
tion, ∀ x → T , can be used for explicit arguments, and n-ary variants like
∀ {x y z} → T are also available.

The first five document constructors are taken from Wadler
(2003). If rendering is implemented in the same way as in Wadler’s
work, then these combinators have the following meanings:

• 3 : Sequencing. The second document’s text is placed di-
rectly after the first document’s text.
• text: A concrete string. Note that the string s is not an explicit

argument to this combinator: in many cases the string can be
inferred from the context. (It can be given explicitly using the
notation text {s = . . .}.)
Wadler adopts the convention that s does not contain newline
characters. I could enforce this invariant using the type system,
but I have refrained from doing so, because the invariant is
not needed to prove that the renderers in Section 5 produce
grammatically correct strings.
• line: A newline character plus some indentation consisting of

zero or more space characters. The amount of indentation is
specified by nest combinators (the default is zero).
The grammar used for this combinator is tt <$ whitespace +,
where tt is the sole inhabitant of the unit type. I do not
use the grammar whitespace +, because then the result (s in
Doc (whitespace +) s) would have to be a fixed non-empty
string, containing a predefined amount of whitespace.
Note that the grammar tt <$ whitespace + is more liberal than
“newline plus indentation”. The reason is partly that outer
group combinators can change the meaning of line combina-
tors, but also that I want to support multiple rendering algo-
rithms (see Section 5).
• group: The document group d is rendered either as d, or as d

with all line combinators replaced by single spaces, depending
on what is “best” (see Section 5.2).
• nest: The document nest i d behaves as d, except that if a line

combinator in d is rendered as a line break, then the following
line is indented i steps more.

The final combinator, not present in Wadler’s library, is emb.
This combinator’s first argument is a proof that transforms parse
trees: “for all strings s, if s and x1 are generated by g1, then s and
x2 are generated by g2”. The combinator can be used to “embed”
one grammar-result pair (g1, x1) into another, (g2, x2), and is in-
cluded so that grammar constructions that are not supported by the
other combinators can be handled. For instance, here are two com-
binators that can be used when a grammar contains a choice:

left : Doc g1 x → Doc (g1 | g2) x
left d = emb left-sem d
right : Doc g2 x → Doc (g1 | g2) x
right d = emb right-sem d

The renderers in Section 5 ignore emb constructors (except for in
their correctness proofs). To avoid long chains of emb constructors
one can use the following smart constructor instead of emb:

embed : {x1 : A1 } → {x2 : A2 } →
(∀ {s} → x1 ∈ g1 · s → x2 ∈ g2 · s) →
Doc g1 x1 → Doc g2 x2

embed f (emb g d) = emb (f ◦ g) d
embed f d = emb f d

We can also define document combinators corresponding to the
mapping and sequencing combinators introduced in Section 2. I
overload the names, and omit proofs—I write embed instead of
embed proof. Note that some arguments are omitted (made im-
plicit), because they can often be inferred from the context. For
instance, <$> only takes one (explicit) argument:

<$> : Doc g x → Doc (f <$> g) (f x)
<$> d = embed d
<$: Doc g y → Doc (x <$ g) x
<$ d = embed d
~ : Doc g1 f → Doc g2 x → Doc (g1 ~ g2) (f x)

d1 ~ d2 = d1 3 (<$> d2)

<~ : Doc g1 x → Doc g2 y → Doc (g1 <~ g2) x
d1 <~ d2 = d1 3 (<$ d2)

~> : Doc g1 x → Doc g2 y → Doc (g1 ~> g2) y
d1 ~> d2 = d1 3 d2

I omit most of the embedding proofs, because I do not think that
the proof terms are very interesting. However, it may be instructive
to see a couple of concrete proofs. Here is a more complete defini-
tion of <$> :

<$> : Doc g x → Doc (f <$> g) (f x)
<$> d = embed (λ p→ cast right-identity

(>>=-sem p return-sem)) d

The type of >>=-sem p return-sem is not f x ∈ f <$> g · s, but
rather f x ∈ f <$> g · s ++ [], so cast and right-identity are
used to correct the string index:

cast : s1 ≡ s2 → x ∈ g · s1 → x ∈ g · s2
right-identity : s ++ [] ≡ s

Here x ≡ y is a type of proofs of equalities between x and y.
The proof above does not involve pattern matching on the parse

tree p. However, pattern matching is sometimes necessary. Let us
consider the definition of the combinator nil, a combinator that
produces the empty string if Wadler’s rendering algorithm is used.
This definition includes a proof that does use pattern matching:

nil : Doc (return x) x
nil = embed proof text

where
proof : [] ∈ string [] · s → x ∈ return x · s
proof return-sem = return-sem

Note that text’s string argument—the empty string—is inferred
automatically. The proof can be read as follows: We should prove
x ∈ return x · s, given [] ∈ string [] · s. Note that string []
reduces to return []. By exhaustive case analysis we see that
[] ∈ string [] · s is true iff s is [], so it suffices to prove
x ∈ return x · [], which follows by return-sem.

More pretty-printing combinators will be introduced below.

4. Examples
Let us now consider some examples. Note that my focus is not on
the design of a pretty-printer (where to use group, nest and line,
how to achieve pretty output, etc.), but rather on the specifics of
using the strongly typed combinators introduced in this paper.

4.1 Boolean Literals
The following is a grammar for boolean literals:

bool : Grammar Bool
bool = true <$ string "true"

| false <$ string "false"

There are only two valid strings, "true" (corresponding to the
value true), and "false" (corresponding to the value false).

In order to illustrate the types at play I will give a detailed,
step-by-step description of how a pretty-printer for the grammar
bool can be constructed interactively in Agda. I start by pattern

matching on the boolean (note that Pretty-printer bool unfolds to
(b : Bool) → Doc bool b):

boolP : Pretty-printer bool
boolP true = ?
boolP false = ?

The question marks are goals (or holes) that have not yet been
replaced by concrete terms. I will focus on the first goal. Agda
states that the type of this goal is Doc bool true, i.e., the question
mark should be replaced by something of this type. The value true
is generated by the grammar’s left branch, so let us refine the right-
hand side using left:

boolP true = left ?

The new goal type is Doc (true <$ string "true") true, so I
choose to use the combinator <$:

boolP true = left (<$?)

The grammar combinator <$ discards its second argument’s
result, and I have not specified what this result should be, so we
get the goal type Doc (string "true") s for some unconstrained
meta-variable s. If the question mark is replaced by text, then s is
unified with "true", leaving us with a complete right-hand side:

boolP true = left (<$ text)

Note that there is no need to specify the string used by text: it is
inferred by the type checker, and an attempt to specify a concrete
string distinct from "true" would lead to a type error.

The other clause can be completed in a similar way:

boolP : Pretty-printer bool
boolP true = left (<$ text)
boolP false = right (<$ text)

The grammar bool is not very flexible: there is only one valid parse
tree for true, and similarly for false. The grammar in the next
example gives more freedom to pretty-printer implementors.

4.2 Expressions
The following example is based on one discussed by Matsuda and
Wang (2013). Expressions are defined inductively as follows:

data Expr : Set where
one : Expr
sub : Expr → Expr → Expr

An expression is either a one or a subtraction.
We can define the following grammar for expressions:

mutual
expr : Grammar Expr
expr = term

| sub <$> expr <~ whitespace ? <~ string "-"

<~ whitespace ? ~ term
term : Grammar Expr
term = one <$ string "1"

| string "(" ~> whitespace ? ~> expr
<~ whitespace ? <~ string ")"

Here expr stands for terms and subtractions of the form “expression
− term”, whereas term stands for literal ones and parenthesised
expressions.

The grammar contains four textual occurrences of whitespace ?,
and implementors of pretty-printers must choose how to handle
these. Matsuda and Wang do not use any whitespace right after an
opening parenthesis, or right before a closing one; they always use

a single space character after a minus sign; and they use the line
combinator to handle the last occurrence of whitespace ?.

In the present setting the line combinator’s type is not quite
right: its grammar is tt <$ whitespace +, not whitespace ?. To
address this problem I introduce two new reusable combinators:

line? : Doc (tt <$ whitespace ?) tt
line? = embed line

<~tt : Doc g1 x → Doc (tt <$ g2) tt →
Doc (g1 <~ g2) x

d1 <~tt d2 = embed (d1 <~ d2)

I also introduce some combinators that, when Wadler’s rendering
algorithm is used, produce a single space character (space) or an
empty string (nil?):

space : Doc (whitespace ?) " "

space = embed (text {s = " "})

nil? : Doc (g ?) []
nil? = left nil

These combinators can be used to define a pretty-printer that
matches Matsuda and Wang’s:

oneD : Doc term one
oneD = left (<$ text)

mutual
exprP : Pretty-printer expr
exprP one = left oneD
exprP (sub e1 e2) =

group (right (<$> exprP e1
<~tt nest 2 line?
<~ text
<~ space
~ nest 2 (termP e2)))

termP : Pretty-printer term
termP one = oneD
termP e =

right (text ~> nil? ~> exprP e <~ nil? <~ text)

Note the use of group and nest. Note also that embed is not used
directly in the definition of the pretty-printer, only in reusable
combinators.

If exprP is used to pretty-print

sub (sub one one) (sub one one),

using the implementation of Wadler’s rendering algorithm de-
scribed in Section 5, then the following outputs can be obtained
(depending on the line width):

1 - 1 - (1 - 1) 1 - 1
- (1 - 1)

1 - 1
- (1
- 1)

Matsuda and Wang list exactly the same example outputs.
For comparison I also include Matsuda and Wang’s pretty-

printer (I have adapted the notation to that used in the present
paper, and have made use of some enhancements—described later
in Matsuda and Wang’s paper—to reduce code duplication):4

4 The overlapping clauses in the definition of termP
′ are in principle prob-

lematic, as Matsuda and Wang state that the pretty-printing semantics of
overlapping clauses is non-deterministic. However, the implementation that
accompanies their paper uses a first-match semantics. One may believe
that one can avoid overlapping patterns by replacing the final clause of
termP

′ by termP
′ (sub e1 e2) = par (exprP (sub e1 e2)), but in Matsuda

and Wang’s language the argument to exprP in the right-hand side has to be
a variable (to ensure that the pretty-printer can be turned into a parser).

nil = text "" <+ space
space = (text " " <+ text "\n") 3 nil
space′ = space <+ text ""
line′ = line <+ text ""

many-pars d = d <+ par (many-pars d)
par d = text "(" 3 nil 3 d 3 nil 3 text ")"

exprP x = many-pars (exprP
′ x)

exprP
′ one = text "1"

exprP
′ (sub e1 e2) = group (exprP e1 3

nest 2 (line′ 3

text "-" 3

space′ 3

termP e2))

termP x = many-pars (termP
′ x)

termP
′ one = text "1"

termP
′ e = par (exprP e)

Note that this definition contains both a specification of a grammar,
and a specification of a pretty-printer. Recall that p <+ q means
“pretty-print according to p, but be ready to parse also according
to q”. This means, for instance, that nil renders as the empty
string, but the corresponding grammar accepts arbitrary sequences
of whitespace. (The grammar corresponding to the line combinator
also accepts arbitrary sequences of whitespace.)

4.3 Expressions, Take Two
The grammar used for expressions above contains four textual
occurrences of whitespace ?. To avoid this kind of clutter one
can use grammar combinators that “swallow” trailing whitespace
(Hutton and Meijer 1998). The grammar symbol s stands for the
string s plus trailing whitespace:

symbol : String → Grammar String
symbol s = string s <~ whitespace ?

The following expression grammar uses symbol instead of string
and whitespace ?:

mutual
expr : Grammar Expr
expr = term

| sub <$> expr <~ symbol "-" ~ term
term : Grammar Expr
term = one <$ symbol "1"

| symbol "(" ~> expr <~ symbol ")"

This grammar is not quite equivalent to the one in Section 4.2, as
that one does not accept final trailing whitespace (as in "1 ").

Let us now define a pretty-printer for the updated grammar expr.
I first introduce some document combinators that can be used to
handle the grammar symbol s:

symbol : Doc (symbol s) s
symbol = text <~ nil?
symbol-space : Doc (symbol s) s
symbol-space = text <~ space

Using these combinators I can construct the following incomplete
pretty-printer:

oneD : Doc term one
oneD = left (<$ symbol)

mutual
exprP : Pretty-printer expr
exprP one = left oneD
exprP (sub e1 e2) =

group (right (<$> ?
<~ symbol-space
~ nest 2 (termP e2)))

termP : Pretty-printer term
termP one = oneD
termP e = right (symbol ~> exprP e <~ symbol)

What should the question mark be replaced with? The previous
implementation of exprP contains the subexpression

<$> exprP e1 <~tt nest 2 line?.

We can use something similar here,

embed (exprP e1 <~tt nest 2 line?),

provided that we can prove the following statement:

∀ {s} → e1 ∈ expr <~ whitespace ? · s
→ e1 ∈ expr · s

It is not very hard to prove this statement manually. However, I
think that this kind of proof is rather tedious. Fortunately we can
let the computer prove the statement for us, by writing a program
that analyses the grammar expr and produces a proof.

The grammar data type introduced in Section 2 is quite tricky to
analyse programmatically, partly because bind’s second argument
is a function, and partly because grammars are potentially infinite
(it is for instance impossible to check if a grammar has the form
whitespace ?). These problems could presumably be circumvented
through the use of meta-programming techniques, using which one
gets access to the grammars’ source code. Then one could identify
unproblematic uses of bind such as those in <$> and ~ ,
as well as regular recursion such as that in ? and context-free
grammars. Another option is to rule out problematic constructions
entirely by switching to a different grammar type, for instance a
suitable representation of context-free grammars (with semantic
actions).

I have chosen to use a different approach, that does not limit
expressiveness, and that does not require that the host language
has support for meta-programming. As mentioned in Section 2 the
accompanying code contains a variant of the Grammar type with
more constructors. Some of the extra constructors (corresponding
to tok, <$> , <$, ~ , <~ and ~>) make it possible to
avoid certain uses of bind,5 and the remaining extra constructors
(corresponding to fail and ?) make it possible to avoid certain uses
of corecursion.

Using this extended grammar data type I have implemented a
simple, heuristic procedure that tries to prove statements like the
one above:

trailing-whitespace : N → (g : Grammar A) →
Maybe (Trailing-whitespace g)

The first argument is a natural number. The procedure is im-
plemented by structural recursion on this number—recursion on
the structure of a potentially infinite grammar could lead to non-
termination. The predicate Trailing-whitespace is satisfied by a
grammar g if the grammar can swallow trailing whitespace:

5 Perhaps it is not necessary to include all of these combinators as primi-
tives, but as mentioned in Section 2 the extra constructors can make it easier
to write guarded definitions.

Trailing-whitespace : Grammar A → Set1
Trailing-whitespace g =
∀ {x s} → x ∈ g <~ whitespace ? · s → x ∈ g · s

Note that Trailing-whitespace expr is a slightly more general ver-
sion of the statement that should be proved.

There are many ways to implement trailing-whitespace, and I
do not think the details are central to this paper, so no implementa-
tion is included here. The main point is that, assuming that expr is
implemented using the extra grammar constructors,

trailing-whitespace 6 expr

returns just proof , where proof has type Trailing-whitespace expr.
Thus there is no need to prove this statement manually.

The following reusable combinator can be used to add nest i
line? to the end of a document for which trailing-whitespace suc-
ceeds:

final-line :
(n : N) →
{trailing : True (is-just (trailing-whitespace n g))} →
Doc g x → N → Doc g x

final-line d i = embed (d <~tt nest i line?)

The omitted embedding proof makes use of the implicit argument
trailing. If trailing-whitespace n g evaluates to just proof , then
the type of trailing is Unit (because is-just (just proof) is true).
Omitted arguments of type Unit are automatically inferred to be tt,
so in this case trailing does not need to be given explicitly. We can
thus complete the definition of the pretty-printer in the following
way:

exprP (sub e1 e2) =
group (right (<$> final-line 6 (exprP e1) 2

<~ symbol-space
~ nest 2 (termP e2)))

If we compare the examples in Sections 4.2 and 4.3, then
we see that the grammar in 4.3 is more compact, but it seems
fair to say that the pretty-printer is more complicated. The main
complication is that the pretty-printer deviates from the gram-
mar’s structure, thus necessitating an embedding proof (going from
expr <~ whitespace ? to expr). In general one may find that it is
easier to implement a pretty-printer if the grammar is defined in
such a way that the pretty-printer can follow the grammar’s struc-
ture, potentially at the cost of a less natural or more complicated
grammar. This can be contrasted with Matsuda and Wang’s ap-
proach, in which the pretty-printer must (by construction) follow
the grammar’s structure. The approach presented in this paper is
thus more flexible.

4.4 Identifiers
Consider the following grammar for identifiers consisting of one or
more lower-case letters:

identifier : Grammar (List+ Char)
identifier = (fst <$> sat is-lower) +

This grammar is problematic: it is impossible to implement a
pretty-printer for identifier. The problem is that the result type,
List+ Char, contains junk: there are non-empty strings that do not
consist solely of lower-case letters, and a pretty-printer identifierP :
Pretty-printer identifier must be able to handle such strings. For
instance, identifierP [’A’] must return a document of type Doc
identifier [’A’], and this type is empty.

Fortunately there is a simple workaround—make the type more
precise:

Identifier : Set
Identifier = List+ (6 Char (λ t→ True (is-lower t)))
identifier : Grammar Identifier
identifier = sat is-lower +

Identifier stands for non-empty lists of pairs, where each pair
consists of a token t and a proof of True (is-lower t). Note that
sat is-lower returns this kind of pair.

It is easy to implement a pretty-printer corresponding to the
grammar sat p:

token : Doc token t
token {t = t} = embed (text {s = [t]})
if-true : (b : Bool) → Pretty-printer (if-true b)
if-true true = nil
if-true false () -- Impossible case.
sat : (p : Char → Bool) → Pretty-printer (sat p)
sat p (t, proof) = token 3 (<$> if-true (p t) proof)

It is also straightforward to implement “mapping” combinators
corresponding to the Kleene star and plus operators:

mutual
map? : Pretty-printer g → Pretty-printer (g ?)
map? p [] = nil?
map? p (x :: xs) = embed (map+ p (x :: xs))
map+ : Pretty-printer g → Pretty-printer (g +)
map+ p (x :: xs) = <$> p x ~ map? p xs

With the functions above in place it is easy to implement a pretty-
printer for identifiers:

identifierP : Pretty-printer identifier
identifierP = map+ (sat is-lower)

4.5 Other Examples
The accompanying code includes some larger examples:

• A pretty-printer for expressions, parametrised by a collection of
operators, each with a given precedence and associativity.
• A pretty-printer for a kind of simplified XML documents, based

on a pretty-printer described by Wadler (2003). The simplified
XML grammar uses the bind operator to define the syntax of
matching opening and closing tags. The pretty-printer makes
use of an additional primitive pretty-printing combinator, fill,
which is based on a combinator due to Peyton Jones (1996).
Wadler’s version of the combinator is described as “put[ting] a
space between two documents when this leads to reasonable
layout, and a newline otherwise” (2003). My version of the
combinator has the following type:

fill : Docs g xs → Doc (g sep-by (whitespace +)) xs

Here Docs g xs stands for a list containing one or more g-
indexed documents, and g sep-by sep stands for one or more
occurrences of g, separated by sep:

data Docs (g : Grammar A) : List+ A → Set1 where
one : Doc g x → Docs g (x :: [])
cons : Doc g x → Docs g xs → Docs g (x :: xs)

sep-by : Grammar A → Grammar B →
Grammar (List+ A)

g sep-by sep = (::) <$> g ~ (sep ~> g) ?

It may be worth noting that these two examples do not use
embed at all: manual proofs are relegated to (more or less) reusable

library combinators. However, some library combinators not men-
tioned above were introduced as part of the implementation of these
examples. I do not claim that the current library’s set of combina-
tors is sufficient to avoid every use of embed.

5. Renderers
As mentioned in the introduction a renderer consists of two parts:
a function

render : Doc g x → String

that maps documents to strings, and a correctness proof:

parsable : (d : Doc g x) → x ∈ g · render d

The parsable property can be used to prove a round-tripping prop-
erty for unambiguous grammars.

I define unambiguity in the following way:

Unambiguous : Grammar A → Set1
Unambiguous g =
∀ {s x y} → x ∈ g · s → y ∈ g · s → x ≡ y

A grammar g is unambiguous if, whenever the string s and the result
x are generated by g, and also s and y are generated by g, then x is
equal to y. This is a weak form of unambiguity: I do not require the
two parse trees to be equal.

I also define a type of parsers that are guaranteed to be correct:

Parser : ∀ {A} → Grammar A → Set1
Parser {A = A} g = ∀ s → Dec (6 A (λ x→ x ∈ g · s))

Dec X (“decided X”) has two constructors,

yes : X → Dec X

and

no : (X → Empty) → Dec X.

A parser must thus either return a pair consisting of a result and a
corresponding parse tree, or return a proof showing that there is no
such pair.

Given the definitions above the following round-tripping prop-
erty can be formulated:

Unambiguous g →
(parse : Parser g) →
(pretty : Pretty-printer g) →
∀ x → 6 (x ∈ g · render (pretty x))

(λ p → parse (render (pretty x)) ≡ yes (x, p))

This property is easy to prove using parsable. (The precondition
Unambiguous g can be weakened: the grammar only needs to be
unambiguous for the string render (pretty x).)

Another property can also be proved. Assume that render
ignores top-level emb constructors, i.e., assume that the string
render (emb f d) is equal to render d. Then, for every grammati-
cally correct string, there is a document that renders to that string:

x ∈ g · s → 6 (Doc g x) (λ d→ render d ≡ s)

(Both renderers below ignore top-level emb constructors.) This
is not a very deep property—my proof returns the document
embed text, with a suitable embedding proof. However, the prop-
erty gives a kind of weak guarantee that the document interface is
not too limited.

Let us now consider two different renderers.

5.1 An Ugly-Renderer
The following “ugly-renderer” renders each occurrence of line as a
single space character, and is included in order to illustrate that the

document interface does not require the use of Wadler’s rendering
algorithm:

render : Doc g x → String
render (d1 3 d2) = render d1 ++ render d2
render (text {s = s}) = s
render line = " "

render (group d) = render d
render (nest d) = render d
render (emb d) = render d

Note that group, nest and emb constructors are ignored. (The use
of ++ above can lead to quadratic behaviour, and can, as usual,
be replaced by something without this behaviour.)

The correctness proof is very easy. The emb case may be of
interest:

parsable : (d : Doc g x) → x ∈ g · render d
. . .
parsable (emb f d) = f (parsable d)

5.2 Wadler’s Renderer
Let us now turn to Wadler’s rendering algorithm (2003). My imple-
mentation is close to Wadler’s. However, a direct reimplementation
would not be accepted by Agda’s termination checker. The code
below is structurally recursive.

The renderer works in three steps:

1. First a document is converted into a different document type,
without group but instead containing a constructor union,
which is a kind of binary choice combinator for documents.

2. In the second step the converted document is transformed into a
flat “layout”. When a union constructor is encountered the two
argument documents (along with a continuation) are converted
into layouts, and the “best” one is chosen.

3. Finally the layout is turned into a string.

This renderer is intended to be executed (at least partly) lazily.

Layouts A layout is a list of layout elements, text s or line i:

data Layout-element : Set where
text : String → Layout-element
line : N → Layout-element

Layout : Set
Layout = List Layout-element

The meaning of text and line is specified by show-element; text s is
mapped to the string s, and line i is mapped to a newline character
followed by i space characters.

show-element : Layout-element → String
show-element (text s) = s
show-element (line i) = ’\n’ :: replicate i ’ ’

The renderer’s third step, conversion of layouts to strings, is per-
formed by show:

show : Layout → String
show = concat ◦ map show-element

Document Conversion The new document type is defined induc-
tively as follows (the N subscript stands for “nesting”):

data DocN : N → Grammar A → A → Set1 where
3 : DocN i g1 x → DocN i (g2 x) y →

DocN i (g1 >>= g2) y
text : (s : String) → DocN i (string s) s

line : (i : N) →
let s = show-element (line i) in
DocN i (string s) s

union : DocN i g x → DocN i g x → DocN i g x
nest : (j : N) → DocN (j + i) g x → DocN i g x
emb : {x1 : A1 } → {x2 : A2 } →

(∀ {s} → x1 ∈ g1 · s → x2 ∈ g2 · s) →
DocN i g1 x1 → DocN i g2 x2

There are four changes, compared to Doc:

• The type has an extra natural number index that stands for the
current nesting level. This level is modified by nest.
• The text constructor’s string argument has been made explicit.

(This is a purely cosmetic change.)
• The type of line is more precise: the grammar is

string (show-element (line i)),

where i is the nesting level index. Unlike the previous line
combinator this one always stands for a newline character plus
indentation.
• The constructor group has been replaced by union. Wadler

sees documents as representing sets of strings, and union d1 d2
represents the union of the strings represented by d1 and those
represented by d2.
Wadler also states that union d1 d2 should satisfy two invari-
ants: the first is that the sets of strings represented by d1 and
d2 should be equal, if every occurrence of line is replaced by a
single space character; and the second is that, for every string s
represented by d1, the first line of s should be at least as long
as the first line of any string represented by d2. I do not enforce
these invariants using the type system, as they are not needed
to prove grammatical correctness. (Furthermore, as discussed
at the end of this section, the invariants are not strong enough
to prove that the renderer returns the “best” string, for a certain
definition of “best”.)

Just as in Section 3 I define a smart variant of emb, called
embed. I also define the following documents; imprecise-space
stands for a single space character, and imprecise-line i for a new-
line character followed by indentation:

imprecise-space : DocN i (tt <$ whitespace +) tt
imprecise-space = embed (text " ")

imprecise-line : (i : N) → DocN i (tt <$ whitespace +) tt
imprecise-line i = embed (line i)

The name prefix imprecise refers to the fact that the grammar
indices are less precise than they could be.

There are two functions that convert from Doc to DocN. The
function flatten replaces line with imprecise-space, and removes
group and nest constructors, thus constructing documents that ren-
der as a single line (assuming that text’s string argument never con-
tains newline characters):

flatten : Doc g x → DocN i g x
flatten (d1 3 d2) = flatten d1 3 flatten d2
flatten text = text
flatten line = imprecise-space
flatten (group d) = flatten d
flatten (nest d) = flatten d
flatten (emb f d) = embed f (flatten d)

The function expand implements the renderer’s first step. Recall
that group d should be rendered either as d, or as d with all line
combinators replaced by single spaces. The expand function “ex-

pands” groups into unions, replacing group d with the union of
flatten d and expand d:

expand : Doc g x → DocN i g x
expand (d1 3 d2) = expand d1 3 expand d2
expand text = text
expand line = imprecise-line
expand (group d) = union (flatten d) (expand d)
expand (nest j d) = nest j (expand d)
expand (emb f d) = embed f (expand d)

As mentioned in Section 4.5 the accompanying code contains an
additional primitive combinator, fill. This combinator is a Doc con-
structor, but there is no corresponding DocN constructor: flatten
and expand can be modified to translate fill into uses of the con-
structors given above.

Choosing the “Best” Layout The renderer’s second step is im-
plemented by best. This function takes three (explicit) arguments
and produces a layout. The first argument is a document, and the
third the current column position. The second argument is a contin-
uation: a function from a column position to a layout. The result of
best is the document’s layout, followed by the layout computed by
the continuation:

best : DocN i g x → (N→ Layout) → (N→ Layout)
best (d1 3 d2) = best d1 ◦ best d2
best (text "") = id
best (text s) = λ κ c → text s :: κ (length s + c)
best (line i) = λ κ → line i :: κ i
best (union d1 d2) = λ κ c → better c (best d1 κ c)

(best d2 κ c)
best (nest d) = best d
best (emb d) = best d

Wadler includes nil as a document constructor; the first text case is
based on his nil case.

Note that in the second text case the continuation is called with
a column position computed from the string’s length, and in the line
case the continuation is called with the indentation as the column
position. In the union case the best layout is computed for each
document, and then better is used to choose the best one:

better : N → Layout → Layout → Layout
better c x y = if fits (width − c) x then x else y

The function better uses the line width, width, which is a parameter
of this renderer. If the first line of the first layout fits in the remain-
ing part of the current line, then this layout is chosen, and otherwise
the other one. The function fits is used to decide if the first line of a
layout has at most a certain number of characters:

fits : Z → Layout → Bool
fits (neg w) = false
fits w [] = true
fits w (text s :: x) = fits (w − length s) x
fits w (line i :: x) = true

The first clause treats the case where the number of characters is
negative.

The Renderer Given all the pieces above it is easy to assemble a
complete rendering function:

renderN : DocN i g x → String
renderN d = show (best d (λ → []) 0)
render : Doc g x → String
render d = renderN (expand {i = 0} d)

The initial continuation just returns an empty layout, and the initial
indentation and column position are both 0.

Grammatical Correctness My correctness proof is straightfor-
ward. The following lemma about best can be proved using recur-
sion on the structure of the document:

best-lemma :
(s : String) → (c : N) → (d : DocN i g x) →
((s′ : String) → (c′ : N) →

x ∈ g · s′ →
y ∈ g′ · s ++ s′ ++ show (κ c′)) →

y ∈ g′ · s ++ show (best d κ c)

The lemma uses continuation-passing style, to match the structure
of best. The most interesting case is perhaps the one for 3 , in
which the inductive hypothesis is used twice:

best-lemma s c (d1 3 d2) h =
best-lemma s c d1 (λ s1 c1 p1 →

cast (best-lemma (s ++ s1) c1 d2 (λ s2 c2 p2 →
cast (h (s1 ++ s2) c2 (>>=-sem p1 p2)))))

Here I have omitted cast’s equality argument.
The lemma has the following corollary:

(d : DocN i g x) → x ∈ g · renderN d

The correctness property,

(d : Doc g x) → x ∈ g · render d,

follows immediately from the corollary, because expand preserves
the grammar and result indices.

Other Properties Wadler lists a number of algebraic laws that
his combinators should satisfy. Let us define document equivalence
(for DocN) in the following way:

≈ : DocN i1 g1 x1 → DocN i2 g2 x2 → Set
d1 ≈ d2 =
∀ width → renderN width d1 ≡ renderN width d2

(Here the renderer’s width parameter has been given explicitly.)
One can perhaps imagine other definitions of document equiva-
lence, but if two documents are related by any “reasonable” notion
of equivalence, then they should arguably also be related by this
one.

With this definition of document equivalence some of Wadler’s
equivalences can be proved. For instance, 3 distributes from the
right over union:6

union d1 d2 3 d3 ≈ union (d1 3 d3) (d2 3 d3)

However, the following equivalence, also given by Wadler, cannot
be proved:

d1 3 union d2 d3 ≈ union (d1 3 d2) (d1 3 d3)

If we let d1 and d3 be imprecise-line 0, and d2 be imprecise-space,
then

renderN 0 (d1 3 union d2 d3)

is "\n\n", whereas

renderN 0 (union (d1 3 d2) (d1 3 d3))

is "\n ".
Let us see what is going on here. In the second case best chooses

between d1 3 d2 and d1 3 d3, and because the first line of d1 3 d2
fits in the allotted width, this document is the one that is rendered.

6 Agda cannot infer all the implicit arguments in this expression. One can
give the arguments explicitly using the notation 3 {g1 = g1 } {g2 = g2 }.

In the first case best instead chooses between d2 and d3. At this
stage it is clear that d2 does not fit in the allotted width, so d3 is
rendered instead.

Note that these expressions both satisfy Wadler’s invariants: one
for text, mentioned in Section 3, and two for union, mentioned
in this section. Thus there seems to be a problem in Wadler’s
paper (the counterexample above can be ported to Wadler’s own
implementation).

Wadler specifies that, given a document representing a (finite)
set of strings, his renderer should return the “best” string. “Best”
is defined—following Hughes (1995)—by the lexicographic exten-
sion of the following binary relation on lines: if both lines fit in
the available width, then the longer one (if any) is better; if nei-
ther line fits, then the shorter one (if any) is better; and if exactly
one line fits, then that line is better. This criterion, together with
the second union invariant, is used to motivate the implementa-
tion of the union case of best. However, the invariant is not strong
enough: union (d1 3 d2) (d1 3 d3) represents the strings "\n "
and "\n\n", and "\n\n" is better than "\n ", but the imple-
mentation gives us "\n ". This means that the notion of “best”
implemented by best is not the one specified by Wadler. Fortu-
nately it is not possible to construct union (d1 3 d2) (d1 3 d3) us-
ing Wadler’s public document interface (which does not include
union). Thus it may be possible to prove that Wadler’s renderer
returns the best string by modifying his invariants in some way.

6. Related Work
There are at least four approaches to correct-by-construction pretty-
printing:

• Grammars with embedded pretty-printing directives. Oppen
(1980) mentions that one can add pretty-printing directives to
grammars. Rubin (1983) and Boulton (1996) both describe how
context-free grammars can be extended with embedded pretty-
printing directives, from which parsers and pretty-printers can
be generated. The Ergo Support System’s Syntax Facility seems
to have similar features (Lee et al. 1988).
None of the papers referred to here contain proofs of a round-
tripping property. However, it seems plausible to me that
this approach to correct-by-construction pretty-printing could
(when done right) be proved to be correct.
• Combinators for invertible programming. Alimarine et al.

(2005) present combinators for invertible programming, and
when introducing the definition of a parser they claim that they
“will get the inverse, a pretty-printer, for free”. However, they
later write that “To show correctness, global reasoning is re-
quired”, so this does not appear to be an example of correct-by-
construction pretty-printing.
As mentioned in Section 1 Rendel and Ostermann (2010) de-
scribe combinators that allow the simultaneous definition of
parsers and printers. The combinators are based on “partial
isomorphisms”. No round-tripping property is proved. The ap-
proach is arguably somewhat fragile: if a choice “p or q” is re-
placed by “q or p”, then a working pretty-printer can be turned
into a non-terminating pretty-printer.7 Rendel and Ostermann
do not explain in detail how to handle line widths, word wrap-
ping, etc., but suggest that it may be possible to support more
advanced pretty-printing features.
• Pretty-printers with extra grammar information. This is the

approach taken by Matsuda and Wang (2013), described in
Sections 1 and 4.2. Matsuda and Wang outline the proof of a

7 This was pointed out by Lennart Augustsson when Rendel and Oster-
mann’s work was presented at Haskell’10 in Baltimore.

round-tripping property (but the proof is not mechanised, and
no guarantee is given that the pretty-printers will terminate).
They also include a “nondeterministic printing semantics” that
is reminiscent of the grammar indices that I use for Doc: a
line is non-deterministically printed as one or more whitespace
characters, and the group and nest combinators are ignored.
Matsuda and Wang’s development is limited to context-free
languages. The development is arguably quite complicated: it
uses program inversion, fusion and partial evaluation.
• Grammars along with pretty-printers that construct indexed

pretty-printer documents. This is the approach taken in the
present paper. A formal, mechanised proof of round-tripping
is provided. Furthermore the approach supports any recursively
enumerable language.
The round-tripping property is perhaps not so interesting if
there is no parser. Danielsson (2010) describes parser combina-
tors that can handle any finitely ambiguous language for which
it is possible to implement a parser in the host language, and
proves correctness formally.

If we compare these approaches then we can see that a poten-
tial disadvantage of the one presented in this paper is that the user
may have to write manual proofs. However, one can capture many
commonly occurring patterns in reusable libraries—for instance,
the user can write left d instead of embed proof d. Given suitable
library combinators it seems as if manual proofs should mostly be
needed when the pretty-printer deviates from the grammar’s struc-
ture (as in Section 4.3)—and such deviation is not even possible
when Matsuda and Wang’s approach is used. It is also possible
to automate some of the proofs. One example is provided in Sec-
tion 4.3; it is conceivable that many other proofs can also be auto-
mated, but I have not investigated this in detail.

Another potential disadvantage of the approach presented in this
paper is that the user has to write two things: a grammar and a
pretty-printer. In Section 1 I argue for the separation of grammars
and pretty-printers. However, this is my subjective view. Rose and
Welsh (1981) argue that pretty-printing information should be part
of the definition of a programming language’s syntax.

Let me finally mention the work of Foster et al. (2008) on quo-
tient lenses. A central part of this development concerns “canon-
isers”. A canoniser from A to B/∼ (where A and B are sets,
and ∼ is an equivalence relation on B) consists of two functions
canonise : A→ B and choose : B→ A, satisfying the law

∀ b. canonise (choose b) ∼ b.

Foster et al. describe a canoniser where, basically, canonise re-
places newline characters with spaces, and choose selectively re-
places spaces with newline characters to wrap long lines.

7. Conclusion
I have presented a new approach to correct-by-construction pretty-
printing. The approach is very close to the one of classical (not-
necessarily-correct) pretty-printing. The main difference is that
pretty-printer documents are more precisely typed, which ensures
that documents are correct with respect to given values and gram-
mars. The development is based on very general grammars and
Wadler’s pretty-printing combinators, but the ideas should carry
over to other grammar and/or pretty-printing frameworks.

The round-tripping property that is proved in Section 5 depends
on having an unambiguous grammar (or at least a grammar that
is unambiguous for strings in the image of the pretty-printer). I
have not discussed how one can prove that a grammar is unam-
biguous—I see this as an orthogonal problem.

The correctness property that renderers have to satisfy only
concerns grammatical correctness, not “prettiness”: renderers have

some freedom in how to interpret their inputs, as witnessed by the
two very different renderers in Section 5. The ugly-renderer can
be used to generate compact output, and the other one to generate
pretty output—in both cases the result is guaranteed to be grammat-
ically correct (although perhaps ambiguous). Other renderers could
also be useful. One may for instance want to use a “ribbon width”,
a limit on the number of non-indentation characters occurring on a
line (Hughes 1995).

Acknowledgements
I would like to thank Kazutaka Matsuda and Meng Wang for
inspiring me to do the work reported in this paper. I would also like
to thank Conor McBride, Aaron Stump, Philip Wadler and some
anonymous reviewers for useful feedback.

The research leading to these results has received funding from
the European Research Council under the European Union’s Sev-
enth Framework Programme (FP7/2007-2013) / ERC grant agree-
ment n◦ 247219.

References
The Agda Team. The Agda Wiki. Available at http://wiki.portal.

chalmers.se/agda/, 2013.

Artem Alimarine, Sjaak Smetsers, Arjen van Weelden, Marko van Eekelen,
and Rinus Plasmeijer. There and back again: Arrows for invertible
programming. In Haskell’05, Proceedings of the ACM SIGPLAN 2005
Haskell Workshop, pages 86–97, 2005. doi:10.1145/1088348.1088357.

Richard J. Boulton. Syn: A single language for specifiying abstract syntax
trees, lexical analysis, parsing and pretty-printing. Technical Report
UCAM-CL-TR-390, University of Cambridge Computer Laboratory,
1996.

Nils Anders Danielsson. Total parser combinators. In ICFP’10, Proceed-
ings of the 15th ACM SIGPLAN international conference on Functional
programming, pages 285–296, 2010. doi:10.1145/1863543.1863585.

J. Nathan Foster, Alexandre Pilkiewicz, and Benjamin C. Pierce. Quotient
lenses. In ICFP’08, Proceedings of the 2008 SIGPLAN International
Conference on Functional Programming, pages 383–395, 2008. doi:10.
1145/1411204.1411257.

John Hughes. The design of a pretty-printing library. In Advanced Func-
tional Programming, First International Spring School on Advanced
Functional Programming Techniques, volume 925 of LNCS, pages 53–
96, 1995. doi:10.1007/3-540-59451-5 3.

Graham Hutton and Erik Meijer. Monadic parsing in Haskell. Jour-
nal of Functional Programming, 8(4):437–444, 1998. doi:10.1017/
S0956796898003050.

Peter Lee, Frank Pfenning, Gene Rollins, and William Scherlis. The Ergo
Support System: An integrated set of tools for prototyping integrated
environments. In Proceedings of the third ACM SIGSOFT/SIGPLAN
software engineering symposium on Practical software development en-
vironments, pages 25–34, 1988. doi:10.1145/64135.65006.

Kazutaka Matsuda and Meng Wang. FliPpr: A prettier invertible print-
ing system. In Programming Languages and Systems, 22nd European
Symposium on Programming, ESOP 2013, volume 7792 of LNCS, pages
101–120, 2013. doi:10.1007/978-3-642-37036-6 6.

Ulf Norell. Towards a practical programming language based on depen-
dent type theory. PhD thesis, Chalmers University of Technology and
Göteborg University, 2007.

Derek C. Oppen. Prettyprinting. ACM Transactions on Programming Lan-
guages and Systems, 2(4):465–483, 1980. doi:10.1145/357114.357115.

Simon Peyton Jones. John Hughes’s and Simon Peyton Jones’s pretty
printer combinators. Haskell source code, 1996. A more recent ver-
sion of the library is, at the time of writing, available from http:
//hackage.haskell.org/package/pretty.

Tillmann Rendel and Klaus Ostermann. Invertible syntax descriptions:
Unifying parsing and pretty printing. In Haskell’10, Proceedings of the

http://wiki.portal.chalmers.se/agda/
http://wiki.portal.chalmers.se/agda/
http://dx.doi.org/10.1145/1088348.1088357
http://dx.doi.org/10.1145/1863543.1863585
http://dx.doi.org/10.1145/1411204.1411257
http://dx.doi.org/10.1145/1411204.1411257
http://dx.doi.org/10.1007/3-540-59451-5_3
http://dx.doi.org/10.1017/S0956796898003050
http://dx.doi.org/10.1017/S0956796898003050
http://dx.doi.org/10.1145/64135.65006
http://dx.doi.org/10.1007/978-3-642-37036-6_6
http://dx.doi.org/10.1145/357114.357115
http://hackage.haskell.org/package/pretty
http://hackage.haskell.org/package/pretty

2010 ACM SIGPLAN Haskell Symposium, pages 1–12, 2010. doi:10.
1145/1863523.1863525.

G. A. Rose and J. Welsh. Formatted programming languages. Soft-
ware: Practice and Experience, 11(7):651–669, 1981. doi:10.1002/spe.
4380110702.

Lisa F. Rubin. Syntax-directed pretty printing—a first step towards a
syntax-directed editor. IEEE Transactions on Software Engineering, SE-

9(2):119–127, 1983. doi:10.1109/TSE.1983.236456.
S. Doaitse Swierstra and Olaf Chitil. Linear, bounded, functional pretty-

printing. Journal of Functional Programming, 19(1):1–16, 2009. doi:10.
1017/S0956796808006990.

Philip Wadler. A prettier printer. In The Fun of Programming. Palgrave
Macmillan, 2003.

http://dx.doi.org/10.1145/1863523.1863525
http://dx.doi.org/10.1145/1863523.1863525
http://dx.doi.org/10.1002/spe.4380110702
http://dx.doi.org/10.1002/spe.4380110702
http://dx.doi.org/10.1109/TSE.1983.236456
http://dx.doi.org/10.1017/S0956796808006990
http://dx.doi.org/10.1017/S0956796808006990

	Introduction
	Grammars
	Pretty-Printers
	Examples
	Boolean Literals
	Expressions
	Expressions, Take Two
	Identifiers
	Other Examples

	Renderers
	An Ugly-Renderer
	Wadler's Renderer

	Related Work
	Conclusion

