
Bag Equivalence via a
Proof-Relevant

Membership Relation

Nils Anders Danielsson (Gothenburg)

ITP 2012, Princeton

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement n◦ 247219. This
presentation does not necessarily reflect the views of the ERC or the EU. The EU is not liable for any use of the presented information. I do not hold the copyright to the EU emblem or the ERC logo.

Bag equivalence

Equality up to reordering of elements,
or equality when seen as bags:

[1, 2, 1] ≈bag [2, 1, 1]
[1, 2, 1] 6≈bag [2, 1]
[1, 2, 1] ≈set [2, 1]

Why?

Partial specification of sorting algorithm:

∀ xs. sort xs ≈bag xs

Not restricted to lists

•

1 2
≈bag

•

2 1

•

1 2
≈bag [2, 1]

Why?
Tree sort:

to-search-tree : List N � Tree N
flatten : Tree N � List N
tree-sort : List N � List N
tree-sort = flatten ◦ to-search-tree

We can prove

∀ xs. tree-sort xs ≈bag xs

by first proving

∀ xs. to-search-tree xs ≈bag xs
∀ t. flatten t ≈bag t

Not restricted to finite things

[1, 2, 1, 2, . . .] ≈bag [2, 1, 2, 1, . . .]

Why?

Assume semantics of grammar given by

L : Grammar � Colist String

Language equivalence:

L G1 ≈set L G2

If we want to distinguish between ambiguous and
unambiguous grammars:

L G1 ≈bag L G2

Definitions

How is bag equivalence defined?
I Finite sequence of swaps of adjacent elements.
I Counting.
I Bijections.
I . . .

Bag equivalence via bijections

Bijection on positions which relates equal elements:

xs ≈bag ys ⇔
∃ f : positions of xs ↔ positions of ys.
∀ p. lookup xs p = lookup ys (f p)

1 2 3 1

3 1 2 1

Generalises to anything with positions and lookup.

This talk

New definition of bag equivalence,
with the following properties:
I Many equivalences provable using
“bijectional reasoning”.

I Works for arbitrary unary containers
(lists, streams, trees, . . .).

I Generalises to set equivalence and
subset and subbag preorders.

I Formalised in Agda, but the K rule is not used.

Definition

Any (Morris)

Any P xs means that P x holds for some x in xs.

Any : (A � Set) � List A � Set
Any P [] = ⊥
Any P (x :: xs) = P x + Any P xs

Any P [1, 2, 3] = P 1 + P 2 + P 3 + ⊥

Membership

Any : (A � Set) � List A � Set
Any P [] = ⊥
Any P (x :: xs) = P x + Any P xs

∈ : A � List A � Set
x ∈ xs = Any (λ y . x ≡ y) xs

x ∈ [1, 2, 3] = (x ≡ 1) + (x ≡ 2) + (x ≡ 3) + ⊥
2 ∈ [2, 2] = (2 ≡ 2) + (2 ≡ 2) + ⊥

Bag equivalence

Any : (A � Set) � List A � Set
Any P [] = ⊥
Any P (x :: xs) = P x + Any P xs

∈ : A � List A � Set
x ∈ xs = Any (λ y . x ≡ y) xs

≈bag : List A � List A � Set
xs ≈bag ys = ∀ z . z ∈ xs ↔ z ∈ ys

Caveat

What if there are several distinct proofs of 2 ≡ 2?

2 ∈ [2, 2] = (2 ≡ 2) + (2 ≡ 2) + ⊥

Correct

The two definitions are equivalent (without K):

xs ≈bag ys ⇔
∃ f : positions of xs ↔ positions of ys.
∀ p. lookup xs p = lookup ys (f p)

≈bag : List A � List A � Set
xs ≈bag ys = ∀ z . z ∈ xs ↔ z ∈ ys

If ↔ is replaced by weak equivalence: isomorphic.

Bijectional
reasoning

Example

Bind distributes from the left over append:

xs >>= (λ y . f y ++ g y) ≈bag
(xs >>= f) ++ (xs >>= g)

>>= : List A � (A � List B) � List B
xs >>= f = concat (map f xs)

Example

Bind distributes from the left over append:

xs >>= (λ y . f y ++ g y) ≈bag
(xs >>= f) ++ (xs >>= g)

[1, 2] >>= (λ y . [y] ++ [y]) ≈bag
([1, 2] >>= λ y . [y]) ++ ([1, 2] >>= λ y . [y])

Example

Bind distributes from the left over append:

xs >>= (λ y . f y ++ g y) ≈bag
(xs >>= f) ++ (xs >>= g)

[1, 1, 2, 2] ≈bag
([1, 2] >>= λ y . [y]) ++ ([1, 2] >>= λ y . [y])

Example

Bind distributes from the left over append:

xs >>= (λ y . f y ++ g y) ≈bag
(xs >>= f) ++ (xs >>= g)

[1, 1, 2, 2] ≈bag
[1, 2, 1, 2]

Outline of proof

Bijectional reasoning combinators
Any lemmas
Left distributivity

Bijectional reasoning combinators

� : (A : Set) → A ↔ A
↔〈 〉 : (A : Set) {B C : Set} →

A ↔ B → B ↔ C → A ↔ C

Assume p : A ↔ B , q : B ↔ C .

A ↔〈 p 〉
B ↔〈 q 〉
C �

Bijectional reasoning combinators

� : (A : Set) → A ↔ A
↔〈 〉 : (A : Set) {B C : Set} →

A ↔ B → B ↔ C → A ↔ C

Assume p : A ↔ B , q : B ↔ C .

C � : C ↔ C

Bijectional reasoning combinators

� : (A : Set) → A ↔ A
↔〈 〉 : (A : Set) {B C : Set} →

A ↔ B → B ↔ C → A ↔ C

Assume p : A ↔ B , q : B ↔ C .

B ↔〈 q 〉 (C �) : B ↔ C

Bijectional reasoning combinators

� : (A : Set) → A ↔ A
↔〈 〉 : (A : Set) {B C : Set} →

A ↔ B → B ↔ C → A ↔ C

Assume p : A ↔ B , q : B ↔ C .

A↔〈 p 〉 (B ↔〈 q 〉 (C �)) : A ↔ C

Bijectional reasoning combinators

� : (A : Set) → A ↔ A
↔〈 〉 : (A : Set) {B C : Set} →

A ↔ B → B ↔ C → A ↔ C

Assume p : A ↔ B , q : B ↔ C .

A ↔〈 p 〉
B ↔〈 q 〉
C �

Outline of proof

Bijectional reasoning combinators
Any lemmas
Left distributivity

First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P xs ys = ?

First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P [] ys = ?

Any-++ P (x :: xs) ys = ?

First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P [] ys =
Any P ([] ++ ys) ↔〈 ? 〉
Any P [] + Any P ys �

Any-++ P (x :: xs) ys = ?

First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P [] ys =
Any P ys ↔〈 ? 〉
Any P [] + Any P ys �

Any-++ P (x :: xs) ys = ?

First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P [] ys =
Any P ys ↔〈 ? 〉
⊥ + Any P ys �

Any-++ P (x :: xs) ys = ?

First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P [] ys =
Any P ys ↔〈 ⊥ identity of + 〉
⊥ + Any P ys �

Any-++ P (x :: xs) ys = ?

First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P [] ys =
Any P ys ↔〈 ⊥ identity of + 〉
⊥ + Any P ys �

Any-++ P (x :: xs) ys =
P x + Any P (xs ++ ys) ↔〈 ? 〉
(P x + Any P xs) + Any P ys �

First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P [] ys =
Any P ys ↔〈 ⊥ identity of + 〉
⊥ + Any P ys �

Any-++ P (x :: xs) ys =
P x + Any P (xs ++ ys) ↔〈 ind. hyp. 〉
P x + (Any P xs + Any P ys) ↔〈 ? 〉
(P x + Any P xs) + Any P ys �

First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P [] ys =
Any P ys ↔〈 ⊥ identity of + 〉
⊥ + Any P ys �

Any-++ P (x :: xs) ys =
P x + Any P (xs ++ ys) ↔〈 ind. hyp. 〉
P x + (Any P xs + Any P ys) ↔〈 + associative 〉
(P x + Any P xs) + Any P ys �

First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

++-comm : (xs ys : List A) �
xs ++ ys ≈bag ys ++ xs

++-comm xs ys = ?

First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

++-comm : (xs ys : List A) �
xs ++ ys ≈bag ys ++ xs

++-comm xs ys = λ z .
z ∈ xs ++ ys ↔〈 ? 〉
z ∈ ys ++ xs �

First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

++-comm : (xs ys : List A) �
xs ++ ys ≈bag ys ++ xs

++-comm xs ys = λ z .
z ∈ xs ++ ys ↔〈 Any-++ 〉
z ∈ xs + z ∈ ys ↔〈 ? 〉
z ∈ ys ++ xs �

(With P = λ y . z ≡ y .)

First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

++-comm : (xs ys : List A) �
xs ++ ys ≈bag ys ++ xs

++-comm xs ys = λ z .
z ∈ xs ++ ys ↔〈 Any-++ 〉
z ∈ xs + z ∈ ys ↔〈 ? 〉
z ∈ ys + z ∈ xs ↔〈 Any-++ 〉
z ∈ ys ++ xs �

(With P = λ y . z ≡ y .)

First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

++-comm : (xs ys : List A) �
xs ++ ys ≈bag ys ++ xs

++-comm xs ys = λ z .
z ∈ xs ++ ys ↔〈 Any-++ 〉
z ∈ xs + z ∈ ys ↔〈 + commutative 〉
z ∈ ys + z ∈ xs ↔〈 Any-++ 〉
z ∈ ys ++ xs �

(With P = λ y . z ≡ y .)

Similar lemmas

Any P (concat xss) ↔ Any (Any P) xss
Any P (map f xs) ↔ Any (P ◦ f) xs
Any P (xs >>= f) ↔ Any (Any P ◦ f) xs

Proof of bind lemma:

Any P (xs >>= f) ↔〈 by definition 〉
Any P (concat (map f xs)) ↔〈 concat 〉
Any (Any P) (map f xs) ↔〈 map 〉
Any (Any P ◦ f) xs �

More lemmas

Any P xs ↔ ∃ z . P z × z ∈ xs

Any-cong : (∀ x . P x ↔ Q x) �
xs ≈bag ys �
Any P xs ↔ Any Q ys

Any-cong p eq =
Any P xs ↔〈 Any � ∃ 〉
(∃ z . P z × z ∈ xs) ↔〈 assumptions 〉
(∃ z . Q z × z ∈ ys) ↔〈 Any � ∃ 〉
Any Q ys �

Outline of proof

Bijectional reasoning combinators
Any lemmas
Left distributivity

Left distributivity

xs >>= (λ y . f y ++ g y) ≈bag
(xs >>= f) ++ (xs >>= g)

Left distributivity

z ∈ xs >>= (λ y . f y ++ g y) ↔〈 ? 〉
z ∈ (xs >>= f) ++ (xs >>= g) �

Left distributivity

Any (≡ z) (xs >>= (λ y . f y ++ g y)) ↔〈 ? 〉
z ∈ (xs >>= f) ++ (xs >>= g) �

Left distributivity

Any (≡ z) (xs >>= (λ y . f y ++ g y)) ↔〈 bind 〉
Any (Any (≡ z) ◦ (λ y . f y ++ g y)) xs ↔〈 ? 〉
z ∈ (xs >>= f) ++ (xs >>= g) �

Left distributivity

Any (≡ z) (xs >>= (λ y . f y ++ g y)) ↔〈 bind 〉
Any (λ y . z ∈ f y ++ g y) xs ↔〈 ? 〉
z ∈ (xs >>= f) ++ (xs >>= g) �

Left distributivity

Any (≡ z) (xs >>= (λ y . f y ++ g y)) ↔〈 bind 〉
Any (λ y . z ∈ f y ++ g y) xs ↔〈 ++ 〉
Any (λ y . z ∈ f y + z ∈ g y) xs ↔〈 ? 〉
z ∈ (xs >>= f) ++ (xs >>= g) �

Left distributivity

Any (≡ z) (xs >>= (λ y . f y ++ g y)) ↔〈 bind 〉
Any (λ y . z ∈ f y ++ g y) xs ↔〈 ++ 〉
Any (λ y . z ∈ f y + z ∈ g y) xs ↔〈 ? 〉
z ∈ xs >>= f + z ∈ xs >>= g ↔〈 ++ 〉
z ∈ (xs >>= f) ++ (xs >>= g) �

Left distributivity

Any (≡ z) (xs >>= (λ y . f y ++ g y)) ↔〈 bind 〉
Any (λ y . z ∈ f y ++ g y) xs ↔〈 ++ 〉
Any (λ y . z ∈ f y + z ∈ g y) xs ↔〈 ? 〉
Any (λ y . z ∈ f y) xs +
Any (λ y . z ∈ g y) xs ↔〈 bind 〉

z ∈ xs >>= f + z ∈ xs >>= g ↔〈 ++ 〉
z ∈ (xs >>= f) ++ (xs >>= g) �

Left distributivity

Any (λ y . z ∈ f y + z ∈ g y) xs ↔〈 ? 〉
Any (λ y . z ∈ f y) xs +
Any (λ y . z ∈ g y) xs �

Left distributivity

Any (λ y . P y + z ∈ g y) xs ↔〈 ? 〉
Any (λ y . P y) xs +

Any (λ y . z ∈ g y) xs �

Left distributivity

Any (λ y . P y + Q y) xs ↔〈 ? 〉
Any P xs + Any Q xs �

Left distributivity

Any (λ y . P y + Q y) xs ↔〈 Any � ∃ 〉
(∃ y . (P y + Q y) × y ∈ xs) ↔〈 ? 〉
Any P xs + Any Q xs �

Left distributivity

Any (λ y . P y + Q y) xs ↔〈 Any � ∃ 〉
(∃ y . (P y + Q y) × y ∈ xs) ↔〈 ? 〉
(∃ y . P y × y ∈ xs) +
(∃ y . Q y × y ∈ xs) ↔〈 Any � ∃ 〉

Any P xs + Any Q xs �

Left distributivity

Any (λ y . P y + Q y) xs ↔〈 Any � ∃ 〉
(∃ y . (P y + Q y) × y ∈ xs) ↔〈 × distrib. + 〉
(∃ y . P y × y ∈ xs +

Q y × y ∈ xs) ↔〈 ? 〉
(∃ y . P y × y ∈ xs) +
(∃ y . Q y × y ∈ xs) ↔〈 Any � ∃ 〉

Any P xs + Any Q xs �

Left distributivity

Any (λ y . P y + Q y) xs ↔〈 Any � ∃ 〉
(∃ y . (P y + Q y) × y ∈ xs) ↔〈 × distrib. + 〉
(∃ y . P y × y ∈ xs +

Q y × y ∈ xs) ↔〈 ∃ distrib. + 〉
(∃ y . P y × y ∈ xs) +
(∃ y . Q y × y ∈ xs) ↔〈 Any � ∃ 〉

Any P xs + Any Q xs �

Summary of proof

Membership defined in terms of Any ,

used Any lemmas,

Any P (xs ++ ys) ↔ Any P xs + Any P ys,
Any P (xs >>= f) ↔ Any (Any P ◦ f) xs,
Any P xs ↔ ∃ z . P z × z ∈ xs,

to reduce left distributivity to

(A + B) × C ↔ A × C + B × C ,
(∃ y . P y + Q y) ↔ (∃ y . P y) + (∃ y . Q y).

Variations

Variations

I Set equivalence:

xs ≈set ys = ∀ z . z ∈ xs ⇔ z ∈ ys

I Subset preorder:

xs .set ys = ∀ z . z ∈ xs � z ∈ ys

I Subbag preorder:

xs .bag ys = ∀ z . z ∈ xs � z ∈ ys

Variations

Other types: Change the definition of Any .

≈bag : List A � Tree A � Set
xs ≈bag t = ∀ z . z ∈List xs ↔ z ∈Tree t

Works for arbitrary unary containers
(Abbot et al.; compare Hoogendijk & de Moor).

Conclusions

I Bag equivalence.
I Bijectional reasoning.
I Arbitrary unary containers.
I Set equivalence and
subset and subbag preorders.

?
Conclusions

I Bag equivalence.
I Bijectional reasoning.
I Arbitrary unary containers.
I Set equivalence and
subset and subbag preorders.

	Introduction
	Definition
	Bijectional reasoning
	Bijectional reasoning combinators
	Any lemmas
	Left distributivity

	Variations
	Conclusions

