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Bag equivalence

Equality up to reordering of elements,
or equality when seen as bags:

[1, 2, 1] ≈bag [2, 1, 1]
[1, 2, 1] 6≈bag [2, 1]
[1, 2, 1] ≈set [2, 1]



Why?

Partial specification of sorting algorithm:

∀ xs. sort xs ≈bag xs



Not restricted to lists

•

1 2
≈bag

•

2 1

•

1 2
≈bag [2, 1]



Why?
Tree sort:

to-search-tree : List N � Tree N
flatten : Tree N � List N
tree-sort : List N � List N
tree-sort = flatten ◦ to-search-tree

We can prove

∀ xs. tree-sort xs ≈bag xs

by first proving

∀ xs. to-search-tree xs ≈bag xs
∀ t. flatten t ≈bag t



Not restricted to finite things

[1, 2, 1, 2, . . .] ≈bag [2, 1, 2, 1, . . .]



Why?

Assume semantics of grammar given by

L : Grammar � Colist String

Language equivalence:

L G1 ≈set L G2

If we want to distinguish between ambiguous and
unambiguous grammars:

L G1 ≈bag L G2



Definitions

How is bag equivalence defined?
I Finite sequence of swaps of adjacent elements.
I Counting.
I Bijections.
I . . .



Bag equivalence via bijections

Bijection on positions which relates equal elements:

xs ≈bag ys ⇔
∃ f : positions of xs ↔ positions of ys.
∀ p. lookup xs p = lookup ys (f p)

1 2 3 1

3 1 2 1

Generalises to anything with positions and lookup.



This talk

New definition of bag equivalence,
with the following properties:
I Many equivalences provable using
“bijectional reasoning”.

I Works for arbitrary unary containers
(lists, streams, trees, . . . ).

I Generalises to set equivalence and
subset and subbag preorders.

I Formalised in Agda, but the K rule is not used.



Definition



Any (Morris)

Any P xs means that P x holds for some x in xs.

Any : (A � Set) � List A � Set
Any P [ ] = ⊥
Any P (x :: xs) = P x + Any P xs

Any P [1, 2, 3] = P 1 + P 2 + P 3 + ⊥



Membership

Any : (A � Set) � List A � Set
Any P [ ] = ⊥
Any P (x :: xs) = P x + Any P xs

∈ : A � List A � Set
x ∈ xs = Any (λ y . x ≡ y) xs

x ∈ [1, 2, 3] = (x ≡ 1) + (x ≡ 2) + (x ≡ 3) + ⊥
2 ∈ [2, 2] = (2 ≡ 2) + (2 ≡ 2) + ⊥



Bag equivalence

Any : (A � Set) � List A � Set
Any P [ ] = ⊥
Any P (x :: xs) = P x + Any P xs

∈ : A � List A � Set
x ∈ xs = Any (λ y . x ≡ y) xs

≈bag : List A � List A � Set
xs ≈bag ys = ∀ z . z ∈ xs ↔ z ∈ ys



Caveat

What if there are several distinct proofs of 2 ≡ 2?

2 ∈ [2, 2] = (2 ≡ 2) + (2 ≡ 2) + ⊥



Correct

The two definitions are equivalent (without K):

xs ≈bag ys ⇔
∃ f : positions of xs ↔ positions of ys.
∀ p. lookup xs p = lookup ys (f p)

≈bag : List A � List A � Set
xs ≈bag ys = ∀ z . z ∈ xs ↔ z ∈ ys

If ↔ is replaced by weak equivalence: isomorphic.



Bijectional
reasoning



Example

Bind distributes from the left over append:

xs >>= (λ y . f y ++ g y) ≈bag
(xs >>= f ) ++ (xs >>= g)

>>= : List A � (A � List B) � List B
xs >>= f = concat (map f xs)



Example

Bind distributes from the left over append:

xs >>= (λ y . f y ++ g y) ≈bag
(xs >>= f ) ++ (xs >>= g)

[1, 2] >>= (λ y . [y ] ++ [y ]) ≈bag
([1, 2] >>= λ y . [y ]) ++ ([1, 2] >>= λ y . [y ])



Example

Bind distributes from the left over append:

xs >>= (λ y . f y ++ g y) ≈bag
(xs >>= f ) ++ (xs >>= g)

[1, 1, 2, 2] ≈bag
([1, 2] >>= λ y . [y ]) ++ ([1, 2] >>= λ y . [y ])



Example

Bind distributes from the left over append:

xs >>= (λ y . f y ++ g y) ≈bag
(xs >>= f ) ++ (xs >>= g)

[1, 1, 2, 2] ≈bag
[1, 2, 1, 2]



Outline of proof

Bijectional reasoning combinators
Any lemmas
Left distributivity



Bijectional reasoning combinators

� : (A : Set) → A ↔ A
↔〈 〉 : (A : Set) {B C : Set} →

A ↔ B → B ↔ C → A ↔ C

Assume p : A ↔ B , q : B ↔ C .

A ↔〈 p 〉
B ↔〈 q 〉
C �



Bijectional reasoning combinators

� : (A : Set) → A ↔ A
↔〈 〉 : (A : Set) {B C : Set} →

A ↔ B → B ↔ C → A ↔ C

Assume p : A ↔ B , q : B ↔ C .

C � : C ↔ C



Bijectional reasoning combinators

� : (A : Set) → A ↔ A
↔〈 〉 : (A : Set) {B C : Set} →

A ↔ B → B ↔ C → A ↔ C

Assume p : A ↔ B , q : B ↔ C .

B ↔〈 q 〉 (C �) : B ↔ C



Bijectional reasoning combinators

� : (A : Set) → A ↔ A
↔〈 〉 : (A : Set) {B C : Set} →

A ↔ B → B ↔ C → A ↔ C

Assume p : A ↔ B , q : B ↔ C .

A↔〈 p 〉 (B ↔〈 q 〉 (C �)) : A ↔ C



Bijectional reasoning combinators

� : (A : Set) → A ↔ A
↔〈 〉 : (A : Set) {B C : Set} →

A ↔ B → B ↔ C → A ↔ C

Assume p : A ↔ B , q : B ↔ C .

A ↔〈 p 〉
B ↔〈 q 〉
C �



Outline of proof

Bijectional reasoning combinators
Any lemmas
Left distributivity



First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P xs ys = ?



First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P [ ] ys = ?

Any-++ P (x :: xs) ys = ?



First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P [ ] ys =
Any P ([ ] ++ ys) ↔〈 ? 〉
Any P [ ] + Any P ys �

Any-++ P (x :: xs) ys = ?



First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P [ ] ys =
Any P ys ↔〈 ? 〉
Any P [ ] + Any P ys �

Any-++ P (x :: xs) ys = ?



First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P [ ] ys =
Any P ys ↔〈 ? 〉
⊥ + Any P ys �

Any-++ P (x :: xs) ys = ?



First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P [ ] ys =
Any P ys ↔〈 ⊥ identity of + 〉
⊥ + Any P ys �

Any-++ P (x :: xs) ys = ?



First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P [ ] ys =
Any P ys ↔〈 ⊥ identity of + 〉
⊥ + Any P ys �

Any-++ P (x :: xs) ys =
P x + Any P (xs ++ ys) ↔〈 ? 〉
(P x + Any P xs) + Any P ys �



First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P [ ] ys =
Any P ys ↔〈 ⊥ identity of + 〉
⊥ + Any P ys �

Any-++ P (x :: xs) ys =
P x + Any P (xs ++ ys) ↔〈 ind. hyp. 〉
P x + (Any P xs + Any P ys) ↔〈 ? 〉
(P x + Any P xs) + Any P ys �



First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P [ ] ys =
Any P ys ↔〈 ⊥ identity of + 〉
⊥ + Any P ys �

Any-++ P (x :: xs) ys =
P x + Any P (xs ++ ys) ↔〈 ind. hyp. 〉
P x + (Any P xs + Any P ys) ↔〈 + associative 〉
(P x + Any P xs) + Any P ys �



First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

++-comm : (xs ys : List A) �
xs ++ ys ≈bag ys ++ xs

++-comm xs ys = ?



First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

++-comm : (xs ys : List A) �
xs ++ ys ≈bag ys ++ xs

++-comm xs ys = λ z .
z ∈ xs ++ ys ↔〈 ? 〉
z ∈ ys ++ xs �



First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

++-comm : (xs ys : List A) �
xs ++ ys ≈bag ys ++ xs

++-comm xs ys = λ z .
z ∈ xs ++ ys ↔〈 Any-++ 〉
z ∈ xs + z ∈ ys ↔〈 ? 〉
z ∈ ys ++ xs �

(With P = λ y . z ≡ y .)



First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

++-comm : (xs ys : List A) �
xs ++ ys ≈bag ys ++ xs

++-comm xs ys = λ z .
z ∈ xs ++ ys ↔〈 Any-++ 〉
z ∈ xs + z ∈ ys ↔〈 ? 〉
z ∈ ys + z ∈ xs ↔〈 Any-++ 〉
z ∈ ys ++ xs �

(With P = λ y . z ≡ y .)



First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

++-comm : (xs ys : List A) �
xs ++ ys ≈bag ys ++ xs

++-comm xs ys = λ z .
z ∈ xs ++ ys ↔〈 Any-++ 〉
z ∈ xs + z ∈ ys ↔〈 + commutative 〉
z ∈ ys + z ∈ xs ↔〈 Any-++ 〉
z ∈ ys ++ xs �

(With P = λ y . z ≡ y .)



Similar lemmas

Any P (concat xss) ↔ Any (Any P) xss
Any P (map f xs) ↔ Any (P ◦ f ) xs
Any P (xs >>= f ) ↔ Any (Any P ◦ f ) xs

Proof of bind lemma:

Any P (xs >>= f ) ↔〈 by definition 〉
Any P (concat (map f xs)) ↔〈 concat 〉
Any (Any P) (map f xs) ↔〈 map 〉
Any (Any P ◦ f ) xs �



More lemmas

Any P xs ↔ ∃ z . P z × z ∈ xs

Any-cong : (∀ x . P x ↔ Q x) �
xs ≈bag ys �
Any P xs ↔ Any Q ys

Any-cong p eq =
Any P xs ↔〈 Any � ∃ 〉
(∃ z . P z × z ∈ xs) ↔〈 assumptions 〉
(∃ z . Q z × z ∈ ys) ↔〈 Any � ∃ 〉
Any Q ys �



Outline of proof

Bijectional reasoning combinators
Any lemmas
Left distributivity



Left distributivity

xs >>= (λ y . f y ++ g y) ≈bag
(xs >>= f ) ++ (xs >>= g)



Left distributivity

z ∈ xs >>= (λ y . f y ++ g y) ↔〈 ? 〉
z ∈ (xs >>= f ) ++ (xs >>= g) �



Left distributivity

Any ( ≡ z) (xs >>= (λ y . f y ++ g y)) ↔〈 ? 〉
z ∈ (xs >>= f ) ++ (xs >>= g) �



Left distributivity

Any ( ≡ z) (xs >>= (λ y . f y ++ g y)) ↔〈 bind 〉
Any (Any ( ≡ z) ◦ (λ y . f y ++ g y)) xs ↔〈 ? 〉
z ∈ (xs >>= f ) ++ (xs >>= g) �



Left distributivity

Any ( ≡ z) (xs >>= (λ y . f y ++ g y)) ↔〈 bind 〉
Any (λ y . z ∈ f y ++ g y) xs ↔〈 ? 〉
z ∈ (xs >>= f ) ++ (xs >>= g) �



Left distributivity

Any ( ≡ z) (xs >>= (λ y . f y ++ g y)) ↔〈 bind 〉
Any (λ y . z ∈ f y ++ g y) xs ↔〈 ++ 〉
Any (λ y . z ∈ f y + z ∈ g y) xs ↔〈 ? 〉
z ∈ (xs >>= f ) ++ (xs >>= g) �



Left distributivity

Any ( ≡ z) (xs >>= (λ y . f y ++ g y)) ↔〈 bind 〉
Any (λ y . z ∈ f y ++ g y) xs ↔〈 ++ 〉
Any (λ y . z ∈ f y + z ∈ g y) xs ↔〈 ? 〉
z ∈ xs >>= f + z ∈ xs >>= g ↔〈 ++ 〉
z ∈ (xs >>= f ) ++ (xs >>= g) �



Left distributivity

Any ( ≡ z) (xs >>= (λ y . f y ++ g y)) ↔〈 bind 〉
Any (λ y . z ∈ f y ++ g y) xs ↔〈 ++ 〉
Any (λ y . z ∈ f y + z ∈ g y) xs ↔〈 ? 〉
Any (λ y . z ∈ f y) xs +
Any (λ y . z ∈ g y) xs ↔〈 bind 〉

z ∈ xs >>= f + z ∈ xs >>= g ↔〈 ++ 〉
z ∈ (xs >>= f ) ++ (xs >>= g) �



Left distributivity

Any (λ y . z ∈ f y + z ∈ g y) xs ↔〈 ? 〉
Any (λ y . z ∈ f y) xs +
Any (λ y . z ∈ g y) xs �



Left distributivity

Any (λ y . P y + z ∈ g y) xs ↔〈 ? 〉
Any (λ y . P y) xs +

Any (λ y . z ∈ g y) xs �



Left distributivity

Any (λ y . P y + Q y) xs ↔〈 ? 〉
Any P xs + Any Q xs �



Left distributivity

Any (λ y . P y + Q y) xs ↔〈 Any � ∃ 〉
(∃ y . (P y + Q y) × y ∈ xs) ↔〈 ? 〉
Any P xs + Any Q xs �



Left distributivity

Any (λ y . P y + Q y) xs ↔〈 Any � ∃ 〉
(∃ y . (P y + Q y) × y ∈ xs) ↔〈 ? 〉
(∃ y . P y × y ∈ xs) +
(∃ y . Q y × y ∈ xs) ↔〈 Any � ∃ 〉

Any P xs + Any Q xs �



Left distributivity

Any (λ y . P y + Q y) xs ↔〈 Any � ∃ 〉
(∃ y . (P y + Q y) × y ∈ xs) ↔〈 × distrib. + 〉
(∃ y . P y × y ∈ xs +

Q y × y ∈ xs) ↔〈 ? 〉
(∃ y . P y × y ∈ xs) +
(∃ y . Q y × y ∈ xs) ↔〈 Any � ∃ 〉

Any P xs + Any Q xs �



Left distributivity

Any (λ y . P y + Q y) xs ↔〈 Any � ∃ 〉
(∃ y . (P y + Q y) × y ∈ xs) ↔〈 × distrib. + 〉
(∃ y . P y × y ∈ xs +

Q y × y ∈ xs) ↔〈 ∃ distrib. + 〉
(∃ y . P y × y ∈ xs) +
(∃ y . Q y × y ∈ xs) ↔〈 Any � ∃ 〉

Any P xs + Any Q xs �



Summary of proof

Membership defined in terms of Any ,

used Any lemmas,

Any P (xs ++ ys) ↔ Any P xs + Any P ys,
Any P (xs >>= f ) ↔ Any (Any P ◦ f ) xs,
Any P xs ↔ ∃ z . P z × z ∈ xs,

to reduce left distributivity to

(A + B) × C ↔ A × C + B × C ,
(∃ y . P y + Q y) ↔ (∃ y . P y) + (∃ y . Q y).



Variations



Variations

I Set equivalence:

xs ≈set ys = ∀ z . z ∈ xs ⇔ z ∈ ys

I Subset preorder:

xs .set ys = ∀ z . z ∈ xs � z ∈ ys

I Subbag preorder:

xs .bag ys = ∀ z . z ∈ xs � z ∈ ys



Variations

Other types: Change the definition of Any .

≈bag : List A � Tree A � Set
xs ≈bag t = ∀ z . z ∈List xs ↔ z ∈Tree t

Works for arbitrary unary containers
(Abbot et al.; compare Hoogendijk & de Moor).



Conclusions

I Bag equivalence.
I Bijectional reasoning.
I Arbitrary unary containers.
I Set equivalence and
subset and subbag preorders.
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