Nils Anders Danielsson (Gothenburg)

ITP 2012, Princeton

The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement n° 247219. This
presentation does not necessarily reflect the views of the ERC or the EU. The EU is not lable for any use of the presented information. | do not hold the copyright to the EU emblem or the ERC logo.

Equality up to reordering of elements,
or equality when seen as bags:

[1,2,1] ~opg [2.1,1]
[17271] %bag [231]
[1,2,1] ~eer [2,1]

Partial specification of sorting algorithm:

V Xs. SOrt xs Ripag XS

/N bhag / \

/ N\ N bag [271]

Why?

Tree sort:

to-search-tree : List N — Tree N

flatten - TreeN — List N
tree-sort : List N — List N
tree-sort = flatten o to-search-tree

We can prove
V Xxs. tree-sort Xs Rpyg XS
by first proving

V xs. to-search-tree xs Ripsg XS
YV t. flattent Ropag t

[1,2,1,2,...] ~bag [2,1,2,1,..]

Why?

Assume semantics of grammar given by
L : Grammar — Colist String
Language equivalence:
L G =gt L G

If we want to distinguish between ambiguous and
unambiguous grammars:

L G] ~bag L G2

How is bag equivalence defined?
» Finite sequence of swaps of adjacent elements.

» Counting.
» Bijections.

> ..

Bag equivalence via bijections

Bijection on positions which relates equal elements:

XS Rpag Y5 &
3 f : positions of xs <> positions of ys.
V p. lookup xs p = lookup ys (f p)

Generalises to anything with positions and lookup.

This talk

New definition of bag equivalence,
with the following properties:

» Many equivalences provable using
"bijectional reasoning’.

» Works for arbitrary unary containers
(lists, streams, trees, .. .).

» Generalises to set equivalence and
subset and subbag preorders.

» Formalised in Agda, but the K rule is not used.

Definition

Any P xs means that P x holds for some x in xs.

Any : (A — Set) — List A — Set
Any P[] = 1
Any P (x::xs) = Px+ Any P xs

Any P[1,2,3] = P14+ P2+ P34+ 1L

Any : (A - Set) — List A — Set
Any P[] = 1
Any P (x::xs) = P x+ Any P xs

List A — Set

A -
= Any(A\y.x=y) xs

XGXS

xe€[l,2,3] = (x=1)+(x=2)+(x=3)+ L
2€[2,2] =(2=2)+(2=2)+ L

Any : (A - Set) — List A — Set
Any P[] = 1
Any P (x::xs) = P x+ Any P xs

List A — Set

A -
= Any(A\y.x=y) xs

XGXS

_Rpag— . List A — List A — Set
XS Rpag ¥s = VZ. ZEXS <+ z€ys

What if there are several distinct proofs of 2 = 27

2€[2,2] = (2=2)+(2=2)+ L

Correct

The two definitions are equivalent (without K):

XS Ropag YS <
d f : positions of xs < positions of ys.
V p. lookup xs p = lookup ys (f p)

_Ropag o List A — List A — Set
XS Rpag ¥ys = VZ. ZEXS <+ Z€Yys

If <> is replaced by weak equivalence: isomorphic.

Bijectional
reasoning

Bind distributes from the left over append:

xs>=(Ay.fy H gy) Tbayg
(xs>= 1) H# (xs >=g)

_>= = ListA - (A - List B) - List B
xs >=f = concat (map f xs)

Bind distributes from the left over append:

xs>=(Ay.fy H gy) Tbayg
(xs>= 1) H (xs>=g)

[1,2] >= (A y. [y] # [¥]) ~bag
([L2] >=Ay. [y]) # ([1,2] >=Ay.[y])

Bind distributes from the left over append:

xs>=(Ay.fy H gy) Tbayg
(xs>= 1) H# (xs >=g)

[1,1,2,2] Rpag
([1,2] >=Ay. [y]) + ([1,2] >= A y. [y])

Bind distributes from the left over append:

xs>=(Ay.fy H gy) Tbayg
(xs>= 1) H# (xs >=g)

Bijectional reasoning combinators
Any lemmas
Left distributivity

_ 0 (A Set) - Ao A
() (A Set){B C : Set} —
A<+ B = B+ C = A« C

Assumep : A < B, g : B + C.

N>
03¢ g
O

_ 0 (A Set) - Ao A
() (A Set){B C : Set} —
A<+ B = B+ C = A« C

Assumep : A < B, g : B + C.

co . C & C

_ 0 (A Set) - Ao A
() (A Set){B C : Set} —
A<+ B = B+ C = A« C

Assumep : A < B, g : B + C.

Bo{g)(CO) : B« C

_ 0 (A Set) - Ao A
() (A Set){B C : Set} —
A<+ B = B+ C = A« C

Assumep : A < B, g : B + C.

Ac(p)(B<(g)(CL) + Ae C

_ 0 (A Set) - Ao A
() (A Set){B C : Set} —
A<+ B = B+ C = A« C

Assumep : A < B, g : B + C.

N>
03¢ g
O

Bijectional reasoning combinators
Any lemmas
Left distributivity

Any- : (P : A — Set)(xsys : List A) —
Any P (xs H ys) < Any P xs + Any P ys

Any-+H P xsys = 7

Any- : (P : A — Set)(xsys : List A) —
Any P (xs H ys) < Any P xs + Any P ys

Any— P [] ys = 7
Any-—H P (x:ixs)ys = 7

Any- : (P : A — Set)(xsys : List A) —
Any P (xs H ys) < Any P xs + Any P ys

Any— P [] ys =
Any P ([] 4 ys) «(7)
Any P[]+ Any Pys O

Any-+ P (x i xs) ys = 7

Any- : (P : A — Set)(xsys : List A) —
Any P (xs H ys) < Any P xs + Any P ys

Any—+ P[] ys =
Any P ys —(7)
Any P[]+ Any Pys O

Any-+ P (x i xs) ys = 7

Any- : (P : A — Set)(xsys : List A) —
Any P (xs H ys) < Any P xs + Any P ys

Any—+ P[] ys =
Any P ys —(7)
L+ Any Pys U]

Any-+ P (x i xs) ys = 7

Any- : (P : A — Set)(xsys : List A) —
Any P (xs H ys) < Any P xs + Any P ys

Any—+ P[] ys =
Any P ys +»(L identity of +)
L+ Any Pys U]

Any-+ P (x i xs) ys = 7

First lemma

Any—+ : (P : A — Set) (xsys : List A) —
Any P (xs H ys) < Any P xs + Any P ys

Any—+ P[] ys =
Any P ys <(L identity of +)
L+ Any Pys U]

Any—+ P (x :: xs) ys =
P x + Any P (xs 4 ys) —(7)
(P x4+ Any P xs) + Any Pys [

First lemma

Any—+ : (P : A — Set) (xsys : List A) —
Any P (xs H ys) < Any P xs + Any P ys

Any—+ P[] ys =
Any P ys <(L identity of +)
L+ Any Pys U]
Any—+ P (x :: xs) ys =
P x + Any P (xs 4 ys) <(ind. hyp.)
P x + (Any P xs + Any P ys) «(7)
(P x4+ Any P xs) + Any Pys [

First lemma

Any—+ : (P : A — Set) (xsys : List A) —
Any P (xs H ys) < Any P xs + Any P ys

Any—+ P[] ys =
Any P ys <(L identity of +)
L+ Any Pys U]
Any—+ P (x :: xs) ys =
P x + Any P (xs 4 ys) <(ind. hyp.)
P x 4+ (Any P xs + Any P ys) <>(+ associative)
(P x4+ Any P xs) + Any Pys [

Any- : (P : A — Set)(xsys : List A) —
Any P (xs H ys) < Any P xs + Any P ys

H-comm : (xs ys : List A) —
XS H YS Rpag ¥yS H XS
H-comm xsys = 7

Any- : (P : A — Set)(xsys : List A) —
Any P (xs H ys) < Any P xs + Any P ys

H-comm : (xs ys : List A) —
XS H YS Rpag ¥yS H XS
H-commxsys = A\ z.
z € xsHys «(7)
z € ysHxs U

Any- : (P : A — Set)(xsys : List A) —
Any P (xs H ys) < Any P xs + Any P ys

H-comm : (xs ys : List A) —
XS H YS Rpag ¥yS H XS
H-commxsys = A\ z.
z € xsHys <(Any—)
zexs + zeys <(7)
z € ysH xs [

(With P = Ay.z=y.)

First lemma

Any—+ : (P : A — Set) (xsys : List A) —
Any P (xs H ys) < Any P xs + Any P ys

H-comm : (xs ys : List A) —
XS H YS Rpag ¥YS H Xxs
H-commxsys = A z.
z € xsHys <(Any—H)
zexs + z€eys <(7)
z€ys + zExs <(Any—+H)
z € ysH xs [l

(With P = Ay.z=y.)

First lemma

Any—+ : (P : A — Set) (xsys : List A) —
Any P (xs H ys) < Any P xs + Any P ys

H-comm : (xs ys : List A) —
XS H YS Rpag ¥YS H Xxs
H-commxsys = A z.
z € xsHys <(Any—H)
zExs + z€ys <>+ commutative)
z€ys + zE€xs <(Any—+H)
z € ysHxs [l

(With P = Ay.z=y)

Similar lemmas

Any P (concat xss) <> Any (Any P) xss
Any P (map f xs) < Any (Pof)xs
Any P(xs >=1f) <« Any (Any Pof)xs

Proof of bind lemma:

Any P (xs >=f) <(by definition)
Any P (concat (map f xs)) <>(concat)

Any (Any P) (map f xs) <(map)
Any (Any P o f) xs O

Any Pxs <« dz. Pz X z€&€xs

Any-cong @ (Vx. Px < Qx) —
XS Rpag YS5 —
Any P xs < Any Q ys
Any-cong p eq =
Any P xs —(Any — 3)
(3z. Pz x z€xs) <>(assumptions)
(3z. Qz x z€ys) «{(Any—-3)
Any Q ys 0

Bijectional reasoning combinators
Any lemmas
Left distributivity

XS>\F(>‘y' fy"H_gy) %bag
(xs >=f) H (xs >=g)

zexss>s=Ay.fyHgy) «(7)
z € (xs>=f) H (xs>=g) O

Any ((=_z) (xs >=(Ay. fyHgy)) «(7)
z € (xs>=1) H (xs>=g) O

Any (=—z)(xs>=(Ay.fyHgy)) <(bind)

Any (Any ((=_2)o(Ay. fyHgy))xs <(7)
z € (xs>=1f) H (xs>=g) O

Any (=—z)(xs>= (Ay.fyHgy)) <(bind)
Any Ay.z € fyHgy)xs —(7)
z € (xs>=1f) H (xs>=g) O

Any (=—z)(xs>= (Ay.fyHgy)) <(bind)
Any(ANy.z € fyHgy)xs ()
Any(Ay.zefy + z€gy)xs —(7)
z € (xs>=1f) H (xs>=g) O

~J

Any ((=_z) (xs >=(Ay. fyHgy)) < bmc;)

Any Ay.z € fyHgy)xs
Any(Ay.zefy + z€gy)xs
zexs>f 4+ zexs>=g
z € (xs>=1F) H (xs>=g)

Left distributivity

Any (= z) (xs >=(Ay.fy Hgy))
Any (Ay.z € fy4gy)xs
Any(Ay.zefy + z€gy)xs
Any (ANy.z€fy)xs+

Any (Ay.z€ gy)xs
zexs>f 4+ zexs>=g
z € (xs>=1F) H (xs>=g)

Any(Ay.zefy + zegy)xs «(7)
Any (Ay.z€fy)xs+
Any (Ay.z€ gy)xs]

Any(Ay.Py + zegy)xs «(7)
Any (Ay. Py) xs +
Any (Ay.z€ gy)xs]

Any Ay. Py +Qy)xs <(7)
Any P xs + Any Q xs 0

Any (Ay. Py + Qy) xs —{(Any —» 3)
(Fy. (Py+Qy) x yexs) «(7)
Any P xs + Any Q xs]

Any Ay. Py + Qy) xs —(Any - 3)
Fy. (Py+Qy) x yexs) «(7)

(Jy. Py X y€exs) +

(Jy. Qy X y € xs) —{(Any — 3)
Any P xs + Any Q xs OJ

Any (Ay. Py + Qy) xs —{(Any —» 3)
Fy. (Py+Qy) x yexs) <« xdistrib. +)
(Jy. Py x yexs +

Qy X yExs) —(7)
(Jy. Py X y€xs) +
(By. Qy X y € xs) —(Any - 3)

Any P xs + Any Q xs 0

Any (Ay. Py + Qy) xs —{(Any —» 3)
Fy. (Py+Qy) x yexs) <« xdistrib. +)
(Jy. Py x yexs +

Qy X y € xs) <»(3 distrib. +)
(Jy. Py X y€xs) +
(By. Qy X y € xs) —(Any - 3)

Any P xs + Any Q xs 0

Summary of proof

Membership defined in terms of Any,

used Any lemmas,

Any P (xs 4+ ys) <> Any P xs + Any P ys,
Any P (xs >=f) < Any (Any P o f) xs,
Any P xs <~ dz. Pz X z € xs,

to reduce left distributivity to

(A+ B) x C <~ Ax C 4+ B xC,
By.-Py+Qy) & By.Py)+(3y. Qy)

Variations

» Set equivalence:

XS Rger ¥ = VZz. ZEXS & z€EYs

» Subset preorder:

xS et ys = Vz. zEXS - zE ys

» Subbag preorder:

XS Spag ys = Vz. zExs — zE€Yys

Other types: Change the definition of Any.

_Ropag o List A — Tree A — Set

Works for arbitrary unary containers
(Abbot et al.; compare Hoogendijk & de Moor).

Bag equivalence.

v

Bijectional reasoning.

v

Arbitrary unary containers.

v

Set equivalence and
subset and subbag preorders.

v

Conclusions

Bag equivalence.

v

Bijectional reasoning.

v

v

Arbitrary unary cont

Set equivalence and
subset and subbag preorders.

v

	Introduction
	Definition
	Bijectional reasoning
	Bijectional reasoning combinators
	Any lemmas
	Left distributivity

	Variations
	Conclusions

