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Abstract
Purely inductive definitions give rise to tree-shaped values where
all branches have finite depth, and purely coinductive definitions
give rise to values where all branches are potentially infinite. If
this is too restrictive, then an alternative is to use mixed induction
and coinduction. This technique appears to be fairly unknown. The
aim of this paper is to make the technique more widely known,
and to present several new applications of it, including a parser
combinator library which guarantees termination of parsing, and
a method for combining coinductively defined inference systems
with rules like transitivity.

The developments presented in the paper have been formalised
and checked in Agda, a dependently typed programming language
and proof assistant.

1. Introduction
Coinduction and corecursion are useful techniques for defining
and reasoning about things which are potentially infinite. These
“things” include streams and other (potentially) infinite data types
(Coquand 1994; Giménez 1996; Turner 2004), subtyping rela-
tions for recursive types (Brandt and Henglein 1998; Gapeyev
et al. 2002), process congruences (Milner 1990), congruences for
functional programs (Gordon 1999), closures (Milner and Tofte
1991), semantics for divergence of programs (Cousot and Cousot
1992; Hughes and Moran 1995; Leroy and Grall 2009; Nakata and
Uustalu 2009), and other applications.

However, the use of coinduction can lead to values which are
“too infinite”. For instance, a non-trivial binary relation defined as a
coinductive inference system cannot include the rule of transitivity,
because a coinductive reading of transitivity would imply that every
element is related to every other (to see this, build an infinite
derivation consisting solely of uses of transitivity). As pointed
out by Gapeyev et al. (2002) this is unfortunate, because without
transitivity conceptually unrelated rules may have to be merged
or otherwise modified, in order to ensure that transitivity can be
proved as a derived property. Gapeyev et al. give the example
of subtyping for records, where a dedicated rule of transitivity
ensures that one can give separate rules for depth subtyping (which
states that a record field type can be replaced by a subtype), width
subtyping (which states that new fields can be added to a record),
and permutation of record fields.

[Copyright notice will appear here once ’preprint’ option is removed.]

Fortunately this problem can be solved. The problem stems
from a coinductive reading of transitivity, and it can be solved by
reading the rule of transitivity inductively, and only using coinduc-
tion where it is necessary. In Section 4 this idea is illustrated by us-
ing mixed induction and coinduction to define a subtyping relation
for recursive types. The rule which defines when a function type
is a subtype of another is defined coinductively (following Brandt
and Henglein (1998) and Gapeyev et al. (2002)), while the rule of
transitivity is defined inductively.

It should be noted that some caution is necessary when us-
ing mixed induction and coinduction to define inference systems.
Given an inductively defined inference system it is always sound to
include an admissible property as a new inductive rule. However, in
the presence of coinduction such an inclusion may not be sound if
the admissible rule does not have a sufficiently “contractive” proof;
see Section 4.5 for more details. (This problem does not affect our
definition of subtyping, because we prove that the definition coin-
cides with other definitions from the literature.)

The technique of mixing induction and coinduction is not lim-
ited to defining transitive inference systems. It is generally useful
when defining sets of tree-shaped values (like the typing deriva-
tions above) where some values are guaranteed to have finite depth
(typing derivations consisting solely of the rules of transitivity and
reflexivity, for instance), and other values are allowed to have infi-
nite depth.

As a second example of mixed induction and coinduction a li-
brary of parser combinators (Burge 1975; Wadler 1985; Fairbairn
1987, and many others) is defined. Parser combinators can provide
an elegant and declarative method for specifying parsers. When
compared with parser generators they have some advantages: it
is easy to abstract over recurring grammatical patterns, and there
is no need to use a separate tool just to parse something. On the
other hand there are also some disadvantages: there is a risk of
lack of efficiency, and parser generators can give static guarantees
about termination and non-ambiguity which most parser combina-
tor libraries fail to give. The library defined here addresses one of
these points by ensuring statically that parsing will terminate. It
also comes with a formal semantics.

When using parser combinators the parsers/grammars are often
constructed using cyclic definitions, so it is natural to see the defi-
nitions as being partly corecursive. However, a purely coinductive
reading of the choice and sequencing combinators would allow def-
initions like p = p | p and p′ = p′ · p′, for which it is impossible
to implement parsing in a total way (in a pure setting where p and
p′ can only be inspected via their infinite unfoldings). As shown in
Section 5 totality can be ensured by reading choice inductively, and
only reading an argument of the sequencing operator coinductively
when the other argument does not accept the empty string.

The examples above show how typing derivations and term lan-
guages can benefit from the use of mixed induction and coinduc-
tion. In Section 6 the technique is applied to the definition of a se-
mantics: it is shown how a big-step semantics which handles both
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converging and diverging computations can be defined without du-
plication of rules.

Guarded corecursion (see Section 2) is used throughout the pa-
per to define values of coinductive types. Guardedness is only an
approximation of productivity, which essentially states that every
finite approximation of a conceptually infinite value should be com-
putable in a finite number of steps. The restriction to guardedness
can make programs and proofs harder to define, but is easy to check
mechanically, and is used in some form in several programming
languages/proof assistants. Section 3 presents a method for work-
ing around the limitations of guardedness. This method is admit-
tedly ad-hoc, but is included because it uses mixed induction and
coinduction, and because the technique is used to show productiv-
ity in other parts of the paper.

The method of mixing induction and coinduction is not new;
Section 7.1 lists further applications of the technique. However, the
method does not seem to be well-known. For instance, several au-
thors mention that transitivity and coinduction cannot be combined
(Gapeyev et al. 2002; Levin and Pierce 2003; Colazzo and Ghelli
2005), but as mentioned above this is not generally true. The main
purpose of this paper is to make this technique more well-known.

To summarise, the main contributions of this paper are as fol-
lows:

• The technique of mixing induction and coinduction is ex-
plained, and its utility is demonstrated using several examples.
• It is shown that it is possible to combine coinduction and the

rule of transitivity when defining an inference system.
• It is shown how parser combinators can be implemented in such

a way that termination is guaranteed.
• A new method for working around the limitations of guarded-

ness is explained.

Furthermore all the main developments have been formalised using
the experimental, dependently typed, total1 functional program-
ming language Agda (Norell 2007; Agda Team 2009), and the
source code can (at the time of writing) be downloaded from the
first author’s web page.

The rest of the paper is structured as follows: Section 2 gives an
introduction to coinduction, and Section 3 describes a technique for
working around the limitation of guardedness. Section 4 discusses
subtyping for recursive types, Section 5 describes a parser combi-
nator library which guarantees termination, and Section 6 discusses
a big-step semantics which handles both converging and diverging
computations without duplication of rules. Finally Section 7 dis-
cusses related work and Section 8 concludes.

2. Coinduction
Coinduction and corecursion can be defined in several ways. For
concreteness this paper uses one particular method, but the main
ideas should be generally valid (in theories which are sufficiently
strong). In order to show that the techniques which are explained
can be used in practical formalisations and programs, to reduce the
risk of errors, and to make things concrete, the definitions in this
paper will be carried out in Agda, slightly modified2 to make things
simpler and aid readability.

1 Note that the meta-theory of Agda has not been properly formalised, so
take statements such as “total” with a grain of salt. However, even if Agda
should turn out to be unsound the definitions and proofs in the paper are
still valid constructions in intuitionistic type theory.
2 We have omitted some type declarations for implicit arguments, simplified
the definitional equality of corecursive programs, and ignored universe
levels (Set0, Set1. . . ).

This brief introduction does not attempt to explain coinduction
in detail, but rather aims to give the intuition necessary to under-
stand the rest of the paper. Coinductive definitions can be viewed as
the categorical dual of inductive definitions (Hagino 1987). In the
context of intuitionistic type theory coinductive types have been
investigated by Mendler (1988), Coquand (1994), and Giménez
(1996), and Leroy and Grall (2009) relate one type theoretic ap-
proach to coinduction with the approach based on the Knaster-
Tarski fixpoint theorem.

The rest of this section illustrates the approach to coinduction
taken in Agda. To start with, let us define the type of infinite
streams:

data Stream (A : Set) : Set where
:: : A→∞ (Stream A)→ Stream A

This states that Stream is a data type parametrised on the element
type (or set) A, with a single constructor :: which takes two
arguments ( :: is an infix operator; the underscores mark the
argument positions). The type function ∞ : Set → Set marks
an argument as being coinductive. Data type definitions can be
seen as defining fixpoints of functors, and a data type definition
T = F (∞ T) T , where F is a strictly positive functor in two
arguments which does not mention T , should be read as the nested
fixpoint νC. µI. F C I (almost; see Section 7.1). Here µX.G X
and νX.G X stand for the initial algebra and terminal coalgebra,
respectively, of a given functor G. In the case of Stream we get
the expected interpretation Stream A = νC.A × C, modulo the
presence of the named constructor :: .

Programmers may prefer to think about ∞ as the suspension
type constructor which is used to implement non-strictness in strict
languages (Wadler et al. 1998). Just as the suspension type con-
structor the function∞ comes with delay and force operators, here
called ] and [:

] : ∀ {A} → A→∞ A
[ : ∀ {A} → ∞ A→ A

(] is a tightly binding prefix operator; ordinary function applica-
tion binds tighter, though. Arguments in braces, {. . .}, are implicit,
and do not need to be given explicitly as long as Agda can infer
them from the context.)

Functions constructing coinductive values, like the map func-
tion for streams, can be defined by corecursion:

map : ∀ {A B} → (A→ B)→ Stream A→ Stream B
map f (x :: xs) = f x :: ] map f ([ xs)

Agda is a total language, so functions which construct infinite
values have to be productive; even if the value being constructed is
infinite it should always be possible to compute the next constructor
in a finite number of steps. This is enforced by limiting corecursion
to guarded corecursion (Coquand 1994). The definition of map is
accepted because the corecursive call is guarded by the coinductive
constructor ] , without any non-constructor function between the
left-hand side and the corecursive call.

The map function is easy to define using guarded corecursion.
However, sometimes guardedness is an inconvenient restriction.
Fortunately guardedness is only an approximation of productivity,
used because it is easy to check mechanically. When working in-
formally, or in a formal setting where productivity is established
semantically, guardedness can be replaced by more liberal princi-
ples.

The uses of ] and [ in the definition of map can be perceived
as cluttering the code. One could imagine designing a language in
which these operators can be inferred automatically, based on type
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information. However, for the purposes of this paper it seems better
to keep this information explicit.

Let us now see how coinduction can be mixed with induc-
tion. Hancock et al. (2009) define a language of stream proces-
sors, taking streams of As to streams of Bs, as the nested fixpoint
νC. µI. (A → I) + B × C. This language can be represented
using the following data type:

data SP (A B : Set) : Set where
get : (A→ SP A B) → SP A B
put : B→∞ (SP A B)→ SP A B

(Note that (A B : Set) means that both the parameters A and B
have type Set; it is not an application of A to B.) The recursive
argument of get is inductive, while the recursive argument of put
is coinductive. This means that a stream processor can only read a
finite number of elements from the input before having to produce
some output. The semantics of stream processors can be defined as
follows:

J K : ∀ {A B} → SP A B→ Stream A→ Stream B
J get f K (a :: as) = J f a K ([ as)
J put b sp K as = b :: ] J [ sp K as

In the case of get one element from the input stream is consumed,
and potentially used to guide the rest of the computation, while
in the case of put one output element is produced. The definition
of J K uses a lexicographic combination of guarded corecursion
and structural recursion: in the second clause the corecursive call
is guarded, while in the first clause the recursive call “preserves
guardedness” (it takes place under zero coinductive constructors
rather than at least one) and the stream processor argument is
structurally smaller.

Let us now turn to coinductively defined relations. Equality of
streams can be defined as follows:

data ≈ {A : Set} : Stream A→ Stream A→ Set where
:: : (x : A) {xs ys : ∞ (Stream A)} →

∞ ([ xs ≈ [ ys)→ x :: xs ≈ x :: ys

This definition states that two streams are equal whenever their
heads are (definitionally) equal and their tails are, recursively,
equal. Note that this definition should be read coinductively, and
that the tails are forced in the recursive argument’s type. Note also
the use of the dependent function space (x : A) → B, where B
can depend on x. Note finally that constructors can be overloaded
in Agda.

Elements of coinductively defined relations can be constructed
by using corecursion. As an example, let us prove the map-iterate
property. The function iterate repeatedly applies a function to a
seed element and collects the results in a stream, iterate f x =
x :: ] (f x :: ] (f (f x) :: . . .)):

iterate : ∀ {A} → (A→ A)→ A→ Stream A
iterate f x = x :: ] iterate f (f x)

The map-iterate property can then be proved by using guarded
corecursion (the term guarded coinduction could also be used):

map-iterate : ∀ {A} (f : A→ A) (x : A)→
map f (iterate f x) ≈ iterate f (f x)

map-iterate f x = f x :: ] map-iterate f (f x)

To see how this proof works, consider how it can be built up step
by step (as in an interactive Agda session):

map-iterate f x = ?

The type of the goal ? is map f (iterate f x) ≈ iterate f (f x).
Agda types should always be read up to normalisation, so this is
equivalent to

f x :: ] map f ([ (] iterate f (f x))) ≈
f x :: ] iterate f (f (f x)) .

(Note that normalisation does not involve evaluation under ] , and
that [ (] x) reduces to x.) This type matches the result type of the
equality constructor :: , so we can refine the goal:

map-iterate f x = f x :: ?

The new goal type is

∞
(

map f (iterate f (f x)) ≈ iterate f (f (f x))
)
,

so the proof can be finished by an application of the coinductive
hypothesis under the guarding constructor ] :

map-iterate f x = f x :: ] map-iterate f (f x)

3. An ad-hoc method for making corecursive
definitions guarded

As mentioned in Section 2 guardedness is sometimes an inconve-
nient restriction: there are productive programs which are not syn-
tactically guarded. This section illustrates a technique which can be
used to work around this restriction.

As an example, consider the following definition of the stream
of Fibonacci numbers:

fib : Stream N
fib = 0 :: ] zipWith + fib (1 :: ] fib)

The definition uses the function zipWith, which combines two
streams:

zipWith : ∀ {A B C} → (A→ B→ C)→
Stream A→ Stream B→ Stream C

zipWith f (x :: xs) (y :: ys) = f x y :: ] zipWith f ([ xs) ([ ys)

While the definition of fib is productive, it is not guarded, because
the function zipWith is not a constructor. If zipWith were a construc-
tor the definition would be guarded, though, and this presents a
way out: we can define a problem-specific language which includes
zipWith as a constructor, and then define an interpreter for the lan-
guage by using guarded corecursion.

A simple language of stream programs can be defined as fol-
lows:

data StreamP : Set→ Set where
:: : ∀ {A} → A→∞ (StreamP A)→ StreamP A

zipWith : ∀ {A B C} → (A→ B→ C)→
StreamP A→ StreamP B→ StreamP C

Note that the stream program argument of :: is coinductive,
while the arguments of zipWith are inductive; a stream program
consisting of an infinitely deep application of zipWiths would not
be productive.

Stream programs will be turned into streams in two steps. First
a kind of weak head normal form (WHNF) for stream programs
is computed recursively, and then the resulting stream is computed
corecursively. The WHNFs are defined in the following way:

data StreamW : Set→ Set where
:: : ∀ {A} → A→ StreamP A→ StreamW A

Note that the stream argument to :: is a (“suspended”) program,
not a WHNF. The function whnf which computes WHNFs can be
defined by structural recursion:
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whnf : ∀ {A} → StreamP A→ StreamW A
whnf (x :: xs) = x :: [ xs
whnf (zipWith f xs ys) with whnf xs | whnf ys
whnf (zipWith f xs ys) | x :: xs′ | y :: ys′ =

f x y :: zipWith f xs′ ys′

(The with construct is used to pattern match on the results of in-
termediate computations.) WHNFs can then be turned into streams
corecursively:

mutual
J KW : ∀ {A} → StreamW A→ Stream A
J x :: xs KW = x :: ] J xs KP
J KP : ∀ {A} → StreamP A→ Stream A
J xs KP = J whnf xs KW

Note that this definition is guarded. (Agda accepts definitions like
this one even though it is split up over two mutually defined func-
tions.) Note also that this method can turn problems with productiv-
ity into problems with termination: if the definition of zipWith had
not been productive the definition of whnf would not have been
terminating.

Given the language above we can now define the stream of
Fibonacci numbers using guarded corecursion:

fibP : StreamP N
fibP = 0 :: ] zipWith + fibP (1 :: ] fibP)

fib : Stream N
fib = J fibP KP

One can prove that this definition satisfies the original equation for
fib by first proving coinductively that J KP is homomorphic with
respect to zipWith/zipWith:

zipWith-hom : ∀ {A B C} (f : A→ B→ C) xs ys→
J zipWith f xs ys KP ≈ zipWith f J xs KP J ys KP

fib-correct : fib ≈ 0 :: ] zipWith + fib (1 :: ] fib)

(The proofs are omitted.)
As stated in the introduction the method presented in this sec-

tion is ad-hoc: when a new problem is encountered a new language
such as StreamP may have to be defined. However, when working in
a language which requires corecursion to be guarded we have found
the method to be useful, and it readily generalises to other types
than streams, and to developments using several types. In fact, the
method is probably more useful for defining proofs (for instance
subtyping proofs; see Sections 4.3 and 4.4) than for defining ordi-
nary programs, because when defining a proof the computational
overhead of the coding is usually irrelevant.

4. Subtyping for recursive types
This section shows how a coinductively defined inference system
can be combined with the rule of transitivity. The technique is
general, but illustrated in the context in which the problem was
raised: subtyping for recursive types (Gapeyev et al. 2002).

4.1 Syntax
Brandt and Henglein (1998) define the following language of re-
cursive types:

σ, τ ::= ⊥ | > | X | σ _ τ | µX. σ _ τ

Here ⊥ and > are the least and greatest types, respectively, X is a
variable, σ _ τ is a function type, and µX. σ _ τ is a fixpoint,
with bound variable X. (The body of the fixpoint is required to be
a function type, so types like µX.X are ruled out.) The intention

is that a fixpoint µX.σ _ τ should be equivalent to its unfolding
(σ _ τ)[X := µX. σ _ τ ].

The language above can be represented in Agda as follows:

data Ty (n : N) : Set where
⊥ : Ty n
> : Ty n
var : Fin n → Ty n
_ : Ty n → Ty n → Ty n
µ _ : Ty (1 + n)→ Ty (1 + n)→ Ty n

Here variables are represented using de Bruijn indices: Ty n repre-
sents types with at most n free variables, and Fin n is a type repre-
senting the first n natural numbers. Substitution can also be defined;
σ [ τ ] is the capture-avoiding substitution of τ for variable 0 in σ :

[ ] : ∀ {n} → Ty (1 + n)→ Ty n→ Ty n

The following function unfolds a fixpoint one step:

unfold〈µ _ 〉 : ∀ {n} → Ty (1 + n)→ Ty (1 + n)→ Ty n
unfold〈µ σ _ τ 〉 = (σ _ τ) [ µ σ _ τ ]

(Note that [ ] and unfold〈µ _ 〉 are both mixfix operators which
take two arguments.)

4.2 Subtyping via trees
A natural definition of subtyping goes via subtyping for potentially
infinite trees (Gapeyev et al. 2002):

data Tree (n : N) : Set where
⊥ : Tree n
> : Tree n
var : Fin n → Tree n
_ : ∞ (Tree n)→∞ (Tree n)→ Tree n

The subtyping relation for trees can be given coinductively as
follows:

data 6Tree : Tree n→ Tree n→ Set where
⊥ : ⊥ 6Tree τ
> : σ 6Tree >
var : var x 6Tree var x
_ : ∞ ([ τ1 6Tree

[ σ1)→∞ ([ σ2 6Tree
[ τ2)→

σ1 _ σ2 6Tree τ1 _ τ2

Note the contravariant treatment of the codomain of the function
space. (Note also that the declarations of bound variables like n
and τ have been omitted to reduce clutter.)

The semantics of a recursive type can be given in terms of its
unfolding as a potentially infinite tree:

J K : ∀ {n} → Ty n→ Tree n
J ⊥ K = ⊥

J > K = >

J var x K = var x
J σ _ τ K = ] J σ K _ ] J τ K
J µ σ _ τ K = ] J σ [ χ ] K _ ] J τ [ χ ] K

where χ = µ σ _ τ

The subtyping relation for types can then be defined by combining
6Tree and J K:

6Type : ∀ {n} → Ty n→ Ty n→ Set
σ 6Type τ = J σ K 6Tree J τ K

Amadio and Cardelli (1993) also define subtyping for recursive
types by going via potentially infinite trees, but they define the sub-
typing relation inductively on finite trees, and define that an infinite
tree σ is a subtype of another tree τ when every finite approxi-
mation (of a certain kind) of σ is a subtype of the correspond-
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ing approximation of τ . It is easy to show that this definition, as
adapted by Brandt and Henglein (1998), is equivalent to the one
given above. One direction of the proof uses induction on the depth
of approximation, and the other constructs elements of σ 6Tree τ
corecursively (see the code which accompanies the paper).

4.3 Subtyping using mixed induction and coinduction
Subtyping can also be defined directly, without going via trees. The
following definition is inspired by Brandt and Henglein (1998), see
Section 4.4:

data 6 : Ty n→ Ty n→ Set where
⊥ : ⊥ 6 τ
> : σ 6 >
_ : ∞ (τ1 6 σ1)→∞ (σ2 6 τ2)→

σ1 _ σ2 6 τ1 _ τ2

unfold : µ τ1 _ τ2 6 unfold〈µ τ1 _ τ2 〉
fold : unfold〈µ τ1 _ τ2 〉 6 µ τ1 _ τ2

refl : τ 6 τ
trans : τ1 6 τ2 → τ2 6 τ3 → τ1 6 τ3

Note that the structural rules (⊥, >, _ ) are defined coinduc-
tively, while the other rules, most importantly trans, are defined
inductively. Hence, assuming that the relation expresses the right
thing, this definition shows that coinduction and the rule of transi-
tivity can be combined.

Showing that the relation expresses the right thing, i.e. that it is
equivalent to the one given in Section 4.2 (and thus equivalent to
Amadio and Cardelli’s), is straightforward:

complete : σ 6Type τ → σ 6 τ
sound : σ 6 τ → σ 6Type τ

Completeness can be proved by a simple application of guarded
corecursion. The soundness proof is a little more tricky. Assume
that we have proved that 6Type is transitive:

transType : τ1 6Type τ2 → τ2 6Type τ3 → τ1 6Type τ3

One might be tempted to prove soundness by a simple application
of lexicographic guarded corecursion and structural recursion, the
technique used to define J K in Section 2, but this fails. Consider
the case for trans:

sound (trans τ16τ2 τ26τ3) =
transType (sound τ16τ2) (sound τ26τ3)

(Note that τ16τ2 and τ26τ3 are variable names.) Here the recur-
sive calls are on smaller arguments, but transType is not a construc-
tor, so guardedness is not preserved. If transType were a constructor
the proof would be accepted, though; the proof can be rescued by
an application of the technique presented in Section 3.

4.4 Inductive axiomatisation of subtyping
Brandt and Henglein (1998) define subtyping essentially as in Sec-
tion 4.3, but instead of using mixed induction and coinduction they
encode coinduction inductively. Their subtyping relation is ternary:
A ` σ 6 τ means that σ is a subtype of τ given the assumptions in
A. An assumption (a hypothesis) is simply a pair of types:

data Hyp (n : N) : Set where
, : Ty n→ Ty n→ Hyp n

The subtyping relation is defined as follows:

data ` 6 (A : List (Hyp n)) :
Ty n→ Ty n→ Set where

⊥ : A ` ⊥ 6 τ
> : A ` σ 6 >

_ : let H = (σ1 _ σ2, τ1 _ τ2) in
H :: A ` τ1 6 σ1 → H :: A ` σ2 6 τ2 →
A ` σ1 _ σ2 6 τ1 _ τ2

unfold : A ` µ τ1 _ τ2 6 unfold〈µ τ1 _ τ2 〉
fold : A ` unfold〈µ τ1 _ τ2 〉 6 µ τ1 _ τ2

refl : A ` τ 6 τ
trans : A ` τ1 6 τ2 → A ` τ2 6 τ3 → A ` τ1 6 τ3

hyp : (σ , τ ) ∈ A→ A ` σ 6 τ

Note that coinduction is encoded in the _ rule by inclusion of
the consequent in the lists of assumptions of the antecedents.

Brandt and Henglein prove that their relation (with an empty list
of assumptions) is equivalent to Amadio and Cardelli’s. Their proof
is considerably more complicated than the proof outlined above
which shows that 6 is equivalent to Amadio and Cardelli’s def-
inition, but as part of the proof they show that subtyping is decid-
able. By composing the two equivalence proofs we get that subtyp-
ing as defined in Section 4.3 is also decidable. However, Brandt and
Henglein use a classical argument to show that their algorithm ter-
minates, so it is not entirely obvious that it can be implemented in
a total, constructive type theory like Agda. Fortunately some small
modifications suffice to show that subtyping is decidable in this set-
ting; details are available in the code accompanying the paper.

It may be interesting to see how the inductive encoding of
coinduction used in ` 6 can be turned directly into the “actual”
coinduction used in 6 , i.e. to see how soundness of ` 6 can
be proved: it can be done using a cyclic proof. To state soundness
the type All is used; All P xs means that all elements in xs satisfy
P:

data All (P : A→ Set) : List A→ Set where
[ ] : All P [ ]

:: : P x→ All P xs→ All P (x :: xs)

The soundness proof shows that if A ` σ 6 τ , where all pairs
(σ ′, τ ′) in A satisfy σ ′ 6 τ ′, then σ 6 τ :

Valid : (Ty n→ Ty n→ Set)→ Hyp n→ Set
Valid R (σ1, σ2) = σ1 R σ2

sound : All (Valid 6 ) A→ A ` σ 6 τ → σ 6 τ

The interesting cases of sound are the ones for hyp and _ .
Hypotheses can simply be looked up in the list of valid assumptions
(using lookup : All P xs → x ∈ xs → P x), and function spaces
can be handled by defining a cyclic proof:

sound valid (hyp h) = lookup valid h
sound valid (τ16σ1 _ σ26τ2) = proof

where proof = ] sound (proof :: valid) τ16σ1 _
] sound (proof :: valid) σ26τ2

Note that the corecursive calls extend the list of valid assumptions
with the proof currently being defined. The definition of proof is
not guarded, but it would be if sound were a constructor. Yet again
this problem can be solved by using the technique from Section 3.
The program and WHNF types can be defined mutually as follows:

mutual
data 6P : Ty n→ Ty n→ Set where

sound : All (Valid 6W ) A→ A ` σ 6 τ → σ 6P τ

data 6W : Ty n→ Ty n→ Set where
done : σ 6 τ → σ 6W τ
_ : ∞ (τ1 6P σ1)→∞ (σ2 6P τ2)→

σ1 _ σ2 6W τ1 _ τ2
trans : τ1 6W τ2 → τ2 6W τ3 → τ1 6W τ3

The cases of sound listed above are now part of the whnf function:

5 2009/10/8



whnf : σ 6P τ → σ 6W τ
. . .
whnf (sound valid (hyp h)) = lookup valid h
whnf (sound valid (τ16σ1 _ σ26τ2)) = proof

where proof = ] sound (proof :: valid) τ16σ1 _
] sound (proof :: valid) σ26τ2

Note that proof is now guarded.
We have not found a proof for completeness of ` 6 with

respect to 6 which does not use a decision procedure for sub-
typing. This is not entirely surprising: such a completeness proof
must turn a potentially infinite proof of σ 6 τ into a finite proof
of [ ] ` σ 6 τ , so some “trick” is necessary. With a suitably for-
mulated decision procedure at hand the trick is simple: the decision
procedure gives either a proof of [ ] ` σ 6 τ , or a proof which
shows that σ 6 τ is impossible. In the first case we are done, and
in the second case a contradiction can be derived.

4.5 Postulating an admissible rule may not be sound
Given an inductively defined inference system one can add a new
rule corresponding to an admissible property without changing the
set of derivable properties. It is easy to prove this statement by
defining functions which translate between the two inference sys-
tems. Translating derivations from the smaller to the larger infer-
ence system is trivial. When translating in the other direction one
can replace all occurrences of the new rule with instances of the
proof of admissibility; this process can be implemented using re-
cursion over the structure of the input derivation.

However, when coinduction comes into the picture this property
is no longer true (de Vries 2009). The proof given above breaks
down because there is no guarantee that the second translation can
be implemented in a productive way. The problem is that, although
the admissible rule has a proof, this proof may not be sufficiently
“contractive” (for instance, the proof may replace coinductive rules
in the input derivation with inductive rules in the output derivation).

The following example illustrates the problem. Capretta (2005)
defines the so-called partiality monad as follows:

data ν (A : Set) : Set where
return : A → A ν

step : ∞ (A ν)→ A ν

The constructor return returns a result, and step postpones a com-
putation. Two computations are deemed equivalent if they yield the
same result, perhaps with finite differences in delay:

data ≈ : A ν
→ A ν

→ Set where
return : return v ≈ return v
step : ∞ ([ x ≈ [ y)→ step x ≈ step y
stepr : x ≈ [ y → x ≈ step y
stepl : [ x ≈ y → step x ≈ y

It can be proved that this equality is an equivalence relation, and
that it is not trivial (assuming that A is inhabited). Let us now add
transitivity as an inductive rule:

. . .
trans : x ≈ y→ y ≈ z→ x ≈ z

Given this new constructor we can prove, using guarded coinduc-
tion, that the relation is trivial:

trivial : (x y : A ν)→ x ≈ y
trivial x y =

trans (stepr (refl x))
(trans (step (] trivial x y)) (stepl (refl y)))

(Here refl is a proof of reflexivity.)

This problem does not affect the definition of subtyping given
above, which has been proved to be equivalent to other definitions
from the literature. However, it means that one should exercise cau-
tion when defining relations using mixed induction and coinduc-
tion, and avoid relying on results or intuitions which are only valid
in the inductive case.

5. Total parser combinators
This section describes how parser combinators which guarantee
termination can be implemented. For simplicity only recognition is
discussed. The accompanying code uses the ideas presented below
to implement monadic parser combinators which return proper
results, not just yes or no.

5.1 Parsers
The aim is to define a data type with the following basic com-
binators as constructors: ∅, which always fails; ε, which accepts
the empty string; tok, which accepts a given token; | , symmetric
choice; and · , sequencing. Another combinator is added below.

Let us first consider whether the combinators should be read
inductively or coinductively. An infinite choice cannot be decided,
so we choose to read choices inductively. The situation is a bit
trickier for sequencing. Consider definitions like p = p · p′ or p =
p′ · p. If p′ accepts the empty string, then it seems hard to make any
progress with these definitions. However, if p′ is guaranteed not
to accept the empty string then parsing can be implemented by a
structurally recursive top-down approach, because the (finite) input
string will be shorter when we descend on the recursive occurrence
of p. To make use of this idea we will indicate whether or not a
parser is nullable (accepts the empty string) in its type, and the
left (right) argument of · will be coinductive iff the right (left)
argument is not nullable. This “conditional coinduction” is encoded
using the following data type:

data∞? (A : Set) : Bool→ Set where
〈 〉 : A→∞? A true

〈〈 〉〉 : ∞ A→∞? A false

For convenience the index true is used for the inductive case, and
false for the coinductive case. The type comes with corresponding
conditional delay and force operators:

]? : ∀ {b A} → A→∞? A b
]? {true} x = 〈 x 〉
]? {false} x = 〈〈 ] x 〉〉

[? : ∀ {b A} → ∞? A b→ A
[? 〈 x 〉 = x
[? 〈〈 x 〉〉 = [ x

Based on the observations and definitions above the type P of
parsers (recognisers) can now be defined:

data P : Bool→ Set where
∅ : P false
ε : P true
tok : Tok→ P false
| : ∀ {n1 n2} → P n1 → P n2 → P (n1 ∨ n2)
· : ∀ {n1 n2} →

∞
? (P n1) n2 →∞

? (P n2) n1 → P (n1 ∧ n2)

(Tok is the token type.) Note how the conditional coinduction oper-
ator is used to express whether the two arguments to the sequencing
operator should be read inductively or coinductively. Note also that
∅ and tok do not accept the empty string, while ε does. A choice
p1 | p2 is nullable if either p1 or p2 is, and a sequence p1 · p2 is
nullable if both p1 and p2 are.
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5.2 Examples
Using the definition above it is easy to define parsers which are
both left and right recursive:

leftRight : P false

leftRight = 〈〈 ] leftRight 〉〉 · 〈〈 ] leftRight 〉〉

Using the semantics in Section 5.3 it is easy to show that leftRight
does not accept any string (so ∅ could be a derived combinator).

As a more useful example of how the combinators above can be
used to define derived parsers, consider the following definition of
the Kleene star:

mutual
? : P false→ P true

p ? = ε | p +
+ : P false→ P false

p + = 〈 p 〉 · 〈〈 ] (p ?) 〉〉

The recogniser p ? accepts zero or more occurrences of whatever p
accepts, and p + accepts one or more occurrences; this is easy to
prove using the semantics in Section 5.3. Note that this definition
is guarded, and hence productive. Note also that p must not accept
the empty string, because if it did, then the right hand side of p +
would have to be written 〈 p 〉 · 〈 p ? 〉, which would make the
definition unproductive.

One might argue that the types are a bit restrictive here: why
should the argument parser not be allowed to be nullable? In the
case of recognition this would make sense, but when parsers re-
turn results the situation is less clear. In that case a natural gen-
eralisation of the parser p ? returns a list of all the results of the
parser p, and if p is nullable this list could be infinitely long (and
highly ambiguous). One solution to this problem is to use a def-
inition of ? which returns a list of all results corresponding to
nonempty matches. However, this behaviour might surprise a user
of the parser combinator library who thought that ? returned all
results. We think it is better to provide the user with a combinator
nonempty such that nonempty p is a variant of p which does not
accept the empty string:

nonempty : ∀ {n} → P n→ P false

The user can then make an explicit choice to throw away certain
results: (nonempty p) ?.

The example above is very small; larger examples can also be
constructed. For instance, Danielsson and Norell (2009) construct
mixfix operator grammars using a parser combinator library which
is based on the ideas described here.

5.3 Semantics
The semantics of the parsers is defined inductively. The type s ∈ p
is inhabited iff the token string s is a member of the language
defined by p:

data ∈ : List Tok→ P n→ Set where

No string is a member of the language defined by ∅, so there is no
constructor for it in ∈ . The empty string is recognised by ε:

ε : [ ] ∈ ε

The singleton t is recognised by tok t:

tok : [t ] ∈ tok t

If s is recognised by p1, then it is also recognised by p1 | p2, and
similarly for p2:

|
l : s ∈ p1 → s ∈ p1 | p2
|
r : s ∈ p2 → s ∈ p1 | p2

If s1 is recognised by p1 (suitably forced), and s2 is recognised
by p2 (suitably forced), then the concatenation of s1 and s2 is
recognised by p1 · p2:

· : s1 ∈ [
? p1 → s2 ∈ [

? p2 → s1 ++ s2 ∈ p1 · p2

Finally, if a nonempty string is recognised by p, then it is also
recognised by nonempty p:

nonempty : t :: s ∈ p→ t :: s ∈ nonempty p

It is easy to show that the semantics and the nullability index
agree: if p : P n, then [ ] ∈ p iff n is equal to true (both directions
can be proved by structural induction). Given this result it is easy
to decide whether or not [ ] ∈ p; it suffices to inspect the index:

nullable? : ∀ {n} (p : P n)→ Dec ([ ] ∈ p)

The type Dec P states that P is decidable; an element of Dec P is
either a proof of P or a proof showing that P is impossible:

data Dec (P : Set) : Set where
yes : P→ Dec P
no : ¬ P→ Dec P

Here logical negation is represented as a function into the empty
type ⊥:

¬ : Set→ Set
¬ P = P→⊥

5.4 Backend
Let us finally consider how the relation ∈ can be decided, i.e.
how a parser backend can be implemented for P. No attempt is
made to make this backend efficient, the focus is on correctness.

The parser backend will be implemented using so-called deriva-
tives (Brzozowski 1964). The derivative ∂ p t of p with respect to
t is the “remainder” of p after p has matched the token t; it should
satisfy the equivalence

s ∈ ∂ p t ↔ t :: s ∈ p.

By applying the derivative operator ∂ to p and t1, then to ∂ p t1 and
t2, and so on for every element in the input string s, one can decide
if s ∈ p is inhabited.

The new parser constructed by ∂ may not have the same nul-
lability index as the original parser, so ∂ has the following type
signature:

∂ : ∀ {n} (p : P n) (t : Tok)→ P (∂n p t)

The extensional behaviour of ∂n : ∀ {n} → P n→ Tok→ Bool is
uniquely constrained by the definition of ∂ , so the definition of ∂n

is omitted here.
The main derivative operator is implemented as follows. The

combinators ∅ and ε never accept any token, so they both have the
derivative ∅:

∂ ∅ t = ∅
∂ ε t = ∅

The combinator tok t′ has a non-zero derivative with respect to t iff
t′ and t are equal (Tok is assumed to come with a decision procedure
≡? for definitional equality):

∂ (tok t′) t with t′ ≡? t
∂ (tok t′) t | yes t ′≡t = ε
∂ (tok t′) t | no t ′6≡t = ∅

The derivative of nonempty p is the derivative of p:

∂ (nonempty p) t = ∂ p t
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The derivative of a choice is the choice of the derivatives of its
arguments:

∂ (p1 | p2) t = ∂ p1 t | ∂ p2 t

The final and most interesting case is sequencing. If p1 is nullable,
then the result is implemented as a choice, because the remainder
of p1 · 〈 p2 〉 could be either the remainder of p1 followed by p2,
or the remainder of p2:

∂ (〈 p1 〉 · 〈 p2 〉) t = 〈 ∂ p1 t 〉 · ]? p2 | ∂ p2 t
∂ (〈〈 p1 〉〉 · 〈 p2 〉) t = 〈〈 ] (∂ ([ p1) t) 〉〉 · ]? p2 | ∂ p2 t

(Note that we may need to delay p2, depending on the nullability
index of the derivative of p1.) If p1 is not nullable, then the second
choice above should not be included, because the first token which
is accepted (if any) has to be accepted by p1:

∂ (〈 p1 〉 · 〈〈 p2 〉〉) t = 〈 ∂ p1 t 〉 · ]? ([ p2)

∂ (〈〈 p1 〉〉 · 〈〈 p2 〉〉) t = 〈〈 ] (∂ ([ p1) t) 〉〉 · ]? ([ p2)

The derivative operator ∂ is implemented using a lexicographic
combination of guarded corecursion and structural recursion, and
the index function ∂n uses recursion over the inductive structure of
the parser. Note that in the last two sequencing cases p2 is delayed,
but ∂ is not applied recursively to p2 because p1 is known not to
accept the empty string.

It is straightforward to show that the derivative operator ∂ satis-
fies both directions of its specification:

∂-sound : s ∈ ∂ p t→ t :: s ∈ p
∂-complete : t :: s ∈ p→ s ∈ ∂ p t

These statements can be proved by induction on the structure of the
semantics.

Once the derivative operator is defined and proved correct it is
easy to decide ∈ :

∈? : ∀ {n} (s : List Tok) (p : P n)→ Dec (s ∈ p)
[ ] ∈? p = nullable? p
t :: s ∈? p with s ∈? ∂ p t
t :: s ∈? p | yes s∈∂pt = yes (∂-sound s∈∂pt)
t :: s ∈? p | no s/∈∂pt = no (s/∈∂pt ◦ ∂-complete)

In the case of the empty string the nullability index tells whether the
string should be accepted or not, and otherwise ∈? is recursively
applied to the derivative and the tail of the string; the specification
of ∂ ensures that this is correct.

6. Big-step semantics for both converging and
diverging computations

This section shows how a big-step semantics which handles both
converging and diverging computations can be defined without
duplication of rules.

The untyped λ-calculus with an infinite set of constants can be
represented as follows:

data Tm (n : N) : Set where
con : N → Tm n -- Constant.
var : Fin n → Tm n -- Variable.
λ : Tm (1 + n) → Tm n -- Abstraction.
· : Tm n→ Tm n→ Tm n -- Application.

Here de Bruijn indices are used to represent variables, just as in
Section 4.1, and capture-avoiding substitution can be defined here
as well:

[ ] : ∀ {n} → Tm (1 + n)→ Tm n→ Tm n

Leroy and Grall (2009) define a call-by-value semantics for (a
slight variant of) this language by using two big-step relations:

t ⇓ v means that t converges to the value v, and t ⇑ means that t
diverges. The only values are constants and abstractions, and values
can be turned into terms by using p q:

data Value (n : N) : Set where
con : N → Value n
λ : Tm (1 + n)→ Value n

p q : ∀ {n} → Value n→ Tm n
p con i q = con i
p λ t q = λ t

Leroy and Grall define the big-step relations roughly as follows:

data ⇓ : Tm n→ Value n→ Set where
val : p v q ⇓ v
app : t1 ⇓ λ t → t2 ⇓ v → t [ p v q ] ⇓ v′ →

t1 · t2 ⇓ v′

data ⇑ : Tm n→ Set where
∞· : ∞ (t1 ⇑) → t1 · t2 ⇑
·∞ : t1 ⇓ v → ∞ (t2 ⇑) → t1 · t2 ⇑
app : t1 ⇓ λ t → t2 ⇓ v → ∞ (t [ p v q ] ⇑) →

t1 · t2 ⇑

Note that convergence is defined inductively, while divergence is
defined coinductively.

Leroy and Grall observe that the big-step definition of the
semantics above contains some duplication, and note that this
can be problematic when realistic languages with many rules are
formalised. As an attempt to avoid this duplication they investi-
gate a so-called coevaluation relation co

⇒ , defined coinductively
roughly as follows:

data co
⇒ : Tm n→ Value n→ Set where

val : p v q
co
⇒ v

app : ∞ (t1
co
⇒ λ t) → ∞ (t2

co
⇒ v) →

∞ (t [ p v q ] co
⇒ v′) → t1 · t2

co
⇒ v′

However, this relation turns out to be different from the ones de-
fined above: there are terms which diverge according to ⇑, but
which do not coevaluate to any value (consider the application of a
diverging term to a stuck term like con 0 · con 1).

In order to avoid the most glaring duplication—the two variants
of the rule app—one can instead use mixed induction and coinduc-
tion. Define a semantic domain Sem as follows:

data Sem (n : N) : Set where
⊥ : Sem n
val : Value n→ Sem n

Here ⊥ stands for divergence, and val v for convergence with the
value v. A semantics with only one occurrence of the rule app can
then be defined:

mutual
data ⇒ : Tm n→ Sem n→ Set where

val : p v q⇒ val v
app : t1

∞?
⇒ val (λ t) → t2

∞?
⇒ val v →

t [p v q] ∞?
⇒ s → t1 · t2 ⇒ s

∞· : t1
∞?
⇒ ⊥ → t1 · t2 ⇒ ⊥

·∞ : t1
∞?
⇒ val v → t2

∞?
⇒ ⊥ → t1 · t2 ⇒ ⊥

∞?
⇒ : Tm n→ Sem n→ Set

t ∞?
⇒ ⊥ = ∞ (t⇒ ⊥)

t ∞?
⇒ val v = t⇒ val v
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The function ∞?
⇒ is used to ensure that coinduction is only used

for diverging computations.
The semantics ⇒ has more rules than co

⇒ , but at least it
avoids the duplication of app, and it is correct; it is easy to show
that ⇒ is equivalent to the combination of ⇓ and ⇑:

sound-⇓ : t⇒ val v→ t ⇓ v
complete-⇓ : t ⇓ v → t⇒ val v
sound-⇑ : t⇒ ⊥ → t ⇑
complete-⇑ : t ⇑ → t⇒ ⊥

The first two statements can be proved using structural induction,
while the latter two statements can be proved using the previous
two proofs and guarded coinduction.

The soundness and completeness proofs point to a problem with
the definition of ⇒ : the app rule comes with different proof prin-
ciples depending on whether s is⊥ or not, and this can bring the du-
plication of app back in proofs. However, in the context of mecha-
nised formalisations the definition of a semantics can be much more
important than proofs about the semantics: an incorrect proof will
(hopefully) not be accepted by the proof checker, whereas an incor-
rect semantics can make the entire development pointless. Avoid-
ing code duplication and corresponding issues with overview and
maintenance can hence be more important in a semantics than in
proofs related to the semantics.

The problem mentioned in the previous paragraph becomes
more important if the actual implementation of functions defined
over the type matters. (In the case of proofs the mere existence of
a function with the right type is often enough.) As an example,
consider the type List∞? r A of lists which are finite when r is µ,
and potentially infinite when r is ν:

data Rec : Set where
µ : Rec
ν : Rec

∞
? : Rec→ Set→ Set
∞

? µ A = A
∞

? ν A = ∞ A

data List∞? (r : Rec) (A : Set) : Set where
[ ] : List∞? r A

:: : A→∞? r (List∞? r A)→ List∞? r A

There is only one cons constructor, but the following definition of
map has two cases for cons, because in one case structural recursion
is used, and in the other case guarded corecursion:

map : ∀ {r A B} → (A→ B)→ List∞? r A→ List∞? r B
map f [ ] = [ ]
map {µ} f (x :: xs) = f x :: map f xs
map {ν} f (x :: xs) = f x :: ] map f ([ xs)

(Note that it is possible to pattern match on implicit arguments
by enclosing the patterns in braces.) It would be unfortunate if
two equivalent finite lists with different Rec parameters were han-
dled differently by map, so the definition above should be “Rec-
parametric”:

map-parametric :
∀ {A B} (f : A→ B) (xs : List∞? µ A)→
map f (lift xs) ≈ lift (map f xs)

Here lift : ∀ {A} → List∞? µ A → List∞? ν A is the obvious
coercion and ≈ is a suitably defined equality.

Note that the code duplication in map above could have been
avoided if Agda had allowed other forms of recursion. It could be

useful to investigate some sort of language support for avoiding this
duplication.

7. Related Work
7.1 Combining induction and coinduction
In the dependently typed core language 56 Altenkirch and Oury
(2008) use constructions very similar to ∞, ] and [, and this
work influenced the current implementation of coinductive types
in Agda. Another influence came from Setzer (2009), who pro-
poses an approach to coinductive types more directly based on the
category-theoretic notion of weakly final coalgebras.

Park (1980) uses nested induction and coinduction to define
what a fair merge of two potentially infinite lists is, and notes that
the fair merge is a fixpoint of a certain operator, but neither the least
nor the greatest fixpoint.

Barwise (1989) discusses how one can define sets and proper
classes by combining greatest and least fixpoints, and mentions that
such definitions are used in situation theory.

Cousot and Cousot (1992, 2009) describe so-called bi-inductive
definitions, which generalise inductive and coinductive definitions,
and give a number of examples of their use. One of their examples
is a semantics for a λ-calculus which captures both terminating and
non-terminating behaviours in a single definition, without duplica-
tion of rules; the definition in Section 6 was inspired by this exam-
ple. Adapting the example slightly to the development in Section 6,
an operator F on ℘(Tm n × Sem n) is first defined by the following
inference rules (note the similarity to the rules in Section 6):

p v q⇒ val v
t1 ⇒ ⊥

t1 · t2 ⇒ ⊥
t1 ⇒ val v t2 ⇒ ⊥

t1 · t2 ⇒ ⊥

t1 ⇒ val (λ t) t2 ⇒ val v t [p v q]⇒ s
t1 · t2 ⇒ s

These rules should neither be read inductively nor coinductively.
The semantics is instead obtained as the least fixpoint of F with
respect to the order v defined by

X v Y = X+ ⊆ Y+ ∧ X− ⊇ Y−,

where

Z+ = { (t, s) ∈ Z | s 6= ⊥ } and

Z− = { (t, s) ∈ Z | s = ⊥ } .

F is not monotone with respect to v (which forms a complete
lattice), so Cousot and Cousot give an explicit proof of the existence
of a least fixpoint.

Process calculi supporting recursive definitions often include
some notion of guardedness (Hoare 1985; Milner 1990; Prasad
1995). Giménez (1996) represents processes by their potentially in-
finite unfoldings, and uses mixed induction and coinduction to rep-
resent guardedness. Abstracting from the concrete example given
by Giménez the idea is to read the arguments of the guarding con-
structs coinductively, and the arguments of the other constructs in-
ductively.

HOLCF (Müller et al. 1999) supports marking individual con-
structor arguments as lazy. This corresponds closely to our use of
∞, but in a domain-theoretic setting with partial functions.

Levy (2006) uses nested induction and coinduction to generalise
Howe’s method to languages with non-well-founded syntax.

As mentioned in Section 2 Hancock et al. (2009) represent
stream processors, i.e. functions from streams to streams, using
nested induction and coinduction. Barthe et al. (2004) and Abel
(2009) discuss total λ-calculi with nested least and greatest fix-
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points and sized types, and Abel also shows how stream processors
can be implemented in his calculus.

All uses of mixed induction and coinduction in previous sec-
tions can be phrased using an outer greatest fixpoint and an in-
ner least fixpoint. Raffalli (1994) also discusses the other situation,
with an outer least fixpoint and an inner greatest fixpoint. He de-
fines two types of infinite bit streams, essentially

µO. νZ. 0 : Z + 1 : O and
νZ. µO. 0 : Z + 1 : O

(read 0 : Z + 1 : O as a labelled sum with constructors 0 and 1).
The first one contains streams with an infinite number of zeros and
a finite number of ones, while the second one contains streams with
an infinite number of zeros and either a finite or an infinite number
of ones.

More complicated nesting of fixpoints is also possible. Hensel
and Jacobs (1997) discuss proof principles for nested induction and
coinduction with arbitrary alternation of fixpoints, and include four
examples: trees with finite or potentially infinite depth and finite or
potentially infinite branching. Bradfield and Stirling (2007) discuss
alternating fixpoints in the context of modal µ-calculus.

As an aside it is interesting to note that Agda cannot, in
general, directly represent fixpoints which do not have the form
νX. µY. F X Y (or an equivalent form like νX. µY. µZ. F X Y Z).
Based on the category theoretical explanation of ∞ given in Sec-
tion 2 one might believe that the following definition of O should
be isomorphic to µO. νZ. 0 : Z + 1 : O:

data Z (O : Set) : Set where
0 : ∞ (Z O)→ Z O
1 : O → Z O

data O : Set where
↓ : Z O→ O

However, the following definition of a bit stream with an infinite
number of ones is accepted by Agda’s productivity checker:

s : O
s = ↓ (0 (] 1 s))

This is in line with the view of∞ as a suspension type constructor.
As a consequence we get that the suspension view and the category
theoretical view of∞ do not quite match. In general we have that
µX. νY. F X Y is not isomorphic to νY. µX. F X Y (in the cate-
gory of sets and total functions), whereas the corresponding domain
theoretic expressions µX. µY. F X (Y⊥) and µY. µX. F X (Y⊥),
obtained from the suspension view, are isomorphic (here ⊥ stands
for lifting). Note, however, that this mismatch does not affect the
definitions given in previous sections, because they are not of the
form exhibited by O above.

7.2 Making corecursive definitions guarded
Conor McBride (personal communication) has developed a tech-
nique for ensuring guardedness, based on the work of Hancock and
Setzer (2000). The idea is to represent the right-hand sides of func-
tion definitions using a type RHS g, where g indicates whether the
context is guarding or not, and to only allow corecursive calls in a
guarding context.

Di Gianantonio and Miculan (2003) describe a general frame-
work for defining values using a mixture of recursion and core-
cursion, based on functions which satisfy a notion of contractivity.
The method seems to be quite general, and has been implemented
in Coq (which is based on structural recursion and guarded core-
cursion).

Bertot (2005) implements a filter function for streams in Coq.
An unrestricted filter function is not productive, so Bertot restricts

the function’s inputs using predicates of the form “always (eventu-
ally P)”. The always part is defined coinductively, and the eventu-
ally part inductively (mixed induction and coinduction is not nec-
essary).

The partiality monad was defined in Section 4.5. It is easy to
define bind for this monad:

>>= : ∀ {A} → A ν
→ (A→ B ν)→ B ν

Unfortunately it can be inconvenient to use this definition of bind
in systems based on guarded corecursion, because >>= is not
a constructor. Megacz (2007) suggests (essentially) the following
alternative definition:

data ν (A : Set) : Set where
return : A→ A ν

>>= : ∀ {B} → ∞ (B ν)→ (B→∞ (A ν))→ A ν

One can note that this corresponds directly to the first step of the
technique presented in Section 3. Megacz does not translate from
the second to the first type, though.

Bertot and Komendantskaya (2009) describe a method for
replacing corecursion with recursion. They map values of type
Stream A to and from the isomorphic type N → A, and values
of this type can be defined recursively. The authors state that the
method is still very limited and that, as presented, it cannot handle
van de Snepscheut’s corecursive definition of the Hamming num-
bers (Dijkstra 1981), which can easily be handled using the method
described in this paper.

Morris et al. (2006) use the technique of replacing functions
with constructors to show termination rather than productivity (see
Morris et al. (2007) for an explanation of the technique). They
replace a partially applied recursive call (which is not necessarily
structural, because it could later be applied to anything), nested
inside another recursive call, with a constructor application. If this
constructor application is later encountered it is handled using
structural recursion.

The technique presented here also shares some traits with
Reynolds’ defunctionalisation (1972). Defunctionalisation is used
to translate programs written in higher-order languages to first-
order languages, and it basically amounts to representing function
spaces using application-specific data types, and implementing in-
terpreters for these data types.

7.3 Total parser combinators
There does not seem to be much prior work on formally veri-
fied termination for parser combinators (or other general parsing
frameworks). McBride and McKinna (2002) define grammars in-
ductively, and use types to ensure that a token is consumed before
a non-terminal can be encountered, thereby ruling out left recur-
sion and non-termination. Danielsson and Norell (2008) use similar
ideas. Muad`Dib (2009) uses a monad annotated with Hoare-style
pre- and post-conditions (Swierstra 2009) to define total parser
combinators, including a fixpoint combinator whose type rules out
left recursion by requiring the input to be shorter in recursive calls.

The parser combinators defined here cannot handle unrestricted
left recursion (consider definitions like p = p). Lickman (1995)
defines a parser combinator library which has a tailor-made fixpoint
combinator (based on an idea due to Philip Wadler) which can
be used to handle left recursion. Frost et al. (2008) also define
a parser combinator library which can handle left recursion, this
time by requiring the user to annotate non-terminals manually
with a memoisation combinator. Both libraries give guarantees
of termination (assuming that the informal proofs/arguments are
correct, and that the libraries are used in the right way), and in both
cases termination relies on a representation of parsers/grammars in
which recursion is explicit.
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Unlike all the approaches mentioned above the parser combina-
tor library presented in Section 5 follows the example of most other
parser combinator libraries in that it does not rely on any explicit
representation of recursion (like grammars or fixpoints). Termina-
tion is instead guaranteed by using types to restrict how parsers
can be defined. This appears to be the first time guaranteed ter-
mination has been achieved without any explicit representation of
recursion.3

7.4 Big-step semantics for converging as well as diverging
computations

Cousot and Cousot (2009) define several big-step semantics for
an untyped λ-calculus. Every definition describes both terminating
and non-terminating computations without duplication of rules.

Nakata and Uustalu (2009) define a big-step semantics for a
while language. Their definition is coinductive and trace-based, and
has the property that the trace can be computed (productively) for
any source term, converging or diverging.

8. Conclusions
By giving a number of examples we hope to have shown that the
technique of mixing induction and coinduction is generally useful,
and deserves a place in the toolbox both of people formalising
languages and people who are interested in ensuring totality of the
programs they write.
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