Introduction to Quantum Computation

Nils Anders Danielsson

nad@cs.chalmers.se

April 28, 2003




Introduction to Quantum Computation

Nils Anders Danielsson

-~

Qubits
o Qubit:
[¥) = a|0) + 51,
la* + |8 =1, a,8 €C, |0),]1) € C?.
e Difference from classical bit: Superposition of states possible.

e Example of computational basis:

0) = , 1) =

0 1

-
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Realisation

e Qubits can in principle be realised by any two-level quantum

system such as:
— The polarisation of a photon.

— The state (alive/dead) of Schrédinger’s cat.

e System interacts with the environment = superposition will

eventually break down (decoherence).
e System needs to be isolated.
e Error correcting techniques necessary.

e Using the cat isn’t a good idea.
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/ Registers \

e A quantum register consisting of n qubits:

a1 ...an) =|a1) ® - Q|an) € C%".

o ®:C™ x(C" — C™" is the tensor product:

( a1b1 \
aj b1 al.bn
A by, amb1

K A by, )

e Example: 1) ® |0) = (9)@((1)) = (g) = |10) = |2).

\ ® is often omitted: |0) ® [1) = [0)|1) = |01). /
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> lag? = 1.

More registers

e Superpositions are possible:

(870) ’OO> + Qa9 |01> + Q9 |10> -+ 3 ‘11> y

e Not all n-qubit states can be written as a tensor product of

single qubit states (they are entangled):

870 |OO> + Q3 ‘11>, aq, 03 7é 0.
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Measurement

e If we measure the qubit |¢) = a|0) + B |1) with respect to the
computational basis { |0), [1) } the result is:

— |0) with probability |a|?.
— |1) with probability |3]?.

e Upon measurement the qubit changes its state to the measured

value.

e More general measurements possible.

\_ /
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Measuring registers

If we measure the first qubit in a register setup as

87 |OO> + a1 ‘01> —+ Q9 ‘10> -+ 3 ’11>

we get:
° \/|a0|21+|a1|2 (ap [00) + a1 |01)) with probability |ag|? + |aq]?.
> (a2 [10) + a3 |11)) with probability |aso|? + |as]?.

[
Vlaz|2+as|?

\_ /
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Unitary matrices

e A matrix M € C"*" is unitary if
MT =M1
This holds iff the columns form an ON-basis.

e MT is the adjoint, or conjugate transpose, of M:

f .
1 1 -1 1 1 e %

V2 \ele  eiv _\ﬁ —1 e

e An operator is unitary if one, and hence all, of its representations

/

are unitary.
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Change

e A linear function maps a qubit to a qubit iff it is unitary.

e The state evolution of a closed (no external interaction, so no
measurements) quantum system is determined by unitary

operators:
[YVir1) = U |¢p;), U unitary.

e This is a discrete version of the Schrodinger equation.

e Note that all unitary operations are reversible.
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NOT:

PHASE,,:

CNOT:

-

Quantum gates

Hadamard:

0

—NOT
1
‘90 1
0
— H 1
V2

1
0

0

el

~

Usually a circuit model is used. Some example gates:

0) = [1)
1) = 10)

z) |y) = |z) |z D y)
(@ is exclusive or.)

/
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Universal sets of gates

All unitary operations on n qubits can be implemented

e exactly using O(n24”) CNOT and single qubit gates.

e to an accuracy € using O (n24” log® (”2€4n)) gates (c ~ 2) from
the set
{ CNOT, H, PHASE: }.

log 1
Lower bound: f2 (2"—)

logn

\_ /

11




Introduction to Quantum Computation Nils Anders Danielsson

/ Computability \

e Quantum computers can simulate classical computers (and vice

versa).
e Obstacle for simulation: All functions reversible.

e Solution: Save input. (Have to take care of garbage as well.)
z) |y) = |z) |y © f(2))

) ®— )

e Can use Toffoli gate: 1Y) o y)

12
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/ No cloning \

e Take advantage of superpositions.

e Example: 2" computations in one step.

2" —1 .
) S Vil [}
07) —F# H®n Black box

e But: Can only measure output once. Can’t even copy it.

e No-cloning theorem: There is no unitary operator U such that

Uly)|0) = |9) [¢)  for all qubits |¢)) .

\o No general FANOUT. /

13
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Extended example:
Grover’s search algorithm

o N = 2" elements: Ny.
e M solutions, M > 1.
e Oracle f: Ny — Ny, f(z) =1 iff x solution.

e Problem: Find one solution.

14
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Use an n-qubit register initialised to a superposition of all elements
in the search space

) = H®™ |0) Z ) ,
wENN

and one oracle qubit initialised to

1
H 1) =

7 (10) = 11)).

15
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e Assume that we have an oracle circuit O:

O(lz) [y)) = |z) ly © f(2)) -

e Notice that O maps

20— 1)) s (—1) @) [
\>\/§(\0> 1) — (1) |z)

e So let us ignore the oracle qubit:

0, ( Z Oy az)) = Z (—1)/ @y |z) .

rENpN

(10) = 11)).-

Sl

2
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/o Grover operator G = H®"PyH®"O, \

7L H®n pO H®n |

e Conditional phase shift:

|33>7 L = U,
Py |z) =

—|z), = #0.

o (z]|y) = (zly) = |)" |y).
e P)=20)(0| —I and H' = H =

H®"PyH®™ = H®™(2)0) (0| — ) H®™ = 2 |9) (| — 1.

\_ /

17




Introduction to Quantum Computation Nils Anders Danielsson

4 N

e Define S ={x € Ny|f(x)=0}, SlzNN\SO,

o) = \/—Z\w I7) Zp;.

TESo ZUESl

) =2y 4 M,

i.e. [1)) is contained in the plane spanned by |o) and |7).

o We get

\_ /
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e O is a reflection about |o): HT) G |Y)

Olalo)+G 1)) = alo)=B]7).
o 2| (1p| — I is reflection about
[4). [4)

e The composition of two reflec-

tions i1s a rotation.

19
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/ e Initially: \

0 0

|¢>:cos§ 0>—|—sin§ T),

0 N-M .0 M
cos— =4/ ———, sin- =14/—.

2 N T2 VN

e After m iterations:
2 1 2 1
G™ [¢) = cos ( m2—|— 9) o) + sin ( m2—|— (9) 7).

e We want

2m + 1
2

|71
=199 9|

\ |2 ]: the integer closest to x, rounding down in case of ambiguity./

o=".
>

e Best approximation:

20
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o After m iterations G™ [¢) is within & of |7).

o M < % = g < 7 = probability of success >

N

e What if M > &7
— (Choose element on random or

— extend the search space to contain 2N keys.

e What if M is unknown? See below.

21
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s 0 -0 M
omgb—ejand§zsm§— 7

< T | N
m —_— —_—
— 4V M

e This is actually optimal.

implies that
N
O — 1.

e For a classical computer (9(%) oracle calls are needed.

\_ /
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Fourier transform

Several algorithms are based on the quantum Fourier transform
(O(n?)):
e Phase estimation (estimates phase of eigenvalue of unitary
operator, O(n2 + log? (%)) gates and black boxes).

e Counting (counts solutions to search problem, O (\/N ) oracle
calls, accuracy (9(\/ M ), probability of success O(1)).

e Order finding (finds least positive integer r such that
" =1 (mod N), (’)(log3 N)).

e Factoring (O (log3 N)).

23
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Complexity

e BQP is the quantum analogue to BPP.
e BPP C BQP C PSPACE.

e Grover’s algorithm can be used to speed up naive search, but no
exponential speedup, so no hope of solving NP-complete

problems efficiently without more sophisticated approaches.

e Variations of the basic computational model used might make a
difference. This model is e.g. limited to finite dimensional state

spaces, with qubits initially in computational basis states.

\_ /
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