Nils Anders Danielsson

Nottingham

AIM 9, 2008-11-27

Hamming numbers (almost)

An ordered stream of all products of 2 and 3:

hamming = 1 : merge (map (2 *) hamming)
(map (3 *) hamming)

Hamming numbers (almost)

An ordered stream of all products of 2 and 3:

hamming = 1 : merge (map (2 *) hamming)
(map (3 *) hamming)

» Productive?

Hamming numbers (almost)

An ordered stream of all products of 2 and 3:

hamming = 1 : merge (map (2 *) hamming)
(map (3 *) hamming)

» Productive?
» How can we get Agda to believe that it is?

The implementation can take advantage of
the host language’s productivity checker.

Disclaimer:
Hopetully this
method will soon
become obsolete.

... because it is awkward to use in practice.

However:

» Interesting to see what can be done
without adding new features.

» Flexible.

How does it
work?

codata Stream (A : Set) : Set where
< : A — Stream A — Stream A

Hamming numbers again

hamming : Stream N
hamming ~ 1 < merge (map (_*_ 2) hamming)
(map (_*_ 3) hamming)

» Not guarded by constructors.
» But what if merge and map were constructors?

Ad-hoc programming language

mutual
codata WHNF : Set — Setl where

< : forall {A} — A — Prog (Stream A) —
WHNF (Stream A)

data Prog : Set — Setl where
I . forall {A} — WHNF A — Prog A
map : forall {AB} — (A — B) —
Prog (Stream A) — Prog (Stream B)
merge : Prog (Stream N) —
Prog (Stream N) —
Prog (Stream N)

Guarded definition

hamming : Prog (Stream N)
hamming ~ | 1 < merge (map (_x_ 2) hamming)
(map (_*x_ 3) hamming)

» Guarded by constructors.
» _<_Is a coconstructor.
» Note: Corecursive definition of inductive value.

Interpreter

1. One-step evaluator:
whnf : forall {A} — Prog A — WHNF A

Recursive: WHNF always reached in finite time.
2. Full evaluation:

value : forall {A} — WHNF A — A
value (x < prog) ~ x < value (whnf prog)

[] : forall {A} — Prog A — A
[prog] = value (whnf prog)

Uses guarded corecursion.

One-step evaluator

Structurally recursive:

whnf : forall {A} — Prog A — WHNF A
whnf (| w) = w

whnf (map f xs) with whnf xs
o | x<xs" = fx<mapf xs

whnf (merge xs ys) with whnf xs | whnf ys
o | x<xs" | y<ys withcmp x y

.| It = x < merge xs" ys

. | eq = x < merge xs’ ys'

. | gt = y < merge xs ys'

ham : Stream N
ham = [hamming |

Perhaps one should also prove that ham satisfies its
intended defining equation.

What happens
with
unproductive
code?

Productivity = termination

Productivity problems are sometimes turned into
termination problems:

map, : forall {AB} — (A — B) —
Prog (Stream A) — Prog (Stream B)
mapy f (x < x' < xs") ~f x < f x' < map, f xs"

hamming : Stream N
hamming ~ 1 < merge (mapy (_x_ 2) hamming)
(mapy (_*_ 3) hamming)

Productivity = termination

Productivity problems are sometimes turned into
termination problems:

data Prog : Set — Setl where
map, : forall {AB} — (A — B) —
Prog (Stream A) — Prog (Stream B)

whnf (map; f xs) with whnf xs
.. | x < xs" with whnf xs'
] X <xs" = fx< (| fx <mapyfxs")

How far can this
be taken?

Flexibility

It is possible to handle map,:

mutual
data WHNF, : Set — Setl where
(.,)<_ : forall {A} —
A — A — Prog, (Stream A) —
WHNF, (Stream A)

Flexibility

It is possible to handle map,:

data Prog, : Set — Setl where
- forall {A} —
WHNF, A — Prog, A
map, : forall {AB} —
(A — B) —
Prog, (Stream A) — Prog, (Stream B)

It is possible to handle map,:

whnf, : forall {A} — Progp A — WHNF, A
whnf; (| w) = w

whnf, (mapy f xs) with whnf, xs
) (x, X)= xs" = (fx,fx)< mapyf xs”

Flexibility

» Can be generalised from 2 to larger depths.
» Functions like tail can be handled.

(But a coercion constructor may be necessary.)
» Can handle other types as well.

» Breadth-first labelling of
potentially infinite trees.

Equality proofs also possible

Unique fixed-points = guarded coinduction:

iterate-fusion h f; f, hyp x ~
map h (iterate f; x)
=(=-refl)
| h x < map h (iterate f; (f; x))
~(| =-refl < iterate-fusion h f; f, hyp (f; x))
| h x < iterate > (h (f; x))
=(=-cong(\y — [| hx <iterate Ly])
(hyp x))
| h x < iterate f> (f, (h x))
=(=-refl)
iterate f, (h x)
[

What about the
drawbacks?

Drawbacks

Ad-hoc.
Monolithic.
Awkward.

Limited support for higher-order functions:
(Prog A — Prog B) — ... is negative.

v

v

v

v

» Inefficient: sharing lost.

Sharing lost
., forall {AB} —
WHNF A — WHNF B — WHNF (A x B)
fst : forall {AB} — Prog (A x B) — Prog A
whnf (fst prog) with whnf prog

] (xy) = x

» Can perhaps be worked around by
implementing a call-by-need interpreter. . .

Conclusion

» Fun to play around with. ..

» ...but for real work we need something
more convenient.

» What? (Andreas Abel might add to the
discussion tomorrow.)

