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Hamming numbers (almost)

An ordered stream of all products of 2 and 3:

hamming = 1 : merge (map (2 ∗) hamming)
(map (3 ∗) hamming)

I Productive?

I How can we get Agda to believe that it is?
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One method

1. Define problem-specific language.

2. Implement provably productive

interpreter.

The implementation can take advantage of
the host language’s productivity checker.



Disclaimer:
Hopefully this

method will soon
become obsolete.



. . . because it is awkward to use in practice.

However:

I Interesting to see what can be done
without adding new features.

I Flexible.



How does it
work?



Back to the example

codata Stream (A : Set) : Set where
≺ : A → Stream A → Stream A



Hamming numbers again

hamming : Stream N
hamming ∼ 1 ≺ merge (map ( ∗ 2) hamming)

(map ( ∗ 3) hamming)

I Not guarded by constructors.

I But what if merge and map were constructors?



Ad-hoc programming language

mutual
codata WHNF : Set → Set1 where
≺ : forall {A} → A → Prog (Stream A) →

WHNF (Stream A)

data Prog : Set → Set1 where
↓ : forall {A} → WHNF A → Prog A
map : forall {A B } → (A → B) →

Prog (Stream A) → Prog (Stream B)
merge : Prog (Stream N) →

Prog (Stream N) →
Prog (Stream N)



Guarded definition

hamming : Prog (Stream N)
hamming ∼ ↓ 1 ≺ merge (map ( ∗ 2) hamming)

(map ( ∗ 3) hamming)

I Guarded by constructors.

I ≺ is a coconstructor.

I Note: Corecursive definition of inductive value.



Interpreter

1. One-step evaluator:

whnf : forall {A} → Prog A → WHNF A

Recursive: WHNF always reached in finite time.

2. Full evaluation:

value : forall {A} → WHNF A → A
value (x ≺ prog) ∼ x ≺ value (whnf prog)

J K : forall {A} → Prog A → A
J prog K = value (whnf prog)

Uses guarded corecursion.



One-step evaluator

Structurally recursive:

whnf : forall {A} → Prog A → WHNF A
whnf (↓ w) = w

whnf (map f xs) with whnf xs
... | x ≺ xs ′ = f x ≺ map f xs ′

whnf (merge xs ys) with whnf xs | whnf ys
... | x ≺ xs ′ | y ≺ ys ′ with cmp x y
... | lt = x ≺ merge xs ′ ys
... | eq = x ≺ merge xs ′ ys ′

... | gt = y ≺ merge xs ys ′



Wrapping up

ham : Stream N
ham = J hamming K

Perhaps one should also prove that ham satisfies its
intended defining equation.



What happens
with

unproductive
code?



Productivity ⇒ termination

Productivity problems are sometimes turned into
termination problems:

map2 : forall {A B } → (A → B) →
Prog (Stream A) → Prog (Stream B)

map2 f (x ≺ x ′ ≺ xs ′′) ∼ f x ≺ f x ′ ≺ map2 f xs ′′

hamming : Stream N
hamming ∼ 1 ≺ merge (map2 ( ∗ 2) hamming)

(map2 ( ∗ 3) hamming)



Productivity ⇒ termination

Productivity problems are sometimes turned into
termination problems:

data Prog : Set → Set1 where
map2 : forall {A B } → (A → B) →

Prog (Stream A) → Prog (Stream B)

whnf (map2 f xs) with whnf xs
... | x ≺ xs ′ with whnf xs ′

... | x ′ ≺ xs ′′ = f x ≺ (↓ f x ′ ≺ map2 f xs ′′)



How far can this
be taken?



Flexibility

It is possible to handle map2:

mutual
data WHNF2 : Set → Set1 where
〈 , 〉≺ : forall {A} →

A → A → Prog2 (Stream A) →
WHNF2 (Stream A)



Flexibility

It is possible to handle map2:

data Prog2 : Set → Set1 where
↓ : forall {A} →

WHNF2 A → Prog2 A
map2 : forall {A B } →

(A → B) →
Prog2 (Stream A) → Prog2 (Stream B)



Flexibility

It is possible to handle map2:

whnf2 : forall {A} → Prog2 A → WHNF2 A
whnf2 (↓ w) = w

whnf2 (map2 f xs) with whnf2 xs
... | 〈 x , x ′ 〉≺ xs ′′ = 〈 f x , f x ′ 〉≺ map2 f xs ′′



Flexibility

I Can be generalised from 2 to larger depths.

I Functions like tail can be handled.
(But a coercion constructor may be necessary.)

I Can handle other types as well.
I Breadth-first labelling of

potentially infinite trees.



Equality proofs also possible

Unique fixed-points ⇒ guarded coinduction:

iterate-fusion h f1 f2 hyp x ∼
map h (iterate f1 x)
≡〈 ≡-refl 〉
↓ h x ≺ map h (iterate f1 (f1 x))

u〈 ↓ ≡-refl ≺ iterate-fusion h f1 f2 hyp (f1 x) 〉
↓ h x ≺ iterate f2 (h (f1 x))
≡〈 ≡-cong (\y → J ↓ h x ≺ iterate f2 y K)

(hyp x) 〉
↓ h x ≺ iterate f2 (f2 (h x))
≡〈 ≡-refl 〉

iterate f2 (h x)



What about the
drawbacks?



Drawbacks

I Ad-hoc.

I Monolithic.

I Awkward.

I Limited support for higher-order functions:
(Prog A → Prog B) → . . . is negative.

I Inefficient: sharing lost.



Sharing lost

, : forall {A B } →
WHNF A → WHNF B → WHNF (A × B)

fst : forall {A B } → Prog (A × B) → Prog A

whnf (fst prog) with whnf prog
... | (x ,y) = x

I Can perhaps be worked around by
implementing a call-by-need interpreter. . .



Conclusion

I Fun to play around with. . .

I . . . but for real work we need something
more convenient.

I What? (Andreas Abel might add to the
discussion tomorrow.)


