An ad-hoc and monolithic method for ensuring that corecursive definitions are productive

Nils Anders Danielsson

Nottingham

AIM 9, 2008-11-27

An ordered stream of all products of 2 and 3:

$$hamming = 1 : merge (map (2 *) hamming) (map (3 *) hamming)$$

Productive?

How can we get Agda to believe that it is?

An ordered stream of all products of 2 and 3:

$$hamming = 1 : merge (map (2 *) hamming) (map (3 *) hamming)$$

Productive?

How can we get Agda to believe that it is?

An ordered stream of all products of 2 and 3:

$$hamming = 1 : merge (map (2 *) hamming) (map (3 *) hamming)$$

Productive?

How can we get Agda to believe that it is?

 Define problem-specific language.
 Implement provably productive interpreter.

The implementation can take advantage of the host language's productivity checker.

Disclaimer: Hopefully this method will soon become obsolete.

... because it is awkward to use in practice.

However:

- Interesting to see what can be done without adding new features.
- ► Flexible.

How does it work?

codata Stream (A : Set) : Set where $_\prec_$: $A \rightarrow$ Stream $A \rightarrow$ Stream A

$$hamming : Stream \mathbb{N}$$

 $hamming \sim 1 \prec merge (map (_*_ 2) hamming) (map (_*_ 3) hamming)$

► Not guarded by constructors.

But what if merge and map were constructors?

Ad-hoc programming language

mutual codata WHNF : Set \rightarrow Set1 where $_\prec_$: forall $\{A\} \rightarrow A \rightarrow Prog$ (Stream A) \rightarrow WHNF (Stream A) data Prog : Set \rightarrow Set1 where : forall $\{A\} \rightarrow WHNF A \rightarrow Prog A$ map : forall $\{A B\} \rightarrow (A \rightarrow B) \rightarrow$ $Prog (Stream A) \rightarrow Prog (Stream B)$ merge : $Prog (Stream \mathbb{N}) \rightarrow$ $Prog (Stream \mathbb{N}) \rightarrow$ Prog (Stream \mathbb{N})

$$egin{array}{lll} hamming & : & Prog \ (Stream \ \mathbb{N}) \ hamming & \sim \downarrow 1 \prec ext{merge} \ (ext{map} \ (_*_ 2) \ hamming) \ (ext{map} \ (_*_ 3) \ hamming) \end{array}$$

- Guarded by constructors.
- $_\prec_$ is a coconstructor.
- ► Note: Corecursive definition of inductive value.

1. One-step evaluator:

whnf : forall {A} → Prog A → WHNF A
Recursive: WHNF always reached in finite time.
2. Full evaluation:

value : forall $\{A\} \rightarrow WHNF A \rightarrow A$ value $(x \prec prog) \sim x \prec value (whnf prog)$ [-]] : forall $\{A\} \rightarrow Prog A \rightarrow A$ [[prog]] = value (whnf prog)

Uses guarded corecursion.

Structurally recursive:

whnf : forall $\{A\} \rightarrow Prog A \rightarrow WHNF A$ whnf $(\downarrow w) = w$ whnf (map f xs) with whnf xs ... $| x \prec xs' = f x \prec map f xs'$ whnf (merge xs ys) with whnf xs | whnf ys ... $| x \prec xs' | y \prec ys'$ with cmp x y ... | It = $x \prec \text{merge } xs' ys$... $| eq = x \prec merge xs' ys'$... | gt = $y \prec$ merge $xs \ ys'$

 $\begin{array}{l} \textit{ham} : \textit{ Stream } \mathbb{N} \\ \textit{ham} \ = \ [\![\textit{ hamming }]\!] \end{array}$

Perhaps one should also prove that *ham* satisfies its intended defining equation.

What happens with unproductive code?

Productivity problems are sometimes turned into termination problems:

$$\begin{array}{rcl} map_2 &: \text{ forall } \{A B\} \rightarrow (A \rightarrow B) \rightarrow \\ Prog & (Stream A) \rightarrow Prog & (Stream B) \\ map_2 & f & (x \prec x' \prec xs'') \sim f & x \prec f & x' \prec map_2 & f & xs'' \end{array}$$

 $\begin{array}{l} \textit{hamming} : \textit{Stream } \mathbb{N} \\ \textit{hamming} \sim 1 \prec \textit{merge} (\textit{map}_2 (_*_ 2) \textit{hamming}) \\ (\textit{map}_2 (_*_ 3) \textit{hamming}) \end{array}$

Productivity problems are sometimes turned into termination problems:

data
$$Prog : Set \rightarrow Set1$$
 where
 $map_2 :$ forall $\{A B\} \rightarrow (A \rightarrow B) \rightarrow$
 $Prog (Stream A) \rightarrow Prog (Stream B)$

what $(\operatorname{map}_2 f xs)$ with what xs... $| x \prec xs'$ with what xs'... $| x' \prec xs'' = f x \prec (\downarrow f x' \prec \operatorname{map}_2 f xs'')$

How far can this be taken?

It is possible to handle map₂:

mutual data $WHNF_2$: Set \rightarrow Set1 where $\langle -, - \rangle \prec_-$: forall $\{A\} \rightarrow$ $A \rightarrow A \rightarrow Prog_2$ (Stream A) \rightarrow $WHNF_2$ (Stream A)

It is possible to handle map₂:

data
$$Prog_2$$
 : Set \rightarrow Set1 where
 \downarrow_- : forall $\{A\} \rightarrow$
 $WHNF_2 A \rightarrow Prog_2 A$
map₂ : forall $\{A B\} \rightarrow$
 $(A \rightarrow B) \rightarrow$
 $Prog_2$ (Stream A) \rightarrow $Prog_2$ (Stream B)

It is possible to handle map₂:

$$\begin{array}{l} whnf_2 : \text{ forall } \{A\} \rightarrow Prog_2 A \rightarrow WHNF_2 A \\ whnf_2 (\downarrow w) = w \\ whnf_2 (map_2 f xs) \text{ with } whnf_2 xs \\ \dots \mid \langle x, x' \rangle \prec xs'' = \langle f x, f x' \rangle \prec map_2 f xs'' \\ \end{array}$$

- Can be generalised from 2 to larger depths.
- Functions like *tail* can be handled.
 (But a coercion constructor may be necessary.)
- Can handle other types as well.
 - Breadth-first labelling of potentially infinite trees.

Equality proofs also possible

```
Unique fixed-points \Rightarrow guarded coinduction:
```

```
iterate-fusion h f<sub>1</sub> f<sub>2</sub> hyp x \sim
     map h (iterate f_1 x)
         \equiv \langle \equiv -\text{refl} \rangle
    \downarrow h x \prec map h (iterate f_1(f_1 x))
         \cong \langle \downarrow \equiv-refl \prec iterate-fusion h f<sub>1</sub> f<sub>2</sub> hyp (f<sub>1</sub> x) \rangle
    \downarrow h x \prec \text{iterate } f_2(h(f_1 x))
         \equiv \langle \equiv -cong( \setminus y \rightarrow \llbracket \downarrow h x \prec \text{ iterate } f_2 y \rrbracket)
                                  (hyp x)
    \downarrow h x \prec \text{iterate } f_2(f_2(h x))
         \equiv \langle \equiv -\text{refl} \rangle
     iterate f_2(hx)
```

What about the drawbacks?

- ► Ad-hoc.
- Monolithic.
- Awkward.
- Limited support for higher-order functions: (Prog A → Prog B) → ... is negative.
- Inefficient: sharing lost.

Sharing lost

 $\begin{array}{rcl} _,_ & : \text{ forall } \{A B\} \rightarrow & \\ & WHNF A \rightarrow & WHNF B \rightarrow & WHNF & (A \times B) \end{array}$

fst : forall $\{A B\} \rightarrow Prog (A \times B) \rightarrow Prog A$

whnf (fst prog) with whnf prog ... | (x,y) = x

 Can perhaps be worked around by implementing a call-by-need interpreter...

- ► Fun to play around with...
- ... but for real work we need something more convenient.
- What? (Andreas Abel might add to the discussion tomorrow.)