
Logical properties of a
modality for erasure

Nils Anders Danielsson

IFIP WG 2.1 Meeting #79,
Otterlo, January 2020



Erasure

▶ Lists of a given length in Agda:

data Vec (A : Set) : ℕ→ Set where
[] : Vec A 0

∷ : {n : ℕ}→
A→ Vec A n→ Vec A (1 + n)

▶ With a bad implementation:
Ω(𝑛2) space for lists of length 𝑛.

▶ It might make sense for the compiler to
“erase” some data.



Erasure

With explicit erasure annotations:

data Vec (@0 A : Set) : @0 ℕ→ Set where
[] : Vec A 0

∷ : {@0 n : ℕ}→
A→ Vec A n→ Vec A (1 + n)



@0

▶ @0 is used to mark arguments and definitions
that should be erased at run-time.

▶ Agda is supposed to make sure that:
▶ Things marked as erased are

actually erased.
▶ There is never any data missing

at run-time.
▶ The typing rules are based on work by

McBride and Atkey.
▶ The implementation is mainly due to Abel.



@0

ok : {@0 A : Set}→ A→ A
ok x = x

-- not-ok : {@0 A : Set} → @0 A → A
-- not-ok x = x

-- also-not-ok : @0 Bool → Bool
-- also-not-ok true  = false
-- also-not-ok false = true



Erased

A type-level variant of @0:

record Erased (@0 A : Set a) : Set a where
constructor [ ]
field

@0 erased : A



Monad

Erased is a monad:

return : {@0 A : Set a}→ @0 A→ Erased A
return x = [ x ]

>>= :
{@0 A : Set a} {@0 B : Set b}→
Erased A→ (A→ Erased B)→ Erased B

x >>= f = [ erased (f (erased x)) ]



A toy
application



An application

Natural numbers that…
▶ …compute (roughly) like binary

natural numbers at run-time.
▶ …compute (roughly) like unary

natural numbers at compile-time…
▶ …for some operations.



The underlying representation
Lists of bits with the least significant digit first and
no trailing zeros:

abstract
mutual

data Bin’ : Set where
[] : Bin’

∷ ⟨ ⟩ : (b : Bool) (n : Bin’)→
@0 Invariant b n→ Bin’

data Invariant : Bool→ Bin’→ Set where
true-inv : Invariant true n
false-inv : Invariant false (b ∷ n ⟨ inv ⟩)



The underlying representation

Abstract:
▶ The representation can be changed

without breaking client code.
▶ Does not “compute” at compile-time:

The type-checker does not use
definitional equalities.



The underlying representation

The representation of a given natural number is
unique. An equivalence (≈ bijection):

to-ℕ : Bin’→ ℕ



Indexed binary numbers
Binary natural numbers representing
a given natural number:

Bin-[ ] : @0 ℕ→ Set
Bin-[ n ] = Σ Bin’ (𝜆 b→ Erased (to-ℕ b ≡ n))

The type is propositional:

{@0 n : ℕ}→ Is-prop Bin-[ n ]

Is-prop : Set a→ Set a
Is-prop A = (x y : A)→ x ≡ y



Indexed binary numbers
Binary natural numbers representing
a given natural number:

Bin-[ ] : @0 ℕ→ Set
Bin-[ n ] = Σ Bin’ (𝜆 b→ Erased (to-ℕ b ≡ n))

The type is propositional:

{@0 n : ℕ}→ Is-prop Bin-[ n ]

Is-prop : Set a→ Set a
Is-prop A = (x y : A)→ x ≡ y



Non-indexed binary numbers

Binary natural numbers:

Bin : Set
Bin = Σ (Erased ℕ) (𝜆 n→ Bin-[ erased n ])

Returns the erased index:

@0 ⌊ ⌋ : Bin→ ℕ
⌊ ([ n ] , ) ⌋ = n



[]-cong
A key lemma:

[]-cong :
{@0 A : Set a} {@0 x y : A}→
Erased (x ≡ y)→ [ x ] ≡ [ y ]

With the K rule and propositional equality:

[]-cong [ refl ] = refl

With Cubical Agda and paths:

[]-cong [ eq ] = 𝜆 i→ [ eq i ]

In both cases []-cong is an equivalence that
maps [ refl x ] to refl [ x ].



[]-cong
A key lemma:

[]-cong :
{@0 A : Set a} {@0 x y : A}→
Erased (x ≡ y)→ [ x ] ≡ [ y ]

With the K rule and propositional equality:

[]-cong [ refl ] = refl

With Cubical Agda and paths:

[]-cong [ eq ] = 𝜆 i→ [ eq i ]

In both cases []-cong is an equivalence that
maps [ refl x ] to refl [ x ].



[]-cong
A key lemma:

[]-cong :
{@0 A : Set a} {@0 x y : A}→
Erased (x ≡ y)→ [ x ] ≡ [ y ]

With the K rule and propositional equality:

[]-cong [ refl ] = refl

With Cubical Agda and paths:

[]-cong [ eq ] = 𝜆 i→ [ eq i ]

In both cases []-cong is an equivalence that
maps [ refl x ] to refl [ x ].



[]-cong
A key lemma:

[]-cong :
{@0 A : Set a} {@0 x y : A}→
Erased (x ≡ y)→ [ x ] ≡ [ y ]

With the K rule and propositional equality:

[]-cong [ refl ] = refl

With Cubical Agda and paths:

[]-cong [ eq ] = 𝜆 i→ [ eq i ]

In both cases []-cong is an equivalence that
maps [ refl x ] to refl [ x ].



Non-indexed binary numbers
Recall:

Bin : Set
Bin = Σ (Erased ℕ) (𝜆 n→ Bin-[ erased n ])

@0 ⌊ ⌋ : Bin→ ℕ
⌊ ([ n ] , ) ⌋ = n

Equality follows from equality for the erased indices:

Erased (⌊ x ⌋ ≡ ⌊ y ⌋) ≃
proj1 x ≡ proj1 y ≃
x ≡ y



Addition

abstract

plus : Bin’→ Bin’→ Bin’
plus = … -- Add with carry.

⊕ : Bin→ Bin→ Bin
([ m ] , m’ , p) ⊕ ([ n ] , n’ , q) =

([ m + n ] , plus m’ n’ , [ … ])



Conversion to/from
unary natural numbers?

Goal:
▶ Bin ≃ ℕ (in a non-erased context).
▶ With the forward direction pointwise equal to

⌊ ⌋ (in an erased context).



Some theory



Some equivalences

Erased ⊤ ≃ ⊤

Erased ⊥ ≃ ⊥

Erased ((x : A)→ P x) ≃ ((x : A)→ Erased (P x))

Erased ((x : A)→ P x) ≃
((x : Erased A)→ Erased (P (erased x)))

Erased (Σ A P) ≃
Σ (Erased A) (𝜆 x→ Erased (P (erased x)))



Some preservation lemmas

For erased A : Set a and B : Set b:

@0 (A→ B)→ Erased A→ Erased B
@0 A ⇔ B → Erased A ⇔ Erased B
@0 A ↠ B → Erased A ↠ Erased B
@0 A ↔ B → Erased A ↔ Erased B
@0 A ≃ B → Erased A ≃ Erased B
@0 A ↣ B → Erased A ↣ Erased B
@0 Embedding A B→

Embedding (Erased A) (Erased B)



H-levels

Erased commutes with Is-prop:

Erased (Is-prop A) ⇔ Is-prop (Erased A)

More generally:

Erased (H-level n A) ⇔ H-level n (Erased A)



Modality

Erased is a left exact modality in the sense of
Rijke, Shulman and Spitters.



Back to the
application



An equivalence

Bin-[ n ] ≃
Σ Bin’ (𝜆 b→ Erased (to-ℕ b ≡ n)) ≃
Σ ℕ (𝜆 m→ Erased (m ≡ n))

Note that n can be erased.



Another equivalence
The binary natural numbers are equivalent to the
unary ones, both at compile-time and at run-time:

Bin ≃
Σ (Erased ℕ) (𝜆 n→ Bin-[ erased n ]) ≃
Σ (Erased ℕ) (𝜆 n→ Σ ℕ (𝜆 m→

Erased (m ≡ erased n))) ≃
Σ ℕ (𝜆 m→ Σ (Erased ℕ) (𝜆 n→

Erased (m ≡ erased n))) ≃
Σ ℕ (𝜆 m→ Erased (Σ ℕ (𝜆 n→ m ≡ n))) ≃
ℕ × Erased ⊤ ≃
ℕ × ⊤ ≃
ℕ



Another equivalence
The binary natural numbers are equivalent to the
unary ones, both at compile-time and at run-time:

Bin ≃ ℕ

In an erased context the forward direction is pointwise
equal to ⌊ ⌋ (i.e. it returns the index).



Stability



Stability

A type A is stable if Erased A implies A:

Stable : Set a→ Set a
Stable A = Erased A→ A

A type is very stable (or modal) if
[ ] is an equivalence:

Very-stable : Set a→ Set a
Very-stable A = Is-equivalence ([ ] {A = A})



Double negation

Erased A implies ¬ ¬ A. Thus types that are stable
for double negation are stable for Erased:

{@0 A : Set a}→ (¬ ¬ A→ A)→ Stable A

Types for which it is known whether or not they are
inhabited are also stable:

{@0 A : Set a}→ A ⊎ ¬ A→ Stable A



Stability of equality

Variants of Stable and Very-stable:

Stable-≡ : Set a→ Set a
Stable-≡ A = (x y : A)→ Stable (x ≡ y)

Very-stable-≡ : Set a→ Set a
Very-stable-≡ A =

(x y : A)→ Very-stable (x ≡ y)



Decidable equality

Stable propositions are very stable:

Stable A→ Is-prop A→ Very-stable A

Thus types for which equality is decidable have
very stable equality:

((x y : A)→ x ≡ y ⊎ ¬ x ≡ y)→
Very-stable-≡ A



Propositions

However, it is not the case that every very stable
type is a proposition:

¬ ({A : Set a}→ Very-stable A→ Is-prop A)

Erased Bool is not a proposition, but it is
very stable:

{@0 A : Set a}→ Very-stable (Erased A)



Why is Bin-[ n ] propositional?
Lemma:

{@0 x : A}→
Very-stable-≡ A→
Is-prop (Σ A (𝜆 y→ Erased (y ≡ x)))

Bin-[ n ] is propositional:

((x y : ℕ)→ x ≡ y ⊎ ¬ x ≡ y) →
Very-stable-≡ ℕ →
Very-stable-≡ Bin’ →
Is-prop (Σ Bin’ (𝜆 b→ Erased (b ≡ from-ℕ n))) →
Is-prop (Σ Bin’ (𝜆 b→ Erased (to-ℕ b ≡ n))) →
Is-prop Bin-[ n ]



Closure properties

For Π:

(∀ x→ Stable (P x))→ Stable ((x : A)→ P x)

(∀ x→ Very-stable (P x))→
Very-stable ((x : A)→ P x)

(The second property is proved using function
extensionality.)



Closure properties

For Σ:

Very-stable A→ (∀ x→ Stable (P x))→
Stable (Σ A P)

Very-stable A→ (∀ x→ Very-stable (P x))→
Very-stable (Σ A P)



Closure properties

For equality:

Very-stable A→ Very-stable-≡ A



Closure properties

For List:

Stable-≡ A→ Stable-≡ (List A)

Very-stable-≡ A→ Very-stable-≡ (List A)



Universes

Universes of very stable types are very stable
(assuming univalence):

Very-stable (Σ (Set a) Very-stable)



Discussion

▶ A surprising amount of theory for something as
simple as Erased?

▶ Can []-cong be defined in plain Agda
without K?

▶ Unclear whether erasure makes sense in
Cubical Agda.


	@0
	Erased
	A toy application
	Some theory
	Back to the application
	Stability
	Discussion

