Nils Anders Danielsson

IFIP WG 2.1 Meeting #79,
Otterlo, January 2020

Erasure

» Lists of a given length in Agda:

data Vec (A : Set) : N — Set where
[:VecAO
i {n: N} >
A~ Vec An— Vec A (1 + n)

» With a bad implementation:
Q(n?) space for lists of length n.

» It might make sense for the compiler to
“erase” some data.

With explicit erasure annotations:

data Vec (@0 A : Set) : @0 N — Set where
[:VecADO
=1 {@0n: N} -
A—Vec An— Vec A (1 + n)

@0

v

v

v

v

@0 is used to mark arguments and definitions
that should be erased at run-time.
Agda is supposed to make sure that:
» Things marked as erased are
actually erased.
» There is never any data missing
at run-time.

The typing rules are based on work by
McBride and Atkey.

The implementation is mainly due to Abel.

ok: {C0OA:Set} >A—- A

ok x = x

-— not-ok : {@0 A : Set} - @0 A — A
-- not-ok x = x

-- also-not-ok : @0 Bool — Bool
-- also-not-ok true = false
—-- also-not-ok false = true

A type-level variant of @0:

record Erased (@0 A : Set a) : Set a where
constructor [_]
field
@0 erased : A

Erased is a monad:

return : {@0 A : Set a} -~ @0 A — Erased A
return x = [x |

== .
{©@0 A : Set a} {@0 B : Set b} —
Erased A - (A — Erased B) — Erased B
x >= = [erased (f (erased x))]

A toy
application

An application

Natural numbers that...

> ..compute (roughly) like binary
natural numbers at run-time.

> ..compute (roughly) like unary
natural numbers at compile-time...

» ..for some operations.

The underlying representation

Lists of bits with the least significant digit first and
no trailing zeros:

abstract
mutual

data Bin' : Set where
(] : Bin'’
: (_): (b: Bool) (n: Bin') -
@0 Invariant b n - Bin’

data Invariant : Bool = Bin' = Set where
true-inv : Invariant true n
false-inv : Invariant false (b :: n (inv))

The underlying representation

Abstract:

» The representation can be changed
without breaking client code.

» Does not “compute” at compile-time:
The type-checker does not use
definitional equalities.

The underlying representation

The representation of a given natural number is
unique. An equivalence (~ bijection):

to-N : Bin" - N

Binary natural numbers representing
a given natural number:

Bin-[] : @0 N — Set
Bin-[n] = X Bin' (A b — Erased (to-N b = n))

Indexed binary numbers

Binary natural numbers representing
a given natural number:

Bin-[] : @0 N — Set
Bin-[n] = £ Bin' (A b - Erased (to-N b = n))

The type is propositional:

{@0 n: N} - Is-prop Bin-[n]

Is-prop : Set a - Set a
Issprop A= (xy: A) > x=y

Binary natural numbers:

Bin : Set
Bin = ¥ (Erased N) (A n — Bin-[erased n)

Returns the erased index:

©@ | _]: Bin—>N
L([n]) T=n

A key lemma:

[]_?()Qr(])g/:\ - Set a} {@0 xy: A} »
Erased (x=y) = [x| =[y]

A key lemma:

[]-cong :
{@0 A:Seta} {0 xy: A} —»
Erased (x=y) > [x]| = [y]
With the K rule and propositional equality:

[J-cong [refl | = refl

[J-cong

A key lemma:

[]-cong :
{@OgA :Set a} {@0 xy: A} -
Erased (x=y) = [x]| =[y]

With the K rule and propositional equality:
[]-cong [refl | = refl
With Cubical Agda and paths:

[J[-cong [eq| =Ni—[eqi]

[J-cong

A key lemma:

[]-cong :
{@OgA :Set a} {@0 xy: A} -
Erased (x=y) = [x]| =[y]

With the K rule and propositional equality:
[]-cong [refl | = refl

With Cubical Agda and paths:
[J[-cong [eq| =Ni—[eqi]

In both cases []-cong is an equivalence that
maps [refl x| to refl [x|.

Non-indexed binary numbers

Recall:
Bin : Set
Bin = ¥ (Erased N) (A n — Bin-[erased n)
0[_]:Bin=>N
L ([n].)=

Equality follows from equality for the erased indices:

Erased ([x | = | y)
proj; X = proj y
X=y

Y

abstract

plus : Bin" — Bin' - Bin’
plus = ... -—— Add with carry.

@ : Bin — Bin - Bin

([m]. m.p)@(n] n". q
([m+n],plusm n" [..])

Goal:
» Bin =~ N (in a non-erased context).

» With the forward direction pointwise equal to
|_| (in an erased context).

Some theory

Erased T o~ T
Erased L ~ |
Erased ((x: A) - P x) =~ ((x: A) - Erased (P x))

Erased ((x: A) - P x) =~
((x : Erased A) — Erased (P (erased x)))

Erased (X A P) ~
Y (Erased A) (A x — Erased (P (erased x)))

Some preservation lemmas

For erased A : Set a and B : Set b:

©0 (A~ B) — Erased A+ Erased B
©0A < B — Erased A< Erased B
© A —-» B — Erased A — Erased B
©0A < B — Erased A <+ Erased B
©0A ~ B — Erased A~ Erased B
© A »>» B — Erased A > Erased B
©0 Embedding A B -
Embedding (Erased A) (Erased B)

Erased commutes with |s-prop:
Erased (Is-prop A) < Is-prop (Erased A)
More generally:

Erased (H-level n A) < H-level n (Erased A)

Erased is a left exact modality in the sense of
Rijke, Shulman and Spitters.

Back to the
application

Bin-[n |
Y Bin' (A b - Erased (to-N b = n))
Y. N (A m— Erased (m = n))

101

Note that n can be erased.

Another equivalence

The binary natural numbers are equivalent to the

unary ones, both at compile-time and at run-time:

Bin

Y (Erased N) (A n — Bin-[erased n])

Y (Erased N) An—>ZN (A m-
Erased (m = erased n)))

YN (A m- X (Erased N) (A n—
Erased (m = erased n)))

YN (Am-Erased (EN(An—>m=

N x Erased T

N x T

N

2R

12

1 1R R

Another equivalence

The binary natural numbers are equivalent to the
unary ones, both at compile-time and at run-time:

Bin ~ N

In an erased context the forward direction is pointwise
equal to |_| (i.e. it returns the index).

Stability

Stability

A type A is stable if Erased A implies A:

Stable : Set a — Set a
Stable A = Erased A -+ A

A type is very stable (or modal) if
[] is an equivalence:

Very-stable : Set a — Set a
Very-stable A = Is-equivalence ([_] {A = A})

Double negation

Erased A implies = — A. Thus types that are stable
for double negation are stable for Erased:

{@0 A: Set a} » (—— A~ A) — Stable A

Types for which it is known whether or not they are
inhabited are also stable:

{@G0 A:Seta} + AW — A — Stable A

Stability of equality

Variants of Stable and Very-stable:

Stable-=: Set a — Set a
Stable-= A = (xy: A) - Stable (x = y)

Very-stable-= : Set a — Set a
Very-stable-= A =
(xy: A) - Very-stable (x = y)

Decidable equality

Stable propositions are very stable:
Stable A — Is-prop A — Very-stable A

Thus types for which equality is decidable have
very stable equality:

(xy: A)»x=yW - x=y) -~
Very-stable-= A

Propositions

However, it is not the case that every very stable
type is a proposition:

— ({A: Set a} — Very-stable A - Is-prop A)

Erased Bool is not a proposition, but it is
very stable:

{@0 A : Set a} - Very-stable (Erased A)

Why is Bin-[n | propositional?
Lemma:

{@0 x: A} >
Very-stable-= A -
Is-prop (X A (A y - Erased (y = x)))

Bin-[n | is propositional:

(xy N> x=yW - x=y)

Very-stable-= N

Very-stable-= Bin’

Is-prop (X Bin' (A b — Erased (b = from-N n)))
Is-prop (X Bin’ (A b — Erased (to-N b = n)))
Is-prop Bin-[n |

U AN

Closure properties

For II:

(V x — Stable (P x)) — Stable ((x: A) - P x)

(V x — Very-stable (P x)) -
Very-stable ((x: A) -+ P x)

(The second property is proved using function
extensionality.)

For >:

Very-stable A - (V x — Stable (P x)) -
Stable (X A P)

Very-stable A - (V x — Very-stable (P x)) -
Very-stable (X A P)

For equality:

Very-stable A — Very-stable-= A

For List:

Stable-= A — Stable-= (List A)

Very-stable-= A - Very-stable-= (List A)

Universes of very stable types are very stable
(assuming univalence):

Very-stable (X (Set a) Very-stable)

Discussion

» A surprising amount of theory for something as
simple as Erased?

» Can []-cong be defined in plain Agda
without K7

» Unclear whether erasure makes sense in
Cubical Agda.

	@0
	Erased
	A toy application
	Some theory
	Back to the application
	Stability
	Discussion

