
Calculating Bag Equalities

Nils Anders Danielsson (Gothenburg)

IFIP WG 2.1 Meeting #68, Rome, February 2012

Bag equality

Equality up to reordering of elements,
or equality when seen as bags:

[1, 2, 1] ≈bag [2, 1, 1]
[1, 2, 1] 6≈bag [2, 1]
[1, 2, 1] ≈set [2, 1]

Why?

Partial specification of sorting algorithm:

∀ xs. sort xs ≈bag xs

Not restricted to lists

•

1 2
≈bag

•

2 1

•

1 2
≈bag [2, 1]

Why?
Tree sort:

to-search-tree : List N � Tree N
flatten : Tree N � List N
tree-sort : List N � List N
tree-sort = flatten ◦ to-search-tree

We can prove

∀ xs. tree-sort xs ≈bag xs

by first proving

∀ xs. to-search-tree xs ≈bag xs
∀ t. flatten t ≈bag t

Not restricted to finite things

[1, 2, 1, 2, . . .] ≈bag [2, 1, 2, 1, . . .]

Why?

Assume semantics of grammar given by

L : Grammar � Colist String

Language equivalence:

L G1 ≈set L G2

If we want to distinguish between ambiguous and
unambiguous grammars:

L G1 ≈bag L G2

Definitions

How is bag equality defined?
I Finite sequence of swaps of adjacent elements.
I Counting.
I Bags in the Boom hierarchy:
append commutative.

I Bijections.
I . . .

Bag equality via bijections

Bijection on positions which relates equal elements:

xs ≈bag ys ⇔
∃ f : positions of xs ↔ positions of ys.
∀ p. lookup xs p = lookup ys (f p)

1 2 3 1

3 1 2 1

Generalises to anything with positions and lookup.

This talk

New definition of bag equality,
with the following properties:
I Many equalities provable using
“bijectional reasoning”,
calculations with bijections instead of equalities.

I Works for arbitrary unary containers
(lists, streams, trees, . . .).

I Generalises to set equality and
subset and subbag preorders.

I Works well in mechanised proofs.

Definition

Any (Morris)

Any P xs means that P x holds for some x in xs.

Any : (A � Set) � List A � Set
Any P [] = ⊥
Any P (x :: xs) = P x + Any P xs

Any P [1, 2, 3] = P 1 + P 2 + P 3 + ⊥

Membership

Any : (A � Set) � List A � Set
Any P [] = ⊥
Any P (x :: xs) = P x + Any P xs

∈ : A � List A � Set
x ∈ xs = Any (λ y . x ≡ y) xs

x ∈ [1, 2, 3] = (x ≡ 1) + (x ≡ 2) + (x ≡ 3) + ⊥
x ∈ [1, 1] = (x ≡ 1) + (x ≡ 1) + ⊥

Bag equality

Any : (A � Set) � List A � Set
Any P [] = ⊥
Any P (x :: xs) = P x + Any P xs

∈ : A � List A � Set
x ∈ xs = Any (λ y . x ≡ y) xs

≈bag : List A � List A � Set
xs ≈bag ys = ∀ z . z ∈ xs ↔ z ∈ ys

Bijectional
reasoning

Example

Bind distributes from the left over append:

xs >>= (λ y . f y ++ g y) ≈bag
(xs >>= f) ++ (xs >>= g)

>>= : List A � (A � List B) � List B
xs >>= f = concat (map f xs)

Example

Bind distributes from the left over append:

xs >>= (λ y . f y ++ g y) ≈bag
(xs >>= f) ++ (xs >>= g)

[1, 2] >>= (λ y . [y] ++ [y]) ≈bag
([1, 2] >>= λ y . [y]) ++ ([1, 2] >>= λ y . [y])

Example

Bind distributes from the left over append:

xs >>= (λ y . f y ++ g y) ≈bag
(xs >>= f) ++ (xs >>= g)

[1, 1, 2, 2] ≈bag
([1, 2] >>= λ y . [y]) ++ ([1, 2] >>= λ y . [y])

Example

Bind distributes from the left over append:

xs >>= (λ y . f y ++ g y) ≈bag
(xs >>= f) ++ (xs >>= g)

[1, 1, 2, 2] ≈bag
[1, 2, 1, 2]

Outline of proof

Bijectional reasoning combinators
Removing structure from Any ’s list argument
Left distributivity

Bijectional reasoning combinators

� : (A : Set) → A ↔ A
↔〈 〉 : (A : Set) {B C : Set} →

A ↔ B → B ↔ C → A ↔ C

Assume p : A ↔ B , q : B ↔ C .

A ↔〈 p 〉
B ↔〈 q 〉
C �

Bijectional reasoning combinators

� : (A : Set) → A ↔ A
↔〈 〉 : (A : Set) {B C : Set} →

A ↔ B → B ↔ C → A ↔ C

Assume p : A ↔ B , q : B ↔ C .

C � : C ↔ C

Bijectional reasoning combinators

� : (A : Set) → A ↔ A
↔〈 〉 : (A : Set) {B C : Set} →

A ↔ B → B ↔ C → A ↔ C

Assume p : A ↔ B , q : B ↔ C .

B ↔〈 q 〉 (C �) : B ↔ C

Bijectional reasoning combinators

� : (A : Set) → A ↔ A
↔〈 〉 : (A : Set) {B C : Set} →

A ↔ B → B ↔ C → A ↔ C

Assume p : A ↔ B , q : B ↔ C .

A↔〈 p 〉 (B ↔〈 q 〉 (C �)) : A ↔ C

Bijectional reasoning combinators

� : (A : Set) → A ↔ A
↔〈 〉 : (A : Set) {B C : Set} →

A ↔ B → B ↔ C → A ↔ C

Assume p : A ↔ B , q : B ↔ C .

A ↔〈 p 〉
B ↔〈 q 〉
C �

Outline of proof

Bijectional reasoning combinators
Removing structure from Any ’s list argument
Left distributivity

First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P xs ys = ?

First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P [] ys = ?

Any-++ P (x :: xs) ys = ?

First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P [] ys =
Any P ([] ++ ys) ↔〈 ? 〉
Any P [] + Any P ys �

Any-++ P (x :: xs) ys = ?

First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P [] ys =
Any P ys ↔〈 ? 〉
Any P [] + Any P ys �

Any-++ P (x :: xs) ys = ?

First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P [] ys =
Any P ys ↔〈 ? 〉
⊥ + Any P ys �

Any-++ P (x :: xs) ys = ?

First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P [] ys =
Any P ys ↔〈 ⊥ identity of + 〉
⊥ + Any P ys �

Any-++ P (x :: xs) ys = ?

First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P [] ys =
Any P ys ↔〈 ⊥ identity of + 〉
⊥ + Any P ys �

Any-++ P (x :: xs) ys =
P x + Any P (xs ++ ys) ↔〈 ? 〉
(P x + Any P xs) + Any P ys �

First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P [] ys =
Any P ys ↔〈 ⊥ identity of + 〉
⊥ + Any P ys �

Any-++ P (x :: xs) ys =
P x + Any P (xs ++ ys) ↔〈 ind. hyp. 〉
P x + (Any P xs + Any P ys) ↔〈 ? 〉
(P x + Any P xs) + Any P ys �

First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P [] ys =
Any P ys ↔〈 ⊥ identity of + 〉
⊥ + Any P ys �

Any-++ P (x :: xs) ys =
P x + Any P (xs ++ ys) ↔〈 ind. hyp. 〉
P x + (Any P xs + Any P ys) ↔〈 + associative 〉
(P x + Any P xs) + Any P ys �

First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

++-comm : (xs ys : List A) �
xs ++ ys ≈bag ys ++ xs

++-comm xs ys = ?

First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

++-comm : (xs ys : List A) �
xs ++ ys ≈bag ys ++ xs

++-comm xs ys = λ z .
z ∈ xs ++ ys ↔〈 ? 〉
z ∈ ys ++ xs �

First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

++-comm : (xs ys : List A) �
xs ++ ys ≈bag ys ++ xs

++-comm xs ys = λ z .
z ∈ xs ++ ys ↔〈 Any-++ 〉
z ∈ xs + z ∈ ys ↔〈 ? 〉
z ∈ ys ++ xs �

(With P = λ y . z ≡ y .)

First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

++-comm : (xs ys : List A) �
xs ++ ys ≈bag ys ++ xs

++-comm xs ys = λ z .
z ∈ xs ++ ys ↔〈 Any-++ 〉
z ∈ xs + z ∈ ys ↔〈 ? 〉
z ∈ ys + z ∈ xs ↔〈 Any-++ 〉
z ∈ ys ++ xs �

(With P = λ y . z ≡ y .)

First lemma

Any-++ : (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

++-comm : (xs ys : List A) �
xs ++ ys ≈bag ys ++ xs

++-comm xs ys = λ z .
z ∈ xs ++ ys ↔〈 Any-++ 〉
z ∈ xs + z ∈ ys ↔〈 + commutative 〉
z ∈ ys + z ∈ xs ↔〈 Any-++ 〉
z ∈ ys ++ xs �

(With P = λ y . z ≡ y .)

Similar lemmas

Any P (concat xss) ↔ Any (Any P) xss
Any P (map f xs) ↔ Any (P ◦ f) xs
Any P (xs >>= f) ↔ Any (Any P ◦ f) xs

Proof of bind lemma:

Any P (xs >>= f) ↔〈 by definition 〉
Any P (concat (map f xs)) ↔〈 concat 〉
Any (Any P) (map f xs) ↔〈 map 〉
Any (Any P ◦ f) xs �

More lemmas

Any P xs ↔ ∃ z . P z × z ∈ xs

Any-cong : (∀ x . P x ↔ Q x) �
xs ≈bag ys �
Any P xs ↔ Any Q ys

Any-cong p eq =
Any P xs ↔〈 Any � ∃ 〉
(∃ z . P z × z ∈ xs) ↔〈 assumptions 〉
(∃ z . Q z × z ∈ ys) ↔〈 Any � ∃ 〉
Any Q ys �

Outline of proof

Bijectional reasoning combinators
Removing structure from Any ’s list argument
Left distributivity

Left distributivity

xs >>= (λ y . f y ++ g y) ≈bag
(xs >>= f) ++ (xs >>= g)

Left distributivity

z ∈ xs >>= (λ y . f y ++ g y) ↔〈 ? 〉
z ∈ (xs >>= f) ++ (xs >>= g) �

Left distributivity

Any (≡ z) (xs >>= (λ y . f y ++ g y)) ↔〈 ? 〉
z ∈ (xs >>= f) ++ (xs >>= g) �

Left distributivity

Any (≡ z) (xs >>= (λ y . f y ++ g y)) ↔〈 bind 〉
Any (Any (≡ z) ◦ (λ y . f y ++ g y)) xs ↔〈 ? 〉
z ∈ (xs >>= f) ++ (xs >>= g) �

Left distributivity

Any (≡ z) (xs >>= (λ y . f y ++ g y)) ↔〈 bind 〉
Any (λ y . z ∈ f y ++ g y) xs ↔〈 ? 〉
z ∈ (xs >>= f) ++ (xs >>= g) �

Left distributivity

Any (≡ z) (xs >>= (λ y . f y ++ g y)) ↔〈 bind 〉
Any (λ y . z ∈ f y ++ g y) xs ↔〈 ++ 〉
Any (λ y . z ∈ f y + z ∈ g y) xs ↔〈 ? 〉
z ∈ (xs >>= f) ++ (xs >>= g) �

Left distributivity

Any (≡ z) (xs >>= (λ y . f y ++ g y)) ↔〈 bind 〉
Any (λ y . z ∈ f y ++ g y) xs ↔〈 ++ 〉
Any (λ y . z ∈ f y + z ∈ g y) xs ↔〈 ? 〉
z ∈ xs >>= f + z ∈ xs >>= g ↔〈 ++ 〉
z ∈ (xs >>= f) ++ (xs >>= g) �

Left distributivity

Any (≡ z) (xs >>= (λ y . f y ++ g y)) ↔〈 bind 〉
Any (λ y . z ∈ f y ++ g y) xs ↔〈 ++ 〉
Any (λ y . z ∈ f y + z ∈ g y) xs ↔〈 ? 〉
Any (λ y . z ∈ f y) xs +
Any (λ y . z ∈ g y) xs ↔〈 bind 〉

z ∈ xs >>= f + z ∈ xs >>= g ↔〈 ++ 〉
z ∈ (xs >>= f) ++ (xs >>= g) �

Left distributivity

Any (λ y . z ∈ f y + z ∈ g y) xs ↔〈 ? 〉
Any (λ y . z ∈ f y) xs +
Any (λ y . z ∈ g y) xs �

Left distributivity

Any (λ y . P y + z ∈ g y) xs ↔〈 ? 〉
Any (λ y . P y) xs +

Any (λ y . z ∈ g y) xs �

Left distributivity

Any (λ y . P y + Q y) xs ↔〈 ? 〉
Any P xs + Any Q xs �

Left distributivity

Any (λ y . P y + Q y) xs ↔〈 Any � ∃ 〉
(∃ y . (P y + Q y) × y ∈ xs) ↔〈 ? 〉
Any P xs + Any Q xs �

Left distributivity

Any (λ y . P y + Q y) xs ↔〈 Any � ∃ 〉
(∃ y . (P y + Q y) × y ∈ xs) ↔〈 ? 〉
(∃ y . P y × y ∈ xs) +
(∃ y . Q y × y ∈ xs) ↔〈 Any � ∃ 〉

Any P xs + Any Q xs �

Left distributivity

Any (λ y . P y + Q y) xs ↔〈 Any � ∃ 〉
(∃ y . (P y + Q y) × y ∈ xs) ↔〈 × distrib. + 〉
(∃ y . P y × y ∈ xs +

Q y × y ∈ xs) ↔〈 ? 〉
(∃ y . P y × y ∈ xs) +
(∃ y . Q y × y ∈ xs) ↔〈 Any � ∃ 〉

Any P xs + Any Q xs �

Left distributivity

Any (λ y . P y + Q y) xs ↔〈 Any � ∃ 〉
(∃ y . (P y + Q y) × y ∈ xs) ↔〈 × distrib. + 〉
(∃ y . P y × y ∈ xs +

Q y × y ∈ xs) ↔〈 ∃ distrib. + 〉
(∃ y . P y × y ∈ xs) +
(∃ y . Q y × y ∈ xs) ↔〈 Any � ∃ 〉

Any P xs + Any Q xs �

Summary of proof

Membership defined in terms of Any ,

used Any lemmas,

Any P (xs ++ ys) ↔ Any P xs + Any P ys,
Any P (xs >>= f) ↔ Any (Any P ◦ f) xs,
Any P xs ↔ ∃ z . P z × z ∈ xs,

to reduce left distributivity to

(A + B) × C ↔ A × C + B × C ,
(∃ y . P y + Q y) ↔ (∃ y . P y) + (∃ y . Q y).

Variations

Variations

I Set equality:

xs ≈set ys = ∀ z . z ∈ xs ⇔ z ∈ ys

I Subset preorder:

xs .set ys = ∀ z . z ∈ xs � z ∈ ys

I Subbag preorder:

xs .bag ys = ∀ z . z ∈ xs � z ∈ ys

Variations

Other types: Change the definition of Any .

≈bag : List A � Tree A � Set
xs ≈bag t = ∀ z . z ∈List xs ↔ z ∈Tree t

Works for arbitrary unary containers
(Abbot et al.; compare Hoogendijk & de Moor).

Conclusions

I Bag equality.
I Bijectional reasoning.
I Arbitrary unary containers.
I Set equality and subset and subbag preorders.
I Mechanised proofs.

?
Conclusions

I Bag equality.
I Bijectional reasoning.
I Arbitrary unary containers.
I Set equality and subset and subbag preorders.
I Mechanised proofs.

Bonus slides

Swapping definition for streams

Naive definition (coinductive):

xs ≈bag xs
xs ++ x :: y :: ys ≈bag zs
xs ++ y :: x :: ys ≈bag zs

Problem: All streams equal.
Can build infinite derivation showing xs ≈bag zs.

Bag equality for streams

For streams Any can be defined inductively:

P x
Any P (x :: xs)

Any P xs
Any P (x :: xs)

∈ : A � Stream A � Set
x ∈ xs = Any (λ y . x ≡ y) xs

≈bag : Stream A � Stream A � Set
xs ≈bag ys = ∀ z . z ∈ xs ↔ z ∈ ys

The full code of Any-++

Any-++ : {A : Set} (P : A � Set) (xs ys : List A) �
Any P (xs ++ ys) ↔ Any P xs + Any P ys

Any-++ P [] ys =
Any P ys ↔〈 sym +-left-identity 〉
⊥ + Any P ys �

Any-++ P (x :: xs) ys =
P x + Any P (xs ++ ys) ↔〈 +-cong (P x �)

(Any-++ P xs ys) 〉
P x + (Any P xs + Any P ys) ↔〈 +-assoc 〉
(P x + Any P xs) + Any P ys �

Variations

Can define parametrised notion of equality:

 [] : Set → Kind → Set → Set
A [implication] B = A→ B
A [equivalence] B = A⇔ B
A [injection] B = A� B
A [bijection] B = A↔ B

∼[] : List A � Kind � List A � Set
xs ∼[k] ys = ∀ z . z ∈ xs [k] z ∈ ys

Variations

Can prove preservation properties uniformly:

>>=-cong : (xs ys : List A) (f g : A � List B) �
xs ∼[k] ys � (∀ x . f x ∼[k] g x) �
xs >>= f ∼[k] ys >>= g

>>=-cong xs ys f g eq1 eq2 = λ z .
z ∈ xs >>= f ↔〈 bind 〉
Any (λ x . z ∈ f x) xs 〈 Any-cong 〉
Any (λ x . z ∈ g x) ys ↔〈 bind 〉
z ∈ ys >>= g �

Parsing

Parser:

parse : Grammar A � String � List A

Semantics of grammar G :

Semantics G x s

A predicate stating when x is one possible result
of parsing s.

Parsing

Correctness of parser:

∀ s. parse G s ≈bag * x | Semantics G x s +

What does * ... + mean? How is ≈bag defined?

∀ s x . x ∈List parse G s ↔ Semantics G x s

Parsing

Correctness of parser:

∀ s. parse G s ≈bag * x | Semantics G x s +

What does * ... + mean? How is ≈bag defined?

∀ s x . x ∈List parse G s ↔ Semantics G x s

Compulsory message

The research leading to these results has received
funding from the European Research Council under
the European Union’s Seventh Framework
Programme (FP7/2007-2013)/ERC grant agreement
n◦ 247219.

This presentation does not necessarily reflect the
views of the ERC or the EU. The EU is not liable for
any use of the presented information.

	Introduction
	Definition
	Bijectional reasoning
	Bijectional reasoning combinators
	Removing structure from Any's list argument
	Left distributivity

	Variations
	Conclusions
	Appendix
	Bonus slides

