
Higher Lenses
Paolo Capriotti
TU Darmstadt

Nils Anders Danielsson
University of Gothenburg

Andrea Vezzosi
IT University Copenhagen

Abstract—We show that total, very well-behaved lenses are not
very well-behaved when treated proof-relevantly in the setting of
homotopy type theory/univalent foundations. In their place we
propose something more well-behaved: higher lenses. Such a lens
contains an equivalence between the lens’s source type and the
product of its view type and a remainder type, plus a function
from the remainder type to the propositional truncation of the
view type. It can equivalently be formulated as a getter function
and a proof that its family of fibres is coherently constant, i.e.
factors through propositional truncation.

We explore the properties of higher lenses. For instance, we
prove that higher lenses are equivalent to traditional ones for
types that satisfy the principle of uniqueness of identity proofs.
We also prove that higher lenses are n-truncated for n-truncated
types, using a coinductive characterisation of coherently constant
functions.

I. INTRODUCTION

Lenses were originally proposed [1] as a modular approach
to the view update problem [2], i.e., how to propagate changes
made to a view back into the original structure. Modularity is
achieved by combinators that build more complex lenses from
simpler ones. The subset of very well-behaved lenses has since
been adopted in functional programming as a way to simplify
reading and writing components of larger structures, especially
when deeply nested. Such lenses have been further extended
to a larger family called optics [3], but we will focus on the
original notion in this paper.

For a small example, consider a record type R1 containing a
field f1 : R2, where the record type R2 contains a field f2 : R3,
and the record type R3 contains a boolean field f3:

record R1 : Type where
field f1 : R2

record R2 : Type where
field f2 : R3

record R3 : Type where
field f3 : Bool

Given a value x : R1, how do you invert the boolean value
contained within it? Manual code can easily become somewhat
awkward:

record x { f1 = record (x .R1.f1) { f2 =
record (x .R1.f1 .R2.f2) { f3 =

not (x .R1.f1 .R2.f2 .R3.f3) } } }

Consider also the additional complication if the field f3 is a
finite map from strings to Bool , and you want to update the
boolean that the string "foo" maps to (if any).

With lenses these updates are easy. Assume that three
lenses are given, r 1 : Lens R1 R2, r 2 : Lens R2 R3 and

r 3 : Lens R3 Bool , corresponding to f1, f2 and f3, respec-
tively. Then one can perform the inversion of the boolean
contained in the record value x by composing the three lenses:
modify (r 3 ◦ r 2 ◦ r 1) not x.

Total, very well-behaved lenses consist of a getter and a
setter satisfying three laws [1]. These laws are often treated
proof-irrelevantly, but we are interested in the question of how
lenses behave in homotopy type theory/univalent foundations
[4], in which equality types can have a rich structure. For this
reason we interpret “a getter and a setter satisfying three laws”
in the following way, with the proofs as an explicit part of the
definition (“T” stands for “traditional”):

record LensT (A : Type a) (B : Type b) :
Type (a t b) where

field get : A → B
set : A → B → A
get-set : ∀ a b → get (set a b) ≡ b
set-get : ∀ a → set a (get a) ≡ a
set-set : ∀ a b1 b2 → set (set a b1) b2 ≡ set a b2

(1)

Here Type a is the type universe at level a in the universe
hierarchy, and a t b is the maximum of the levels a and b.

A lens (from now on we drop “total, very well-behaved”)
from A to B provides an updatable B-view of elements of
type A: the getter returns the view, and given a (possibly new)
value for the view one can update the value of type A using the
setter. The get-set law states that the setter actually updates
the view, the set-get law states that nothing happens if a value
is updated with its own view, and the set-set law states that if
one updates the view twice, then the first update has no effect.

We will see that in the setting of homotopy type theory this
type is not entirely well-behaved (§III):
• The type LensT A > of lenses to the unit type is not

always equivalent to the unit type, for instance when A
is the circle, S1.

• Lenses with equal setters have equal getters. However,
lenses with equal setters can still be distinct, even if the
view type is provably inhabited.

• Certain coherence laws do not in general hold for
traditional lenses. Here is a simple example, defined using
a canonical implementation of the “congruence” function
cong : (f : A → B) → x ≡ y → f x ≡ f y:

cong get (set-get a) ≡ get-set a (get a)

This is an equality between equality proofs. The two sides
have the same type, so it makes sense to ask whether they
are equal. The answer is not necessarily yes.978-1-6654-4895-6/21/$31.00 c©2021 IEEE

These problems are irrelevant if one restricts attention to
types that are sets, i.e. types A which satisfy the principle of
uniqueness of identity proofs ((x y : A) → (p q : x ≡ y) →
p ≡ q). Lenses are perhaps mainly used for “programs”, rather
than “proofs”. Thus one may wonder if types that are not
sets occur in programs. Let us give one small example. The
following type represents terms, and is parametrised by the
terms’ types:

data Tm (A : Type) : Type1 where
literal : A → Tm A
map : {B : Type} →

Tm (B → A) → Tm B → Tm A

(2)

(We use the notation {B : Type} for implicit arguments, that do
not need to be given explicitly if they can be inferred.) This kind
of type can be used to represent a domain-specific embedded
language, and one can prove that if A is inhabited, then Tm A
is not a set. One may object that the map constructor’s type
argument is unrestricted. However, we get the same result if
we restrict it:

map : {B : Type} → Is-set B →
Tm (B → A) → Tm B → Tm A

(3)

As an alternative to traditional lenses we present higher
lenses, which do not have the problems listed above:
• Higher lenses can be defined in several equivalent ways,

one of which is small (§V, §XII and §XIII).
• Higher lenses satisfy coherence laws like the one above

(§VI), and in fact infinite towers of coherence conditions,
expressed coinductively (§XIII).

• The type of higher lenses from A to the unit type is
equivalent to the unit type. Higher lenses also satisfy
other equivalences (§VII).

• Homotopy levels, or h-levels, is a concept which is used to
classify types (see Section II for a brief introduction). If
there is a lens from A to B, where A is inhabited and has
h-level n, then B also has h-level n (§IX). Furthermore
the h-level of the type of higher lenses from A to B is n
if A has positive h-level n (§XV).

• Traditional and higher lenses from sets are equivalent,
with an equivalence that preserves getters and setters (§X),
and they form equal categories (§XI). However, whereas
certain “naive” categories of higher lenses between types
are univalent, this is not the case for certain naive
categories of traditional lenses (§XI).

• Higher lenses with equal setters are equal, given the
assumption that the view type C of the resulting lens
is stable in the sense that ‖ C ‖ implies C (§VIII).
Here ‖ C ‖ is the propositional truncation of C, roughly
speaking the quotient with the trivial relation [4]. Note
that both inhabited types and empty types are stable.

• Composition is unique for stable view types, if the setter is
required to be implemented in the canonical way (§XI). We
present two implementations of composition: one works
for lenses for which the universe of the source type is at
least as large as the universe of the view type (§XI), and

the other is unrestricted (§XIV). The first implementation
is associative, with the identity lens as a left and right
unit. For the second this holds when the view type of the
resulting lens is stable.

The results have been formalised in Cubical Agda [5], and
the code is available to download [6]. Everything with an
“equation number” has a counterpart in the formalisation, and
quite a few other things mentioned in the text have also been
formalised. (Note that there are small differences between the
code and this text.)

There are other “traditional” representations of very well-
behaved lenses, notably the Van Laarhoven representation [7].
We have chosen to focus mostly on LensT, but also briefly
discuss a representation based on bijections [8], see Section IV.
(Related work is discussed further in Section XVI.) We do not
focus on questions of efficiency, but note that we have started
looking into ensuring that “proofs” are not present at run-time
by using explicit erasure annotations [9], [10].

We would like to point out that lenses of the kind discussed
above do not work very well for dependent record types.
One problem is that if one (say) modifies the set field
of a traditional lens, then one might have to also modify
the proofs of the lens laws. We prove that it is not in
general possible to define a lens for the first projection
from a Σ-type (§IX). Another problem is that the lens types
discussed above have types like Type → Type → Type, not
(A : Type) → (A → Type) → Type . There is some prelimi-
nary work on dependent lenses [11], with type signatures of
the latter kind (modulo size issues). We hope that the work
we present here can inform further work on dependent lenses.

II. HOMOTOPY TYPE THEORY

This section contains a brief introduction to some concepts
from homotopy type theory that are relevant for this work.

We use ≡ to denote the equality (or identity) type, refl for
the canonical proof of reflexivity of type (x : A) → x ≡ x,
and we use a canonical implementation of the “congruence”
function cong , mentioned above, of type (f : A → B) →
x ≡ y → f x ≡ f y.

Our results have been formalised in Cubical Agda [5], in
which equality of functions is extensional, and the univalence
“axiom” can be proved. A consequence of the univalence axiom
is that equivalent types (in the same universe) are equal. We
use A ' B to denote that A and B are equivalent, and define
the concept in the following way [4]:

Is-equivalence : {A : Type a} {B : Type b} →
(A → B) → Type (a t b)

Is-equivalence {A = A} {B = B} f =
(f −1 : B → A) ×
(f -f −1 : ∀ x → f (f −1 x) ≡ x) ×
(f −1-f : ∀ x → f −1 (f x) ≡ x) ×
∀ x → cong f (f −1-f x) ≡ f -f −1 (f x)

(4)

' : Type a → Type b → Type (a t b)
A ' B = (f : A → B) × Is-equivalence f

(5)

Here the syntax {A = X} is used to bind the variable X to
the implicit argument A, and (x : A) × P x is a Σ-type: a
dependent pair type where the type of the second component
can depend on the value of the first component. We use the
notation to eq for the left-to-right direction of the equivalence
eq (“f”), and from eq for the other direction (“f −1”). The proof
showing that to eq is a left inverse of from eq (“f -f −1”) is
denoted by to-from eq , and the right inverse proof (“f −1-f ”)
by from-to eq .

Note the last component of Is-equivalence:

∀ x → cong (to eq) (from-to eq x) ≡
to-from eq (to eq x)

(6)

This coherence property, which relates two proofs of the same
equality type, is not present in usual definitions of what it
means for a function to be bijective. If there is a bijection (or
a “function with a quasi-inverse”) between two types, then one
can prove that the types are equivalent [4]. However, the type
of bijections between two types is not in general equivalent to
the type of equivalences between those types [4]. Equivalences
are better behaved, because Is-equivalence f is necessarily a
proposition, meaning that all inhabitants are equal [4].

The concept of a “proposition” is part of the hierarchy of
homotopy levels, or h-levels, which can be used to classify
types. We use the following definition of h-levels (note that
the term n-type used in the HoTT book [4] corresponds to
types with h-level 2 + n):

H-level : N → Type a → Type a
H-level zero A = Contractible A
H-level (suc zero) A = (x y : A) → x ≡ y
H-level (suc (suc n)) A =
(x y : A) → H-level (suc n) (x ≡ y)

(7)

A type has h-level 0 if it is contractible, which is equivalent
to stating that the type is equivalent to the unit type:

Contractible : Type a → Type a
Contractible A = (x : A) × ((y : A) → x ≡ y)

(8)

Types with h-level 1 are called propositions (Is-proposition =
H-level 1). A type has h-level 2 if all of its equality types
are propositions. In this case we call the type a set (Is-set =
H-level 2). Every proposition is a set, because if a type has
h-level n, then it also has all higher h-levels [4].

Cubical Agda comes with support for higher inductive types
(HITs). We use a HIT called the circle [4]:

data S1 : Type where
base : S1

loop : base ≡ base
(9)

HITs allow you to give not just ordinary (“point”) constructors,
but also higher constructors that can affect the meaning of
equality: to a first approximation one can think of this as a
means to define quotient types. The circle is a type with a
point constructor base and a higher constructor loop that states
that base is equal to itself. Using loop one can construct a
function that is distinct from refl : (x : S1) → x ≡ x:

not-refl : (x : S1) → x ≡ x (10)

In fact, the type base ≡ base is equivalent to the set of integers
Z [4], [12]. Thus the circle is not a set.

We also use some truncation operators. The propositional
truncation operator ‖ ‖ turns any type A into a proposition
which is inhabited if A is and which is not inhabited if A
is not inhabited. The one-step truncation [13] is discussed in
Section XIII. Both can be defined as HITs.

III. TRADITIONAL LENSES

Let us now investigate traditional lenses in a higher setting.
Using the first two lens laws one can prove that lenses with

equal setters have equal getters. However, in the proof-relevant
setting of this text there are lenses with equal setters that are not
equal. We use the circle (9) to construct the counterexample:

l : LensT S1 S1

l = record {
get = λ x → x; set = λ x → x;
get-set = λ → not-refl ; set-get = refl ;
set-set = λ → not-refl }

(11)

If not-refl (10) is replaced by refl in the definition of l , then
we get the identity lens for S1. We can prove that the lens l
fails to satisfy the coherence law given in the introduction:

¬ ((x : S1) → cong (get l) (set-get l x) ≡
get-set l x (get l x))

(12)

We have the following sequence of implications (where ⊥ :
Type is an empty type; note that ¬ A is defined to be A → ⊥):

((x : S1) → cong (get l) (set-get l x) ≡
get-set l x (get l x)) →

((x : S1) → refl x ≡ not-refl x) →
⊥

The first step uses the fact that cong f (refl x) is equal to
refl (f x). Because the identity lens satisfies this coherence
law we get that the two lenses are not equal.

Using similar steps one can also prove that the lens l fails
to satisfy another coherence law:

¬ ((x y z : S1) → cong (get l) (set-set l x y z) ≡
trans (get-set l (set l x y) z)
(sym (get-set l x z)))

(13)

Here sym and trans are the canonical proofs showing that
equality is symmetric and transitive, respectively.

We have proved that if the view type is a proposition, then
LensT A B is equivalent to the Cartesian product of the type
of the getter and the type of the reflexivity proof for A:

Is-proposition B →
LensT A B ' (A → B) × ((a : A) → a ≡ a)

(14)

The proof is omitted due to lack of space. As noted above (§II)
the type (a : A) → a ≡ a is not a proposition when A is S1.
Thus, if we let A be the circle and B be the unit type, then
we get a result mentioned in the introduction: LensT A > is
not necessarily equivalent to the unit type.

We end this section by discussing two equivalences between
a lens’s source type and the Cartesian product of some type
based on the lens and the lens’s view type. These equivalences
are stated using the following proof-relevant variant of the
notion of a preimage of a function:
−1 : {A : Type a} {B : Type b} →

(A → B) → B → Type (a t b)
f −1 y = ∃ x × f x ≡ y

(15)

(We use the notation ∃ x × P x for Σ-types when we do not
want to give the type of the domain.) In the setting of homotopy
type theory f −1 y can be called the fibre of f over y [4].

The first equivalence is based on an isomorphism given by
Johnson et al. [14, Corollary 13]:

Is-set B → (l : LensT A B) (b : B) →
A ' (get l −1 b × B)

(16)

Note that we require the view type to be a set. For higher lenses
we can prove a corresponding equivalence without making this
requirement (see Lemma 37). We can also do this for traditional
lenses that satisfy the two coherence laws that were discussed
above (given in negated form for a particular lens in Lemmas 12
and 13).

The second equivalence is based on an isomorphism given
by Pierce and Schmitt [15, Theorem 2.3.9]:

Is-set A → (l : LensT A B) →
A ' ((f : B → A) × ‖ set l −1 f ‖) × B

(17)

Here we instead assume that the source type A is a set. Note
the use of the propositional truncation operator ‖ ‖. We will
use this equivalence to translate traditional lenses where the
source type is a set to higher lenses (§X). The right-to-left
direction of the equivalence just applies the function to the
value of type B. The other direction maps a value a to the
function set l a, a proof of ‖ set l −1 set l a ‖, and the value
get l a. The two directions can be proved to be inverses of
each other using the lens laws, the assumption that A is a
set, and a variant of Lemma 48 for traditional lenses. The
equivalence does not necessarily hold if A is not a set (see the
accompanying code for details).

IV. LENSES BASED ON BIJECTIONS

Very well-behaved lenses from A to B are sometimes defined
to be bijections between A and the Cartesian product of B and
some new type [8]. In our setting with different type universes
one might formulate this in the following way, where ↔
stands for the type of bijections, or functions with quasi-inverses
(and lsuc is a successor function for levels):

LensB : Type a → Type b → Type (lsuc (a t b))
LensB {a = a} {b = b} A B =
(R : Type (a t b)) × (A ↔ R × B)

(18)

However, this type is somewhat ill-behaved, even if the
source and view types are sets. When the source and view types
are both empty we get that the definition above is equivalent to
Type (the lowest universe): LensB ⊥ ⊥ ' Type. For a well-
behaved notion of lens one might expect that there should be

no choice in how to define a lens from the empty type to the
empty type. This is the fact for traditional lenses (it follows
from Lemma 14).

V. HIGHER LENSES

We obtain our first definition of higher lenses by tweaking
the definition from the previous section. First we note that
the type of equivalences is better behaved than the type of
functions with quasi-inverses, as discussed in Section II. We
also note that when the view type is empty, then we would like
to force the “remainder type” R to be empty. We can do this
by requiring there to be a function from the remainder type to
the propositional truncation of the view type. We end up with
the following definition, where “E” stands for “equivalence”:

record LensE (A : Type a) (B : Type b) :
Type (lsuc (a t b)) where

field R : Type (a t b)
equiv : A ' R × B
inhabited : R → ‖ B ‖

(19)

The final field is not much of a restriction in practice: given
an equivalence between A and R × B, where R lives in the
“right” universe, we can construct a lens from A to B:

{A : Type a} {B : Type b} {R : Type (a t b)} →
A ' R × B → LensE A B

(20)

We let the remainder type of the lens be R × ‖ B ‖, which
makes it easy to implement the inhabited field, and define the
equiv field in the following way:

A ' R × B ' R × (‖ B ‖ × B) '
(R × ‖ B ‖) × B

The first step uses the supplied equivalence, the final step makes
use of the fact that × is associative up to ' , and the second
step uses the following equivalence: ‖ A ‖ × A ' A.

Given a higher lens it is easy to define a getter and a
setter, following Van Laarhoven [8]. We also define a function
from the source type to the remainder type (proj1 is the first
projection, and proj2 the second):

get : A → B
get a = proj2 (to equiv a)

(21)

remainder : A → R
remainder a = proj1 (to equiv a)

(22)

set : A → B → A
set a b = from equiv (remainder a , b)

(23)

The setter leaves the “remainder part” of the source value
unchanged, but it replaces the “view part” with the new view
value. Note that the inhabited field could equivalently have
stated that the remainder function is surjective. (For simplicity
we do not include the lens as an argument of the definitions
above. After discussing lens laws below we will write things
like get l instead of get .)

Following Van Laarhoven [8] we can also prove the lens
laws. Let us start with the get-set law. If we unfold the

definitions of get and set , then we see that we should prove
that proj2 (to equiv (from equiv (remainder a , b))) is equal
to b, which is equal to proj2 (remainder a , b). This follows
because equiv is an equivalence:

get-set : ∀ a b → get (set a b) ≡ b
get-set a b =

cong proj2 (to-from equiv (remainder a , b))
(24)

A similar argument shows that the setter leaves the remainder
unchanged:

remainder -set :
∀ a b → remainder (set a b) ≡ remainder a

remainder -set a b =
cong proj1 (to-from equiv (remainder a , b))

(25)

For the set-get law we should prove that the application
from equiv (to equiv a) is equal to a. This also follows
because equiv is an equivalence:

set-get : ∀ a → set a (get a) ≡ a
set-get a = from-to equiv a

(26)

Finally, for the set-set law we should prove that the
application from equiv (remainder (set a b1) , b2) is equal
to from equiv (remainder a , b2). This follows from the
remainder -set law:

set-set : ∀ a b1 b2 → set (set a b1) b2 ≡ set a b2
set-set a b1 b2 =

cong (λ r → from equiv (r , b2))
(remainder -set a b1)

(27)

With the lens laws proved we know that every higher lens
can be translated to a traditional lens with the same getter and
setter. We do not know if there is always such a translation in
the other direction, but there is one when the source type is
a set (§X). If the view type is stable, then a traditional lens
that satisfies the two coherence laws discussed in the following
section can also be translated to a higher lens with the same
getter and setter (see the accompanying code for details).

VI. COHERENCE LAWS

Higher lenses satisfy some coherence laws that do not nec-
essarily hold for traditional lenses (as discussed in Section III).
First consider the get-set-get law:

cong get (set-get a) ≡ get-set a (get a) (28)

We can prove this law in the following way:

cong get (set-get a) ≡
cong (proj2 ◦ to equiv) (from-to equiv a) ≡
cong proj2 (cong (to equiv) (from-to equiv a)) ≡
cong proj2 (to-from equiv (to equiv a)) ≡
get-set a (get a)

The first and last steps hold by definition. The second step
uses the fact that cong satisfies some functor-like laws. Finally
the third step uses Lemma 6.

We can also prove the other coherence law mentioned above,
get-set-set :

cong get (set-set a b1 b2) ≡
trans (get-set (set a b1) b2) (sym (get-set a b2))

(29)

Due to lack of space the proof is omitted.
One might wonder how far one can take this: do all

conceivable coherence laws of this kind hold for higher lenses?
We do not have an answer to this question. Instead we explore
other properties of higher lenses, and return to questions about
coherence below.

VII. SOME EQUIVALENCES

Let us now discuss some equivalences satisfied by LensE.
We begin by proving that if the view type is a proposition,
then LensE A B is equivalent to the type of its getter:

Is-proposition B → LensE A B ' (A → B) (30)

Note the simplification compared to the corresponding result
for traditional lenses (14). We can build up the equivalence in
the following way:

LensE A B ' (a)
(∃ R × (A ' R × B) × (R → ‖ B ‖)) ' (b)
(∃ R × (A ' R × B) × (R → B)) ' (c)
(∃ R × (A ' R) × (R → B)) ' (d)
(∃ R × (A ' R) × (A → B)) ' (e)
(∃ R × (A ' R)) × (A → B) ' (f)
(A → B)

Step a uses the fact that the record type LensE A B can be
expressed as a nested Σ-type. Step b uses the assumption
that B is a proposition. Step c uses the fact that inhabited
propositions are contractible, along with the assumptions that
there is a function from R to B and a value in R (one can prove
that R × B is equivalent to R × C by proving R → B ' C).
Step d uses the equivalence between A and R. Step e uses the
fact that the Σ type former is “associative” up to ' . Finally
step f uses the fact that types of the form (x : A) × x ≡ y,
singleton types, are contractible [4], and in the presence of
univalence equality of types is equivalent to equivalence of
types.

As a consequence of Lemma 30 we get the following results
(the second one holds also for traditional lenses):

LensE A > ' > (31)
LensE A ⊥ ' ¬ A (32)

We can also prove the following lemmas (both of which also
hold for traditional lenses):

LensE > B ' Contractible B (33)
LensE ⊥ B ' > (34)

The getter of a lens is an equivalence if and only if the
inhabited field is:

Is-equivalence (get l) '
Is-equivalence (inhabited l)

(35)

We prove this in the following way (here B is the view type
of l):

Is-equivalence (get l) '
Is-equivalence (proj2 : R l × B → B)) '
Is-equivalence (inhabited l)

The first step uses the 2-out-of-3 property [4]: if two of the
functions f, g and f ◦ g are equivalences, then the third one
is also an equivalence. In this case one of the equivalences is
to (equiv l). The second step uses a general property that can
be proved by giving functions in both directions.

The type of equivalences between A and B can be expressed
in terms of lenses for which the getter is an equivalence:

(A ' B) '
(l : LensE A B) × Is-equivalence (get l)

(36)

We can prove this by the following chain of equivalences:

((l : LensE A B) × Is-equivalence (get l)) '
((l : LensE A B) × Is-equivalence (inhabited l)) '
(((R ,) : ∃ R × (R ' ‖ B ‖)) × (A ' R × B)) '
A ' ‖ B ‖ × B '
A ' B

The first step uses Lemma 35, the second step rearranges the
type, the third step removes a singleton type, and finally the
last step uses the fact that ‖ B ‖ × B is equivalent to B.
Our implementation of the right-to-left direction of Lemma 36
returns the getter of the lens and some proof (this holds by
definition). Lemma 36 does not in general hold for traditional
lenses (see the accompanying code for details).

We can also prove the following variant of Lemma 16,
without assuming that the view type is a set:

(l : LensE A B) (b : B) → R l ' get l −1 b (37)

We have implemented the equivalence in the following way:
The right-to-left direction throws away the equality proof and
applies the remainder function: λ (a ,) → remainder l a.
The left-to-right direction maps r to from (equiv l) (r , b),
along with the following proof:

get l (from (equiv l) (r , b)) ≡
proj2 (to (equiv l) (from (equiv l) (r , b))) ≡
b

The first step holds by definition, and the second step uses
to-from (equiv l). We do not include our proofs showing that
these two functions are inverses of each other, because one of
them is fairly long. See the accompanying code for details.

VIII. EQUALITY OF LENSES WITH EQUAL SETTERS

When proving that two higher lenses are equal it sometimes
suffices to prove that the setters are equal. This does not hold
unconditionally, but the results we present below cover quite a
few cases. As an example of how these results can be used,
see Lemma 60, which states that every composition operator
for which set is implemented in the canonical way is equal,
assuming that the view type of the resulting lenses is stable.

We begin by stating a lemma that characterises equality of
lenses:

l1 ≡ l2 '
(eq : R l1 ' R l2) ×
∀ a → (to eq (remainder l1 a) , get l1 a) ≡

to (equiv l2) a

(38)

This result can be proved using univalence. As an aside, if
the view type is inhabited, then we can use Lemma 37 to
characterise equality of lenses without referring to remainder
types:

(l1 l2 : LensE A B) (b : B) →
l1 ≡ l2 '
(eq : get l1

−1 b ' get l2
−1 b) ×

(∀ a → to eq (set l1 a b , get-set l1 a b) ≡
(set l2 a b , get-set l2 a b)) ×

(∀ a → get l1 a ≡ get l2 a)

(39)

In the case where the view type is inhabited it is easy to
prove that lenses with equal setters are equal:

(l1 l2 : LensE A B) → B → set l1 ≡ set l2 →
l1 ≡ l2

(40)

We use Lemma 38. Given a value b : B we can prove that the
two lenses’ remainder types are equivalent:

R l1 ' get l1
−1 b ' get l2

−1 b ' R l2

The first and last steps use Lemma 37. The second step uses the
fact that if the setters are equal, then the getters are equal (as
mentioned above this follows from the lens laws). It remains to
establish the equality in the statement of Lemma 38, but with
our implementation of the equivalence between the remainder
types this turns out to be straightforward.

What can we do if we do not have a witness showing that the
view type is inhabited? We have proved the following results
(for the proofs, see the accompanying code):

(l1 l2 : LensE A B) → (R l1 → ‖ B ‖ → B) →
set l1 ≡ set l2 → l1 ≡ l2

(41)

(l1 l2 : LensE A B) → Is-set (R l2) →
set l1 ≡ set l2 → l1 ≡ l2

(42)

Note that B is stable (‖ B ‖ → B) both when B is inhabited
and when it is empty.

However, one can prove a negation to the statement that,
for all types A and B in a given universe Type a, all lenses
l1 and l2 from A to B with equal setters are equal:

¬ ((A B : Type a) (l1 l2 : LensE A B) →
set l1 ≡ set l2 → l1 ≡ l2)

(43)

This follows from the following result (the proof is omitted):

{A B C : Type a} →
((l1 l2 : LensE (A × C) C) →

set l1 ≡ set l2 → l1 ≡ l2) →
(f : C → A ' B) → Constant f → CC f

(44)

Constant f means that f is weakly constant, and CC f means
that f is coherently or conditionally constant:

Constant : {A : Type a} {B : Type b} →
(A → B) → Type (a t b)

Constant f = ∀ x y → f x ≡ f y
(45)

CC : {A : Type a} {B : Type b} →
(A → B) → Type (a t b)

CC {A = A} {B = B} f =
(g : ‖ A ‖ → B) × f ≡ g ◦ | |

(46)

Here | | is a constructor of the propositional truncation operator,
of type B → ‖ B ‖. Every coherently constant function is
weakly constant, and Kraus et al. [16] have proved that every
weakly constant function with a stable domain is coherently
constant. We can conclude the proof of Lemma 43 using
the following result, which was proved by Christian Sattler
(personal communication), building on work by Shulman [17]:

¬ ((A B : Type a) → ‖ A ‖ →
(f : A → B ' B) → Constant f → CC f)

(47)

One can prove Lemma 47 by letting “B” be the Eilenberg-
MacLane space K(Z/2Z, 1) [18] (suitably lifted).

Lemma 42 applies to lenses for which the remainder type is
a set. One might wonder how the h-level of the remainder type
relates to the h-level of the source type. Let us now consider
questions of this kind.

IX. HOMOTOPY LEVELS

If there is a lens from A to B, and A is an inhabited type with
h-level n, then B has h-level n (this holds also for traditional
lenses):

LensE A B → A → H-level n A → H-level n B (48)

To prove this we can make use of the fact that if there is a split
surjection (a function with a right inverse) from A to B, and
A has h-level n, then B has h-level n [4]. The lens’s getter
gives us a function from A to B, the setter applied to the given
element of A gives us a function in the other direction, and
due to the get-set law the second function is a right inverse
of the first one. Note that this result does not necessarily hold
when A is empty: there is a lens from the empty type to the
booleans, and the empty type is a proposition, but the type of
booleans is not.

As a corollary of Lemma 48 we get that the view type of a
lens with a contractible source type is contractible:

LensE A B → Contractible A → Contractible B (49)

This follows because contractible types are inhabited. Using
this result we can prove that there is, in general, no lens from
(x : A) × P x to A:

¬ LensE ((b : Bool) × b ≡ true) Bool (50)

(Again this holds also for traditional lenses.) This follows be-
cause the singleton type (b : Bool) × b ≡ true is contractible,
but the type of booleans is not.

We can also prove that if the source type has h-level n, then
the remainder type also has this h-level:

(l : LensE A B) →
H-level n A → H-level n (R l)

(51)

If A has h-level n, then the equivalent type R l × B also has
this h-level. We also have the fact that if R l × B has h-level n,

then R l has this h-level, as long as there is a function from
R l to ‖ B ‖.

If a lens’s getter is an equivalence, then the remainder type
is propositional:

Is-equivalence (get l) → Is-proposition (R l) (52)

If the getter is an equivalence, then Lemma 35 implies that
the remainder type is equivalent to the propositional truncation
of the view type, and thus the remainder type is a proposition.

We also have the following two properties, which follow
from Lemma 30:

Contractible B → Contractible (LensE A B) (53)
Is-proposition B → Is-proposition (LensE A B) (54)

Our main result about h-levels is deferred to Section XV,
where we use a different representation of lenses to prove that,
if A has positive h-level n, then the type of higher lenses from
A to B has h-level n.

X. HIGHER AND TRADITIONAL LENSES ARE EQUIVALENT
FOR SETS

Let us now investigate under what circumstances LensE A B
and LensT A B are equivalent.

First note that in the general case there might not even be a
split surjection from LensE A B to LensT A B:

¬ (LensE S1 > � LensT S1 >) (55)

This follows because Is-proposition respects split surjections:
LensE S1 > is a proposition, but LensT S1 > is not.

However, when the source type is a set there is an equiva-
lence:

Is-set A → LensE A B ' LensT A B (56)

The forward direction of the equivalence returns a lens
where the getter, the setter and the lens laws are defined
as in Section V. This direction does not make use of the
assumption that A is a set. However, the other direction does:
we use Lemma 17 to construct an equivalence between A
and ((f : B → A) × ‖ set l −1 f ‖) × B, and turn this into
a higher lens using Lemma 20.

Our implementations of both translations preserve getters and
setters by definition (see the accompanying code for details),
so one can prove that the round-trip from a traditional lens to
a higher one and back yields the original lens by proving that
the proofs of the lens laws are pointwise equal. The set-get
and set-set laws return equalities between values of type A,
and because A is a set these equality types are propositions.
The get-set law returns equalities between values of type B.
Because we have a lens from A to B we get by Lemma 48
(for traditional lenses) that B is a set whenever we have a
witness showing that A is inhabited, and we can use the first
argument of the get-set law as the witness.

Our proof of the other round-trip property is more com-
plicated. We use Lemma 38, so we start by proving that
the remainder type of the resulting lens is equivalent to the
remainder type of the original one:

((f : B → A) × ‖ set l −1 f ‖) × ‖ B ‖ '
(‖ B ‖ → R l) × ‖ B ‖ '
R l

The last step is proved by defining functions in both directions
(one uses the inhabited field of l) and proving that they
are inverses of each other. The first step uses the following
equivalence, which is proved under the assumption that ‖ B ‖
is inhabited:

((f : B → A) × ‖ set l −1 f ‖) ' (a)
((f : B → A) × ∀ b b′ → set l (f b) b′ ≡ f b′) ' (b)
((f : B → R l × B) ×
∀ b b′ → (proj1 (f b) , b′) ≡ f b′) ' (c)

(((f , g) : (B → R l) × (B → B)) ×
∀ b b′ → f b ≡ f b′ × b′ ≡ g b′) ' (d)

((f : B → R l) × Constant f) ×
((g : B → B) × (B → ∀ b → b ≡ g b)) ' (e)

((f : B → R l) × Constant f) ×
((g : B → B) × ∀ b → b ≡ g b) ' (f)

((f : B → R l) × Constant f) ×
((g : B → B) × id ≡ g) ' (g)

((f : B → R l) × Constant f) ' (h)
(‖ B ‖ → R l)

Constant is defined above (45). Step a is proved by defining
functions in both directions (the right-to-left direction uses the
assumption that ‖ B ‖ is inhabited) and proving that they are
inverses of each other. Step b uses the equivalence equiv l .
Steps c and d rearrange the types. Step e drops an argument.
This is possible because there is another argument of the same
type and the result type is a proposition (because A is a set
and there is a higher lens from A to B Lemma 48 implies
that B is a set if A is inhabited, and we can assume that there
is a function from B to R l as well as a value of type B).
Step f rearranges types again, and step g drops a contractible
type. Finally step h uses the fact that the type of functions
from ‖ B ‖ to R l is equivalent to the type of weakly constant
functions from ‖ B ‖ to R l if R l is a set [19], and R l is a
set because A is a set (51). Our use of Lemma 38 requires
that we also prove an equality, but with our implementation
of the equivalence that is easy.

XI. IDENTITY AND COMPOSITION

It is straightforward to define an identity lens:

id : LensE A A (57)

Furthermore any two lenses from A to A with the identity
function id as their getter are equal:

(l1 l2 : LensE A A) →
get l1 ≡ id → get l2 ≡ id → l1 ≡ l2

(58)

This follows from Lemma 36 (with its stated computational
behaviour).

We can also define a composition operator. For simplicity
we give it for types in the same universe:

◦ : {A B C : Type a} →
LensE B C → LensE A B → LensE A C

(59)

We let the remainder type of l1 ◦ l2 be R l2 × R l1. It is easy
to define the inhabited field. We define the equiv field in the
following way:

A ' R l2 × B ' R l2 × (R l1 × C) '
(R l2 × R l1) × C

The first two steps use the equiv fields of the two lenses, and
the last step uses associativity of × .

Our implementation of composition also works for lenses
for which the universe of the source type is at least as large as
the universe of the view type. However, in the case where A
and C belong to a smaller universe and B to a larger one we
do not know how to make this approach work. The problem is
that R l2 × R l1 is too large. Below we use coinductive higher
lenses to define a composition operator that works for types in
arbitrary universes (95). (One might wonder if there are any
lenses from A to B where B is in a larger universe than A. If
A and B are equivalent, then one can construct such a lens.)

It is easy to prove that composition is associative, with id
as a left and right unit. Our proofs use Lemma 38. As an aside
we note that analogous properties hold unconditionally for at
least one implementation of composition for traditional lenses.
See the accompanying code for details.

When the view type of the resulting lenses is stable every
composition operator for which set is implemented in the
canonical way is equal:

(‖ C ‖ → C) →
(c1 c2 : LensE B C → LensE A B → LensE A C) →
(∀ l1 l2 a c → set (c1 l1 l2) a c ≡

set l2 a (set l1 (get l2 a) c)) →
(∀ l1 l2 a c → set (c2 l1 l2) a c ≡

set l2 a (set l1 (get l2 a) c)) →
c1 ≡ c2

(60)

This follows from Lemma 41. One can check that the
composition operator defined above produces lenses for which
set satisfies this kind of equality.

A lens (between types in the same universe) is bi-invertible
if it has a left inverse, and also a right inverse:

Is-bi -invertible : {A B : Type a} →
LensE A B → Type (lsuc a)

Is-bi -invertible l =
(∃ l ′ × l ′ ◦ l ≡ id) × (∃ l ′ × l ◦ l ′ ≡ id)

(61)

We have proved the following two equivalences:

(A ' B) ' ((l : LensE A B) × Is-bi -invertible l) (62)
Is-equivalence (get l) ' Is-bi -invertible l (63)

The first of the equivalences maps a bi-invertible lens to an
equivalence for which the forward direction is the lens’s getter.
For traditional lenses—with certain definitions of identity and
composition—we have proved an analogue of Lemma 63.
However, Lemma 62 does not in general hold for traditional
lenses, although there is always a split surjection from the

right-hand side to the left-hand side. See the accompanying
code for details.

Using the implementations of identity and composition
discussed above we have defined univalent categories [4] of
both higher and traditional lenses between sets with a fixed
universe level. For each universe level the category of higher
lenses is equal to a lifted variant of the category of traditional
ones (note that LensE A B is large). As part of the proof of this
fact we established that composition of traditional lenses from
sets (where all source and view types have the same universe
level) can be expressed in terms of composition of higher lenses
and the equivalence between higher and traditional lenses (56).
Again, see the accompanying code for details.

We conclude this section with some results that are based
on questions asked by an anonymous reviewer. Let us use the
term naive category for the concept that we obtain if we take
the definition of a (not necessarily univalent) precategory [4]
and drop the requirement that the morphism types must be
sets. Let us also call such a category univalent if the canonical
function from “A is equal to B” to “there is a bi-invertible
morphism from A to B” is an equivalence for all objects A
and B. We have proved that, for each universe level a, our
definition of a naive category of higher lenses between types
in Type a is univalent (this follows from Lemma 62), whereas
our definition of a naive category of traditional lenses between
types in Type a is not univalent. The latter fact can be used
to prove that Lemmas 36 and 62 do not in general hold for
traditional lenses. See the accompanying code for details.

XII. COHERENTLY CONSTANT FAMILIES OF FIBRES

In this section we present another variant of higher lenses,
consisting of a getter and a proof that the family of fibres of
the getter is coherently constant. “F” stands for “fibres”:

LensF : Type a → Type b → Type (lsuc (a t b))
LensF A B = (get : A → B) × CC (get −1)

(64)

This type is used to prove that LensE is equivalent to LensC,
which is defined below (90). LensC is defined in the same way
as LensF, but with CC S (88) instead of CC (46).

The type CC (get −1) in the definition of LensF is equal
to (G : ‖ B ‖ → Type (a t b)) × (get −1) ≡ G ◦ | |. Be-
cause coherently constant functions are weakly constant we
get that the family of fibres of get is weakly constant:

get−1-constant :
(b1 b2 : B) → get −1 b1 ' get −1 b2

(65)

Using get−1-constant we can define a setter:

set : A → B → A
set a b = proj1 (to (get−1-constant (get a) b)

(a , refl (get a)))
(66)

We do not proceed to prove the lens laws, instead we
prove that there is an equivalence between LensF A B and
LensE A B that preserves getters and setters:

LensF A B ' LensE A B (67)

The right-to-left direction of the equivalence takes a lens l
to a triple (get l , (λ → R l) , eq), where the equality eq
is defined using univalence and Lemma 37. The left-to-right
direction takes a triple (get , G , eq) to a lens where the R
field is (b : ‖ B ‖) × G b. This makes it easy to define the
inhabited field. The equiv field is defined via the following
chain of equivalences:

A ' (a)
((a : A) × (b : B) × get a ≡ b) ' (b)
((b : B) × get −1 b) ' (c)
((b : B) × G | b |) ' (d)
(((b ,) : ‖ B ‖ × B) × G b) ' (e)
((b : ‖ B ‖) × G b) × B

Step a introduces a singleton type, and step b rearranges things
a little. Step c uses the equality eq . Step d uses the fact that
‖ B ‖ × B is equivalent to B, and step e rearranges things a
little again. See the accompanying code for proofs showing that
the left-to-right and right-to-left directions of the equivalence
are inverses of each other, and that they preserve getters and
setters.

XIII. COINDUCTIVE HIGHER LENSES

In this section we present yet another variant of higher lenses.
Unlike the ones presented above this variant is small. This
variant will be used to prove some results about the h-level
of a lens (102–103) and to define an unrestricted composition
operator (95).

As shown by Kraus [19] the propositional truncation of a
type can be obtained as the colimit of a certain semi-simplicial
diagram (its Čech nerve). For us this means that we could in
principle express coherent constancy of the family of fibres
of get as an infinite tower of coherence conditions, the first
of which corresponds to get−1-constant (65). However, it is
currently not known whether semi-simplicial diagrams, and
towers of coherence conditions based on them, can be encoded
in homotopy type theory. Fortunately there are alternative
characterisations of propositional truncation as a colimit which
can be encoded in type theory [13], [20], [21].

Let us use the construction due to Van Doorn [13]. First the
one-step truncation is defined as a higher inductive type:

data ‖ ‖1 (A : Type a) : Type a where
| | : A → ‖ A ‖1

||-constant : Constant | |
(68)

Constant is defined above (45). The one-step truncation comes
with a non-dependent eliminator:

rec : (f : A → B) → Constant f → ‖ A ‖1 → B (69)

The following equivalence is established by Van Doorn:

(‖ A ‖ → B) '
(f : ∀ n → ‖ A ‖1-out n → B) ×
∀ n x → f (1 + n) | x | ≡ f n x

(70)

Here the type ‖ A ‖1-out n consists of n applications of ‖ ‖1

to A:

‖ ‖1-out : Type a → N → Type a
‖ A ‖1-out zero = A
‖ A ‖1-out (suc n) = ‖ ‖ A ‖1-out n ‖1

(71)

We will also use the following variant, where the final
application of ‖ ‖1 is on the inside instead of on the outside:

‖ ‖1-in : Type a → N → Type a
‖ A ‖1-in zero = A
‖ A ‖1-in (suc n) = ‖ ‖ A ‖1 ‖1-in n

(72)

We use this variant in addition to the other one because we have
found that in some cases one is more convenient, in some cases
the other. For the first one the constructor | | takes values from
‖ A ‖1-out n to ‖ A ‖1-out (1 + n). For the second one we
instead use the following function:

| , |-in : ∀ n → ‖ A ‖1-in n → ‖ A ‖1-in (1 + n)
| zero , x |-in = | x |
| suc n , x |-in = | n , x |-in

(73)

The two definitions are equivalent, and the equivalence relates
| | and | , |-in:

out'in : ∀ n → ‖ A ‖1-out n ' ‖ A ‖1-in n (74)

to (out'in (1 + n)) | x | ≡
| n , to (out'in n) x |-in (75)

Let us now introduce a coinductive definition which
will be used to capture the notion of “coherently con-
stant”. The type Coherently P step f means that we have
p0 : P f, p1 : P (step f p0), p2 : P (step (step f p0) p1),
and so on:1

record Coherently {A : Type a} {B : Type b}
(P : {A : Type a} → (A → B) → Type p)
(step : {A : Type a} (f : A → B) → P f →

‖ A ‖1 → B)
(f : A → B) : Type p where
coinductive
field property : P f

coherent : Coherently P step (step f property)

(76)

We can define “coherently constant” in the following way,
using rec (69):

CC C : {A : Type a} {B : Type b} →
(A → B) → Type (a t b)

CC C = Coherently Constant rec
(77)

We will also use CC C1, a variant of CC C:

Constant1 : {A : Type a} {B : Type b} →
(A → B) → Type (a t b)

Constant1 {A = A} {B = B} f =
(g : ‖ A ‖1 → B) × ∀ x → g | x | ≡ f x

(78)

CC C1 : {A : Type a} {B : Type b} →
(A → B) → Type (a t b)

CC C1 = Coherently Constant1 (λ (g ,) → g)
(79)

1An equivalent type can be defined without using coinduction, following
Ahrens et al. [22], but if we do this in an “obvious” way, then the type’s
universe is Type (lsuc a t b t p) instead of Type p. If Coherently was
in this universe then the type LensC below (90) would not be small.

The predicate Constant1 is a variant of CC that is defined
using the one-step truncation operator. It is equivalent to
Constant :

Constant f ' Constant1 f (80)

This can be proved by defining functions in both directions, and
proving that they are inverses of each other (in one case using
the dependent elimination principle for the one-step truncation).
We used this result (and univalence) to prove that CC C and
CC C1 are also equivalent:

CC C f ' CC C1 f (81)

Let us now prove the following result:

(‖ A ‖ → B) ' (f : A → B) × CC C f (82)

We can calculate in the following way:

(‖ A ‖ → B) '
((f : ∀ n → ‖ A ‖1-out n → B) ×
∀ n x → f (1 + n) | x | ≡ f n x) '

((f : ∀ n → ‖ A ‖1-in n → B) ×
∀ n x → f (1 + n) | n , x |-in ≡ f n x) '

((f : A → B) × CC C1 f) '
((f : A → B) × CC C f)

The first step is Lemma 70, the last step follows from
Lemma 81, and the second step can be proved using Lemmas 74
and 75, as well as the following preservation lemmas:

(eq : A ' B) → (∀ x → P x ' Q (to eq x)) →
((x : A) × P x) ' ((x : B) × Q x)

(83)

(eq : B ' A) → (∀ x → P (to eq x) ' Q x) →
((x : A) → P x) ' ((x : B) → Q x)

(84)

We proved the penultimate step by defining functions in both
directions and proving that they are inverses. We found this to
be quite a bit easier using the formulation with ‖ ‖1-in and
| , |-in than the one with ‖ ‖1-out . As an aside we can also
mention that we proved the following equivalence:

CC C1 f '
(g : ∀ n → ‖ A ‖1-in (1 + n) → B) ×
(∀ x → g 0 | x | ≡ f x) ×
(∀ n x → g (1 + n) | n , x |-in ≡ g n x)

(85)

The following is a consequence of Lemma 82:

CC f ' CC C f (86)

We could use CC C to define a coinductive notion of lens, but
with a small change we end up with a definition that is small.

In the presence of univalence one can express weak constancy
of type-valued functions in the following way:

ConstantS : {A : Type a} →
(A → Type p) → Type (a t p)

ConstantS P = ∀ x y → P x ' P y
(87)

(“S” stands for “small”.) We use ConstantS to define a notion
of coherent constancy for type-valued functions:

CC S : {A : Type a} →
(A → Type p) → Type (a t p)

CC S = Coherently ConstantS

(λ f c → rec f (λ x y → '→≡ (c x y)))

(88)

Here '→≡, which is a consequence of univalence, has type
B ' C → B ≡ C. We get the following equivalence:

CC C f ' CC S f (89)

We can thus define a small coinductive notion of higher lens:

LensC : Type a → Type b → Type (a t b)
LensC A B = (get : A → B) × CC S (get −1)

(90)

This variant is equivalent to the other ones:

LensE A B ' LensC A B (91)

Because the family of fibres of the getter of this kind of lens
is coherently constant we also get that it is weakly constant:

(b1 b2 : B) → get −1 b1 ' get −1 b2 (92)

We can then define the setter in the same way as for LensF (66).
We have proved that in our implementation the equivalence
above (91) preserves getters and setters.

XIV. UNRESTRICTED COMPOSITION

The coinductive formulation of lenses allows us to give an
unrestricted implementation of composition, which works for
types with arbitrary universe levels. The following function is
a key building block:

{P : A → Type p} {Q : B → Type q}
(f : B → A) → (∀ x → P (f x) ' Q x) →
CC S P → CC S Q

(93)

Note that P and Q are allowed to target different universes.
Implementing a corresponding function directly for CC (46)
seems to be hard, but we can do it for CC S. The function is
implemented using guarded corecursion and copatterns [23],
and for the property field we can show that Q is weakly constant
in the following way, given that P is:

Q x ' P (f x) ' P (f y) ' Q y

Another key building block is the following lemma:

{P : A → Type p}
{Q : (x : A) × P x → Type q} →
CC S P → CC S Q →
CC S (λ x → (y : P x) × Q (x , y))

(94)

This lemma is easy to prove for CC . However, we have proved
it directly for CC S, in order to get it to compute in a certain
way.

Let us now implement composition:

◦ : LensC B C → LensC A B → LensC A C (95)

Given (get1 , c1) : LensC B C and (get2 , c2) : LensC A B
we define the resulting lens in the following way: The getter
is the composition of the two getters. We use Lemma 93 and
c2 to construct a value of the following type:

CC S (λ ((, b ,) : (c : C) × get1
−1 c) → get2

−1 b)

We then combine this value with c2 using Lemma 94, obtaining
a value of the following type:

CC S (λ c → ((b ,) : get1
−1 c) × get2

−1 b)

Finally we show that the resulting getter is coherently constant,
CC S ((λ a → get1 (get2 a))

−1), by using Lemma 93 and
the fact that there is an equivalence between the types
(λ x → f (g x)) −1 z and ((y ,) : f −1 z) × g −1 y. It is
here that we make use of the fact that Lemma 93 holds for
predicates that target possibly different universes.

With our implementation of the composition operator we
get that the setter is implemented in the canonical way:

set (l1 ◦ l2) a c ≡ set l2 a (set l1 (get l2 a) c) (96)

(This equality holds by definition.) Using Lemma 41 it is then
easy to prove that, if the view type of the resulting lens is
stable, then the composition operator is associative, and it has
a left and right unit.

We can also use this composition operator to implement
an unrestricted composition operator for LensE, and due
to Lemmas 96 and 60 we get that it matches the other
implementation of composition (59) when all types have the
same universe level and the view type of the resulting lens is
stable.

XV. HOMOTOPY LEVELS, CONTINUED

Let us now investigate h-levels of higher lens types. The
following variant of Coherently will be used as a proof device:

record Coherently ′ {A : Type a} {B : Type b}
(P : {A : Type a} → (A → B) → Type p)
(step : {A : Type a} (f : A → B) → P f →

‖ A ‖1 → B)
(f : A → B)
(Q : {A : Type a} → (A → B) → Type q)
(pres : {A : Type a} {f : A → B} {p : P f} →

Q f → Q (step f p))
(q : Q f) : Type p where
coinductive
field property : P f

coherent : Coherently ′ P step (step f property)
Q pres (pres q)

(97)

Note that the property field is unchanged, but that we ensure
that the predicate Q holds for all the functions f. The following
equivalence is easy to prove:

Coherently P step f '
Coherently ′ P step f Q pres q

(98)

One can express the right-hand side of this equivalence
as an indexed M-type for the indexed container (of the
kind described by Ahrens et al. [22]) where the index type
is (A : Type a) × (f : A → B) × Q f, the shape for the
index (, f ,) is P f, the positions are trivial, and the
“next” index for the index (A , f , q) and the shape p is

(‖ A ‖1 , step f p , pres q). The h-level of such an M-type is
n if all the shapes have h-level n [22], so we get the following
lemma:

({A : Type a} {f : A → B} →
Q f → H-level n (P f)) →

H-level n (Coherently ′ P step f Q pres q)
(99)

Using this lemma we can prove the following result:

{P : {A : Type a} → (A → Type f) → Type p}
{step : {A : Type a} (F : A → Type f) → P F →

‖ A ‖1 → Type f}
{F : A → Type f}
(h1 : (a : A) → H-level n (F a))
(h2 : {A : Type a} {F : A → Type f} →

((a : A) → H-level n (F a)) →
H-level n (P F))

(h3 : {A : Type a} {F : A → Type f} {p : P F} →
((a : A) → H-level n (F a)) →
(a : A) → H-level n (step F p | a |)) →

H-level n (Coherently P step F)

(100)

One can use the eliminator for the one-step truncation to
construct a variant of h3:

h ′3 : {A : Type a} {F : A → Type f} {p : P F} →
((a : A) → H-level n (F a)) →
(a : ‖ A ‖1) → H-level n (step F p a)

Due to Lemma 98 it then suffices to prove the result for the
following type, which is easy using Lemma 99 and h2:

Coherently ′ P step F
(λ F → ∀ a → H-level n (F a)) h ′3 h1

Using Lemma 100 and standard properties about h-levels
[4] we get that CC S P has h-level n if P has this h-level
(pointwise):

(∀ a → H-level n (P a)) → H-level n (CC S P) (101)

We can now prove that LensC A B has h-level n if A and B
have that h-level given that the other type is inhabited:

(B → H-level n A) → (A → H-level n B) →
H-level n (LensC A B)

(102)

This follows from Lemma 101. As a consequence we get that
if A has positive h-level n, then the type of higher lenses from
A to B has h-level n:

H-level (1 + n) A →
H-level (1 + n) (LensC A B)

(103)

When proving that a type has a positive h-level one can assume
that the type is inhabited [4], so we can assume that we have
a value of type LensC A B. Now Lemma 48 tells us that B
has h-level 1 + n if A is inhabited, so we can conclude by
using Lemma 102.

As an aside we can mention that Lemma 102 (with the first
“B” replaced by “A”) and Lemma 103 hold also for traditional
lenses. The proofs are straightforward. See the accompanying
code for details.

XVI. RELATED WORK

After Foster et al. [1] introduced lenses they became popular
in the functional programming community, partly because they
provide a composable approach to working with deeply nested
immutable structures, as discussed in the introduction.

In the functional programming community, and especially
the Haskell one with its lens library [24], lenses usually occur
as special cases of a more general abstraction called an optic,
including for example traversals [25] and prisms [3], and
often expressed via impredicative formulations, like the Van
Laarhoven representation [7] mentioned earlier.

Lenses have been characterised as coalgebras [26], [27],
algebras [14], and internal functors and cofunctors [28], and
they have been used in linguistics [29] and quantum computing
[30]. The theory of lenses also goes back to before their
inception: Foster et al. [1] state that “our set of very well
behaved lenses is isomorphic to the set of translators under
constant complement”, where the latter notion is due to
Bancilhon and Spyratos [2].

Despite the great interest that lenses have generated we
are not aware of any other work on framing the concept
of a lens within the context of homotopy type theory, with
one exception: the work of Grenrus [31]. Grenrus discusses
both lenses and prisms, but the study of lenses seems to be
preliminary, there are few results. Grenrus criticises our higher
lenses: he presents two lenses that have equal setters, and states
that they are “observably different”; he seems to suggest that
the two lenses are not equal. The view type of the lenses is the
type of booleans, and because the type of booleans is inhabited
we know that these lenses are equal (40). However, Grenrus’
statement is not wrong. How can this be?

Let us take a look at an example which is closely based on
that presented by Grenrus. We define a function that constructs
lenses, given a family of equivalences:

(Bool → Bool ' Bool) →
LensE (Bool × Bool) Bool

(104)

The remainder type of the constructed lens is Bool . The equiv-
alence between Bool × Bool and Bool × Bool is constructed
by letting the second component be unchanged, and using the
value of the second component to decide which of the two
equivalences should be used for the first component. We get
the two lenses of the example by instantiating the family in
two different ways: in one case we use the identity equivalence
for true and the not function for false, and in the other case we
do it the other way around. It is easy to prove that the lenses
that we obtain in this way, ex 1 and ex 2, have equal setters,
and thus we get that they are equal. However, the lenses are
in a sense observably different; the following equalities hold
by definition:

remainder ex 1 (true , true) ≡ true (105)
remainder ex 2 (true , true) ≡ false (106)

We do not find this any more surprising than the fact
[32] that one can have two values of the contractible type
(A : Type) × (A ' Bool) that are equal (assuming univalence

all values of this type are equal), but for which the second
projections are distinct (the identity equivalence and the not
function). Note that one cannot use “cong proj2” to conclude
that the identity equivalence and the not function are equal,
because the second projection proj2 is in this case not a non-
dependent function. The remainder function is also not non-
dependent, it has type (l : LensE A B) → A → R l .

XVII. CONCLUSION

We have presented several equivalent formulations of higher
lenses, explored the properties of the definitions, and tried to
show that higher lenses are better behaved than traditional ones
in the setting of homotopy type theory.

We have focused on very well-behaved lenses, ignoring all
the other optics, and also ignoring alternative representations
like the one due to Van Laarhoven [7]. An obvious avenue for
further work would be to try to generalise the results to, say,
traversals.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers, as well
as Christian Sattler, who proved Lemma 47.

Danielsson has been supported by a grant from the Swedish
Research Council (621-2013-4879). Vezzosi was supported by
a research grant (13156) from VILLUM FONDEN.

REFERENCES

[1] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt,
“Combinators for bi-directional tree transformations: A linguistic approach
to the view update problem,” in POPL R© 2005: The 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages R©, 2005,
pp. 233–246. DOI:10.1145/1040305.1040325

[2] F. Bancilhon and N. Spyratos, “Update semantics of relational views,”
ACM Transactions on Database Systems, vol. 6, no. 4, pp. 557–575,
1981. DOI:10.1145/319628.319634

[3] M. Pickering, J. Gibbons, and N. Wu, “Profunctor optics: Modular data
accessors,” The Art, Science, and Engineering of Programming, vol. 1,
no. 2, 2017. DOI:10.22152/programming-journal.org/2017/1/7

[4] The Univalent Foundations Program, Homotopy Type Theory: Univalent
Foundations of Mathematics, 1st ed., 2013. [Online]. Available:
https://homotopytypetheory.org/book/

[5] A. Vezzosi, A. Mörtberg, and A. Abel, “Cubical Agda: A dependently
typed programming language with univalence and higher inductive types,”
Proceedings of the ACM on Programming Languages, vol. 3, no. ICFP,
pp. 87:1–87:29, 2019. DOI:10.1145/3341691

[6] N. A. Danielsson, “Code related to the paper “Higher Lenses”,” 2021.
DOI:10.5281/zenodo.4727911

[7] T. van Laarhoven, “CPS based functional references,” blog post, 2009.
[Online]. Available: https://www.twanvl.nl/blog/haskell/cps-functional-
references

[8] ——, “Isomorphism lenses,” blog post, 2011. [Online]. Available:
https://www.twanvl.nl/blog/haskell/isomorphism-lenses

[9] C. McBride, “I got plenty o’ nuttin’,” in A List of Successes That Can
Change the World: Essays Dedicated to Philip Wadler on the Occasion of
His 60th Birthday, 2016, pp. 207–233. DOI:10.1007/978-3-319-30936-
1 12

[10] R. Atkey, “Syntax and semantics of quantitative type theory,” in LICS ’18
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, 2018, pp. 56–65. DOI:10.1145/3209108.3209189

[11] N. A. Danielsson, “Dependent lenses,” unpublished, 2016. [Online].
Available: http://www.cse.chalmers.se/∼nad/publications/danielsson-
dependent-lenses.html

[12] D. R. Licata and G. Brunerie, “πn(Sn) in homotopy type theory,”
in Certified Programs and Proofs, Third International Conference,
CPP 2013, 2013, pp. 1–16. DOI:10.1007/978-3-319-03545-1 1

[13] F. van Doorn, “Constructing the propositional truncation using non-
recursive HITs,” in CPP’16, Proceedings of the 5th ACM SIGPLAN
Conference on Certified Programs and Proofs, 2016, pp. 122–129.
DOI:10.1145/2854065.2854076

[14] M. Johnson, R. Rosebrugh, and R. Wood, “Algebras and update strategies,”
Journal of Universal Computer Science, vol. 16, no. 5, pp. 729–748,
2010. DOI:10.3217/jucs-016-05-0729

[15] B. C. Pierce and A. Schmitt, “Lenses and view update translation,”
unpublished, 2003. [Online]. Available: http://www.cis.upenn.edu/
∼bcpierce/papers/dblenses.pdf

[16] N. Kraus, M. H. Escardó, T. Coquand, and T. Altenkirch, “Notions of
anonymous existence in Martin-Löf type theory,” Logical Methods in
Computer Science, vol. 13, no. 1, pp. 1–36, 2017. DOI:10.23638/LMCS-
13(1:15)2017

[17] M. Shulman, “Not every weakly constant function is
conditionally constant,” blog post, 2015. [Online]. Avail-
able: https://homotopytypetheory.org/2015/06/11/not-every-weakly-
constant-function-is-conditionally-constant/

[18] D. R. Licata and E. Finster, “Eilenberg-MacLane spaces in homotopy
type theory,” in CSL-LICS ’14: Proceedings of the Joint Meeting of the
Twenty-Third EACSL Annual Conference on Computer Science Logic
(CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), 2014. DOI:10.1145/2603088.2603153

[19] N. Kraus, “The general universal property of the propositional truncation,”
in 20th International Conference on Types for Proofs and Programs,
TYPES’14, 2015, pp. 111–145. DOI:10.4230/LIPIcs.TYPES.2014.111

[20] ——, “Constructions with non-recursive higher inductive types,” in Pro-
ceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS 2016), 2016, pp. 595–604. DOI:10.1145/2933575.2933586

[21] E. Rijke, “The join construction,” 2017, arXiv: 1701.07538v1 [math.CT].
[22] B. Ahrens, P. Capriotti, and R. Spadotti, “Non-wellfounded trees in

homotopy type theory,” in 13th International Conference on Typed
Lambda Calculi and Applications, TLCA’15, 2015, pp. 17–30. DOI:10.
4230/LIPIcs.TLCA.2015.17

[23] A. Abel, B. Pientka, D. Thibodeau, and A. Setzer, “Copatterns: Program-
ming infinite structures by observations,” in POPL ’13, Proceedings of
40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, 2013, pp. 27–38. DOI:10.1145/2429069.2429075

[24] E. Kmett et al., “Lens: Lenses, folds, and traversals,” 2020. [Online].
Available: https://github.com/ekmett/lens/

[25] J. Gibbons and B. C. d. S. Oliveira, “The essence of the iterator pattern,”
Journal of Functional Programming, vol. 19, no. 3 & 4, pp. 377–402,
2009. DOI:10.1017/S0956796809007291

[26] R. O’Connor, “Functor is to lens as applicative is to biplate: Introducing
multiplate,” 2011, arXiv: 1103.2841v2 [cs.PL].

[27] D. Ahman and T. Uustalu, “Coalgebraic update lenses,” in Proceedings of
the 30th Conference on the Mathematical Foundations of Programming
Semantics (MFPS XXX), 2014, pp. 25–48. DOI:10.1016/j.entcs.2014.10.
003

[28] B. Clarke, “Internal lenses as functors and cofunctors,” in Proceedings
Applied Category Theory 2019, 2020, pp. 183–195. DOI:10.4204/EPTCS.
323.13

[29] J. Hefford, V. Wang, and M. Wilson, “Categories of semantic
concepts,” in Semantic Spaces at the Intersection of NLP, Physics, and
Cognitive Science, 2020. [Online]. Available: https://sites.google.com/
view/semspace2020/programme

[30] M. Wilson, J. Hefford, G. Boisseau, and V. Wang, “The safari of update
structures: Visiting the lens and quantum enclosures,” in Proceedings of
the 3rd Annual International Applied Category Theory Conference 2020,
2021, pp. 1–18. DOI:10.4204/EPTCS.333.1

[31] O. Grenrus, “Shattered lens,” extended abstract for the Eighth Workshop
on Mathematically Structured Functional Programming (MSFP 2020),
2020. [Online]. Available: https://msfp-workshop.github.io/msfp2020/
grenrus.pdf

[32] J. Gross, “Composition is not what you think it is!
Why “nearly invertible” isn’t.” Blog post, 2014. [Online].
Available: https://homotopytypetheory.org/2014/02/24/composition-is-
not-what-you-think-it-is-why-nearly-invertible-isnt/

https://doi.org/10.1145/1040305.1040325
https://doi.org/10.1145/319628.319634
https://doi.org/10.22152/programming-journal.org/2017/1/7
https://homotopytypetheory.org/book/
https://doi.org/10.1145/3341691
https://doi.org/10.5281/zenodo.4727911
https://www.twanvl.nl/blog/haskell/cps-functional-references
https://www.twanvl.nl/blog/haskell/cps-functional-references
https://www.twanvl.nl/blog/haskell/isomorphism-lenses
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1145/3209108.3209189
http://www.cse.chalmers.se/~nad/publications/danielsson-dependent-lenses.html
http://www.cse.chalmers.se/~nad/publications/danielsson-dependent-lenses.html
https://doi.org/10.1007/978-3-319-03545-1_1
https://doi.org/10.1145/2854065.2854076
https://doi.org/10.3217/jucs-016-05-0729
http://www.cis.upenn.edu/~bcpierce/papers/dblenses.pdf
http://www.cis.upenn.edu/~bcpierce/papers/dblenses.pdf
https://doi.org/10.23638/LMCS-13(1:15)2017
https://doi.org/10.23638/LMCS-13(1:15)2017
https://homotopytypetheory.org/2015/06/11/not-every-weakly-constant-function-is-conditionally-constant/
https://homotopytypetheory.org/2015/06/11/not-every-weakly-constant-function-is-conditionally-constant/
https://doi.org/10.1145/2603088.2603153
https://doi.org/10.4230/LIPIcs.TYPES.2014.111
https://doi.org/10.1145/2933575.2933586
https://arxiv.org/abs/1701.07538v1
https://doi.org/10.4230/LIPIcs.TLCA.2015.17
https://doi.org/10.4230/LIPIcs.TLCA.2015.17
https://doi.org/10.1145/2429069.2429075
https://github.com/ekmett/lens/
https://doi.org/10.1017/S0956796809007291
https://arxiv.org/abs/1103.2841v2
https://doi.org/10.1016/j.entcs.2014.10.003
https://doi.org/10.1016/j.entcs.2014.10.003
https://doi.org/10.4204/EPTCS.323.13
https://doi.org/10.4204/EPTCS.323.13
https://sites.google.com/view/semspace2020/programme
https://sites.google.com/view/semspace2020/programme
https://doi.org/10.4204/EPTCS.333.1
https://msfp-workshop.github.io/msfp2020/grenrus.pdf
https://msfp-workshop.github.io/msfp2020/grenrus.pdf
https://homotopytypetheory.org/2014/02/24/composition-is-not-what-you-think-it-is-why-nearly-invertible-isnt/
https://homotopytypetheory.org/2014/02/24/composition-is-not-what-you-think-it-is-why-nearly-invertible-isnt/

	Introduction
	Homotopy Type Theory
	Traditional Lenses
	Lenses Based on Bijections
	Higher Lenses
	Coherence Laws
	Some Equivalences
	Equality of Lenses With Equal Setters
	Homotopy Levels
	Higher and Traditional Lenses are Equivalent for Sets
	Identity and Composition
	Coherently Constant Families of Fibres
	Coinductive Higher Lenses
	Unrestricted Composition
	Homotopy Levels, Continued
	Related Work
	Conclusion
	Acknowledgements
	References

