
Lightweight Semiformal Time Complexity Analysis for
Purely Functional Data Structures

Nils Anders Danielsson
Chalmers University of Technology

nad@cs.chalmers.se

Abstract
Okasaki and others have demonstrated how purely functional data
structures that are efficient even in the presence of persistence can
be constructed. To achieve good time bounds essential use is often
made of laziness. The associated complexity analysis is frequently
subtle, requiring careful attention to detail, and hence formalising
it is valuable.

This paper describes a simple library which can be used to
make the analysis of a class of purely functional data structures
and algorithms almost fully formal. The basic idea is to use the
type system to annotate every function with the time required to
compute its result. An annotated monad is used to combine time
complexity annotations.

The library has been used to analyse some existing data struc-
tures, for instance the deque operations of Hinze and Paterson’s
finger trees.

Categories and Subject Descriptors F.2.m [Analysis of Algo-
rithms and Problem Complexity]: Miscellaneous; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs; D.1.1 [Programming Techniques]: Ap-
plicative (Functional) Programming; E.1 [Data Structures]

General Terms Languages, performance, theory, verification

1. Introduction
Data structures implemented in a purely functional language auto-
matically become persistent; even if a data structure is updated, the
previous version can still be used. This property means that, from
a correctness perspective, users of the data structure have less to
worry about, since there are no problems with aliasing. From an
efficiency perspective the picture is less nice, though: different us-
age patterns can lead to different time complexities. For instance, a
common implementation of FIFO queues has the property that ev-
ery operation takes constant amortised time if the queues are used
single-threadedly (i.e. if the output of one operation is always the
input to the next), whereas for some usage patterns the complexity
of the tail function becomes linear (Okasaki 1998).

Despite this a number of purely functional data structures ex-
hibiting good performance no matter how they are used have been
developed (see for instance Okasaki 1998; Kaplan and Tarjan 1999;

c©ACM, 2008. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution. The definitive version was
published in the Conference record of the 35th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages (2008), http://doi.acm.org/10.1145/
1328438.1328457.

Kaplan et al. 2000; Hinze and Paterson 2006). Many of these data
structures make essential use of laziness (non-strictness with mem-
oisation, also known as call-by-need) in order to ensure good per-
formance; see Section 8.1 for a detailed example. However, the re-
sulting complexity analysis is often subtle, with many details to
keep track of.

To address this problem the paper describes a simple library,
THUNK, for semiformal verification of the time complexity of
purely functional data structures. The basic idea is to annotate the
code (the actual code later to be executed, not a copy used for
verification) with ticks, representing computation steps:

X : Thunk n a→ Thunk (1+ n) a

Time complexity is then tracked using the type system. Basically, if
a value has type Thunk n a, then a weak head normal form (WHNF)
of type a can be obtained in n steps amortised time, no matter how
the value is used. Thunk is a monad, and the monadic combinators
are used to combine time complexities of subexpressions.

Note that the Thunk type constructor takes a value (n) as argu-
ment; it is a dependent type. The THUNK library is implemented
in the dependently typed functional language Agda (Norell 2007;
The Agda Team 2007), which is described in Section 2. The ap-
proach described in the paper is not limited to Agda—it does not
even need to be implemented in the form of a library—but for con-
creteness Agda is used when presenting the approach.

In order to analyse essential uses of laziness THUNK makes
use of a simplified version of Okasaki’s banker’s method (1998).
This version is arguably easier to explain (see Section 8), but it
is less general, so fewer programs can be properly analysed. A
generalisation of the method, also implemented, is discussed in
Section 11, and remaining limitations are discussed in Section 12.

Despite any limitations the methods are still useful in practice.
The following algorithms and data structures have been analysed:

• Linear-time minimum using insertion sort, the standard exam-
ple for time complexity analysis of call-by-name programs (see
Section 7).
• Implicit queues (Okasaki 1998), which make essential use of

laziness (see Section 8).
• The deque operations of Hinze and Paterson’s finger trees

(2006).1

• Banker’s queues (Okasaki 1998), by using the generalised
method described in Section 11.1

The time bounds obtained using the library are verified with
respect to an operational semantics for a small, lazy language; see
Section 9. To increase trust in the verification it has been checked
mechanically (also using Agda, which doubles as a proof assistant).

1Using an earlier, but very similar, version of the library.

The source code for the library, the examples mentioned above,
and the mechanisation of the correctness proof are available from
the author’s web page (currently http://www.cs.chalmers.se/
~nad/). A technical report also describes the mechanisation in
more detail (Danielsson 2007).

To summarise, the contributions of this work are as follows:

• A simple, lightweight library for semiformal verification of the
time complexity of a useful class of purely functional data
structures.
• The library has been applied to real-world examples.
• The library has a well-defined semantics, and the stated time

bounds have been verified with respect to this semantics.
• The correctness proofs have been checked using a proof assis-

tant.

The rest of the paper is structured as follows: Section 2 de-
scribes Agda and Section 3 describes the basics of THUNK. The
implementation of the library is discussed in Section 4, some rules
for how the library must be used are laid down in Section 5, and
Sections 6–8 contain further examples on the use of THUNK. The
correctness proof is outlined in Sections 9–10, Section 11 motivates
and discusses a generalisation of the library, and Section 12 de-
scribes some limitations. Finally related work is discussed in Sec-
tion 13 and Section 14 concludes.

2. Host language
This section discusses some aspects of Agda (Norell 2007; The
Agda Team 2007), the language used for the examples in the paper,
in order to make it easier to follow the text. Agda is a dependently
typed functional language, and for the purposes of this paper it may
be useful to think of it as a total variant of Haskell (Peyton Jones
2003) with dependent types and generalised algebraic data types,
but no infinite values or coinduction.

THUNK is not tied to Agda, but can be implemented in any
language which supports the type system and evaluation orders
used, see Sections 4 and 9.

Hidden arguments Agda lacks (implicit) polymorphism, but has
hidden arguments, which in combination with dependent types
compensate for this loss. For instance, the ordinary list function
map could be given the following type signature:

map : {a, b : ?} → (a→ b)→ List a→ List b

Here ? is the type of (small) types. Arguments within { . . .} are
hidden, and need not be given explicitly, if the type checker can
infer their values from the context in some way. If the hidden
arguments cannot be inferred, then they can be given explicitly by
enclosing them within { . . .}:

map {Int} {Bool} : (Int→ Bool)→ List Int→ List Bool

The same syntax can be used to pattern match on hidden arguments:

map {a} {b} f (x :: xs) = . . .

Inductive families Agda has inductive families (Dybjer 1994),
also known as generalised algebraic data types or GADTs. Data
types are introduced by listing the constructors and giving their
types. Natural numbers, for instance, can be defined as follows:

data N : ? where
zero : N
suc : N→ N

As an example of a family of types consider the type Seq a n
of sequences (sometimes called vectors) of length n containing
elements of type a:

data Seq (a : ?) : N→ ? where
nil : Seq a zero
(::) : {n : N} → a→ Seq a n→ Seq a (suc n)

Note how the index (the natural number introduced after the last :
in the first line) is allowed to vary between the constructors. Seq a
is a family of types, with one type for every index n.

To illustrate the kind of pattern matching Agda allows for an
inductive family, let us define the tail function:

tail : {a : ?} → {n : N} → Seq a (suc n)→ Seq a n
tail (x :: xs) = xs

We can and need only pattern match on (::), since the type of nil
does not match the type Seq a (suc n) given in the type signature
for tail. As another example, consider the definition of the append
function:

(++) : Seq a n1 → Seq a n2 → Seq a (n1 + n2)
nil ++ ys = ys
(x :: xs)++ ys = x :: (xs++ ys)

In the nil case the variable n1 in the type signature is unified with
zero, transforming the result type into Seq a n2, allowing us to give
ys as the right-hand side. (This assumes that zero+ n2 evaluates to
n2.) The (::) case can be explained in a similar way.

Note that the hidden arguments of (++) were not declared in
its type signature. This is not allowed by Agda, but often done in
the paper to reduce notational noise. Some other minor syntactic
changes have also been made in order to aid readability.

Run-time and compile-time code Agda evaluates code during
type checking; two types match if they reduce to the same normal
form. Hence it is useful to distinguish between compile-time code
(code which is only evaluated at type-checking time) and run-time
code (code which is executed at run-time). The principal purpose of
the THUNK library is to annotate run-time code; the compile-time
code will not be executed at run-time anyway, so there is not much
point in annotating it.

Unfortunately Agda has no facilities for identifying compile-
time or run-time code. As a crude first approximation types are not
run-time, though.

3. Library basics
An example will introduce the core concepts of THUNK. By using
the library combinators the append function can be proved to be
linear in the length of the first sequence:

(++) : Seq a m→ Seq a n
→ Thunk (1+ 2 ∗ m) (Seq a (m+ n))

nil ++ ys = Xreturn ys
(x :: xs)++ ys = X

xs++ ys>>= λxsys→ X

return (x :: xsys)

The rest of this section explains this example and the library in
more detail.

Ticks As mentioned above the user has to insert ticks manually:
X : Thunk n a→ Thunk (1+ n) a

The basic unit of cost is the rewriting of the left-hand side of a
definition to the right-hand side. Hence, for every function clause,
lambda abstraction etc. the user has to insert a tick. (The X func-
tion is a prefix operator of low precedence, reducing the need for
parentheses.)

By design the library is lightweight: no special language support
for reasoning about time complexity is needed. It would be easy to

turn the library from being semiformal into being formal by modi-
fying the type-checker of an existing language to ensure that ticks
were always inserted where necessary (and a few other require-
ments listed in Section 5). However, the primary intended use of
THUNK is the analysis of complicated data structures; it should not
interfere with “ordinary” code. Furthermore the freedom to choose
where to insert ticks gives the user the ability to experiment with
different cost models.

Thunk monad The type Thunk is an “annotated” monad, with the
following types for the unit (return) and the bind operator (>>=):

return : a→ Thunk 0 a
(>>=) : Thunk m a→ (a→ Thunk n b)→ Thunk (m+ n) b

The monad combinators are used to combine the time complexities
of subexpressions. It makes sense to call this a monad since the
monoid laws for 0 and + make sure that the monad laws are still
“type correct”.

Time bounds Let us now discuss the time complexity guarantees
established by the library. Assume that t has type

a ≡ Thunk n1 (Thunk n2 . . . (Thunk nk b) . . .),

where b is not itself equal to Thunk something. The library then
guarantees that, if t evaluates to WHNF, then it does so in at most
n ≡ n1 + n2 + . . .+ nk steps. Denote the number n by time a.

The precondition that t must evaluate to WHNF is not a problem
in Agda, since Agda is a total language. In partial languages one has
to be more careful, though. Consider the following code, written in
some partial language:

ω : N
ω = 1+ ω

ticks : Thunk ω a
ticks = Xticks

The value ticks does not have a WHNF. Since Agda is total the
precondition above will implicitly be assumed to be satisfied when
the examples in the rest of the paper are discussed.

One can often extract more information than is at first obvious
from the given time bounds. For instance, take two sequences
xs : Seq a 7 and ys : Seq a 3 (for some a). When evaluating xs++ ys
a WHNF will be obtained in time (Thunk 15 (Seq a 10)) = 15
steps. This WHNF has to be z :: zs for some z : a, zs : Seq a 9.
Since time (Seq a 9) = 0 this means that zs evaluates to WHNF in
zero steps. Continuing like this we see that xs++ ys really evaluates
to spine-normal form in 15 steps; even normal form if a does not
contain embedded Thunks. This example shows that types without
embedded Thunks are treated as if they were strict. Section 7 shows
how non-strict types can be handled.

Run function There is a need to interface annotated code with
“ordinary” code, which does not run in the Thunk monad. This is
done by the force function:

force : Thunk n a→ a

This function must of course not be used in code which is analysed.

Equality proofs The Agda type checker does not automatically
prove arithmetical equalities. As a result, the definition of (++)
above does not type check: Agda cannot see that the tick count of
the right-hand side of the last equation, 1+((1+2∗m)+(1+0)) (for
some variable m : N), is the same as 1+ 2 ∗ (1+m). This problem
can be solved by inserting a proof demonstrating the equality of
these expressions into the code. The problem is an artifact of Agda,
though; simple arithmetical equalities such as the one above could
easily be proved automatically, and to aid readability no such proofs
are written out in the paper, with the exception of a discussion of
equality proofs in Section 10.

Summary The basic version of the library consists of just the
Thunk monad, X, force, and the function pay, which is introduced
in Section 8; pay is the key to taking advantage of lazy evaluation.
The following list summarises the primitives introduced so far:

Thunk : N→ ?→ ?
X : Thunk n a→ Thunk (1+ n) a
return : a→ Thunk 0 a
(>>=) : Thunk m a→ (a→ Thunk n b)→ Thunk (m+ n) b
force : Thunk n a→ a

4. Implementation
In the implementation of THUNK the type Thunk n a is just a
synonym for the type a; n is a “phantom type variable” (Leijen
and Meijer 1999). However, this equality must not be exposed to
the library user. Hence the type is made abstract:

abstract
Thunk : N→ ?→ ?
Thunk n a = a

Making a type or function abstract means that its defining equations
are only visible to other abstract definitions in the same module.
Hence, when type checking, if x : Thunk n a, then this reduces to
x : a in the right-hand sides of the library primitives below, but in
other modules the two types a and Thunk n a are different.

The primitive operations of the library are basically identity
functions; return and (>>=) form an annotated identity monad:

abstract
X : Thunk n a→ Thunk (1+ n) a
Xx = x
return : a→ Thunk 0 a
return x = x
(>>=) : Thunk m a→ (a→ Thunk n b)→ Thunk (m+ n) b
x>>= f = f x
force : Thunk n a→ a
force x = x

This ensures minimal run-time overhead, and also that the imple-
mentation of THUNK corresponds directly to the erasure function
used to prove the library correct (see Section 9.1).

It may be possible to implement a variant of the library in a strict
language with explicit support for laziness (with memoisation).
The correctness statement and proof, and perhaps also some type
signatures, would probably need to be modified, though.

5. Conventions
There are some conventions about how the library must be used
which are not captured by the type system:

• Every run-time function clause (including those of anonymous
lambdas) has to start with X.
• The function force may not be used in run-time terms.
• Library functions may not be used partially applied.

The correctness of the library has only been properly verified for
a simple language which enforces all these rules through syntac-
tic restrictions (see Section 9.1); Agda does not, hence these con-
ventions are necessary. Further differences between Agda and the
simple language are discussed in Section 10.

The rest of this section discusses and motivates the conventions.

Run-time vs. compile-time It would be very awkward to have
to deal with thunks in the types of functions, so the rules for X

only apply to terms that will actually be executed at run-time. The
function force may obviously not be used in run-time terms, since
it can be used to discard annotations.

Ticks everywhere One might think that it is possible to omit X

in non-recursive definitions, and still obtain asymptotically correct
results. This is not true in general, though. Consider the following
function, noting that the last anonymous lambda is not ticked:

build : (n : N)→ Thunk (1+ 2 ∗ n) (N→ Thunk 1 N)
build zero = Xreturn (λn→ Xreturn n)
build (suc n) = X

build n>>= λf → X

return (λn→ f (suc n))

The function build n, when forced, returns a function f : N →
Thunk 1 N which adds n to its input. However, f is not a constant-
time function, so this is clearly wrong. The problem here is the
lambda which we have not paid for.

Partial applications The guarantees given by THUNK are verified
by defining a function p·q which erases all the library primitives,
and then showing that, for every term t whose time is n, the erased
term ptq takes at most n steps amortised time to evaluate to WHNF
(see Section 9).

Now, preturn tq = ptq, so if partial applications of library func-
tions were allowed we would have preturnq = λx → x. However,
an application of the identity function takes one step to evaluate,
whereas return has zero overhead. Hence partial applications of li-
brary functions are not allowed. (It may be useful to see them as
annotations, as opposed to first-class entities.)

6. Some utility functions
Before moving on to some larger examples a couple of utility
functions will be introduced.

When defining functions which have several cases the types
of the different case branches have to match. For this purpose
the following functions, which increase the tick counts of their
arguments, are often useful:

wait : (n : N)→ Thunk m a→ Thunk (1+ n+ m) a
wait zero x = Xx
wait (suc n) x = Xwait n x
returnw : (n : N)→ a→ Thunk (1+ n) a
returnw zero x = Xreturn x
returnw (suc n) x = Xreturnw n x

Note that returnw cannot be defined in terms of wait; the extra tick
would give rise to a different type:

returnw : (n : N)→ a→ Thunk (2+ n) a
returnw n x = Xwait n (return x)

Note also that, to improve performance (as opposed to time
bounds), it is a good idea to add these functions to the trusted
code base:

abstract
wait : (n : N)→ Thunk m a→ Thunk (1+ n+ m) a
wait x = x
returnw : (n : N)→ a→ Thunk (1+ n) a
returnw x = x

This does not increase the complexity of the main correctness
proof, since we know that the functions could be implemented in
the less efficient way above.

The function (=<<), bind with the arguments flipped, is also
included in the trusted core:

(=<<) : (a→ Thunk m b)→ Thunk n a→ Thunk (n+ m) b
f =<< c = c>>= f

This function does not add any overhead to the correctness proof
since it is identical to bind (except for a different argument order).
Furthermore it is useful; it is used several times in the next section.

The following thunkified variant of if-then-else will also be
used:

if then else : Bool→ a→ a→ Thunk 1 a
if true then x else y = Xreturn x
if false then x else y = Xreturn y

7. Non-strict data types
Data types defined in an ordinary way are treated as strict. In order
to get non-strict behaviour Thunk has to be used in the definition
of the data type. To illustrate this a linear-time function which
calculates the minimum element in a non-empty list will be defined
by using insertion sort.

First lazy sequences are defined:

data SeqL (a : ?) (c : N) : N→ ? where
nilL : SeqL a c 0
(::L) : a→ Thunk c (SeqL a c n)→ SeqL a c (1+ n)

SeqL a c n stands for a lazy sequence of length n, containing
elements of type a, where every tail takes c steps to force; note the
use of Thunk in the definition of (::L). A variant where different
tails take different numbers of steps to force is also possible (see
Section 11), but not needed here.

The function insert inserts an element into a lazy sequence in
such a way that if the input is sorted the output will also be sorted.
To compare elements insert uses the function (≤) : a → a →
Thunk 1 Bool; for simplicity it is assumed that comparisons take
exactly one step.2

insert : {c : N} → a→ SeqL a c n
→ Thunk 4 (SeqL a (4+ c) (1+ n))

insert {c} x nilL = X

returnw 2 (x ::L returnw (3+ c) nilL)
insert {c} x (y ::L ys) = X

x ≤ y>>= λb→ X

if b then x ::L wait (2+ c) (waitL 2 (y ::L ys))
else y ::L (insert x=<< ys)

When x ≤ y the function waitL is used to ensure that the resulting
sequence has the right type:

waitL : (c : N)→ SeqL a c′ n
→ Thunk 1 (SeqL a (2+ c+ c′) n)

waitL c nilL = Xreturn nilL
waitL c (x ::L xs) = Xreturn (x ::L wait c (waitL c=<< xs))

By using waitL all elements in the tail get assigned higher tick
counts than necessary. It would be possible to give insert a more
precise type which did not overestimate any tick counts, but this
type would be rather complicated. The type used here is a compro-
mise which is simple to use and still precise enough.

Note that the library does not give any help with solving re-
currence equations; it just checks the solution encoded by the user
through type signatures and library primitives. (The arguments to
functions like wait can often be inferred automatically in Agda,
obviating the need for the user to write them. For clarity they are
included here, though.)

2Agda has parameterised modules, so (≤) does not need to be an
explicit argument to insert.

Insertion sort, which takes an ordinary sequence as input but
gives a lazy sequence as output, can now be defined as follows:

sort : Seq a n→ Thunk (1+ 5 ∗ n) (SeqL a (4 ∗ n) n)
sort nil = Xreturn nilL
sort (x :: xs) = Xinsert x=<< sort xs

Note that the time needed to access the first element of the result is
linear in the length of the input, whereas the time needed to force
the entire result is quadratic. Using sort and head the minimum
function can easily be defined for non-empty sequences:

head : SeqL a c (1+ n)→ Thunk 1 a
head (x ::L xs) = Xreturn x
minimum : Seq a (1+ n)→ Thunk (8+ 5 ∗ n) a
minimum xs = Xhead =<< sort xs

As a comparison it can be instructive to see that implementing
maximum using insertion sort and last can lead to quadratic be-
haviour:

last : SeqL a c (1+ n)→ Thunk (1+ (1+ n) ∗ (1+ c)) a
last (x ::L xs) = Xlast′ x=<< xs

where
last′ : a→ SeqL a c n→ Thunk (1+ n ∗ (1+ c)) a
last′ x nilL = Xreturn x
last′ x (y ::L ys) = Xlast′ y=<< ys

maximum : Seq a (1+ n)→ Thunk (13+ 14 ∗ n+ 4 ∗ nˆ2) a
maximum xs = Xlast =<< sort xs

Fortunately there are better ways to implement this function.

8. Essential laziness
The time bound of the minimum function only requires non-
strictness, not memoisation. To make use of laziness to obtain better
time bounds pay can be used:

abstract
pay : (m : N)→ Thunk n a→ Thunk m (Thunk (n− m) a)
pay x = x

(Here n− m = 0 whenever n< m.)
The correctness of pay is obvious, since

time (Thunk n a) ≤ time (Thunk m (Thunk (n− m) a)).

However, more intuition may be provided by the following inter-
pretations of pay:

1. When pay m t is executed (as part of a sequence of binds) the
thunk t is executed for m steps and then suspended again.

2. When pay m t is executed the thunk t is returned immediately,
but with a new type. If t is never forced, then we have paid m
steps too much. If t is forced exactly once, then we have paid
the right amount. And finally, if t is forced several times, then it
is memoised the first time and later the memoised value is used,
so the amount paid is still a correct upper bound.

The first way of thinking about pay may be more intuitive. Fur-
thermore, if it could be implemented, it would lead to worst-case,
instead of amortised, time bounds (assuming a suitably strict se-
mantics). However, the extra bookkeeping needed by the first ap-
proach seems to make it hard to implement without non-constant
overheads; consider nested occurrences of pay.

8.1 Implicit queues
The interpretations above do not explain why pay is useful. To do
this I will implement implicit queues (Okasaki 1998), FIFO queues

with constant-time head, snoc and tail.3 In this example using pay
corresponds to paying off so-called debits in Okasaki’s banker’s
method (1998), hence the name.

When using the THUNK library debits are represented explicitly
using thunked arguments in data type definitions. Implicit queues
are represented by the following nested data type:

data Q (a : ?) : ? where
empty : Q a
single : a→ Q a
twoZero : a→ a→ Thunk 5 (Q (a× a)) → Q a
twoOne : a→ a→ Thunk 3 (Q (a× a))→ a→ Q a
oneZero : a→ Thunk 2 (Q (a× a)) → Q a
oneOne : a→ Q (a× a) → a→ Q a

The recursive constructors take queues of pairs of elements, placed
after the first one or two elements, and before the last zero or one
elements. Okasaki’s analysis puts a certain number of debits on
the various subqueues. These invariants are reflected in the thunks
above (modulo some details in the analysis).

The snoc function adds one element to the end of a queue.
Okasaki’s analysis tells us that this function performs O(1) un-
shared work and discharges a certain number of debits. We do not
need to keep these two concepts separate (even though we could),
hence the following type for snoc:

snoc : Q a→ a→ Thunk 5 (Q a)
snoc empty x1 =

Xreturnw 3 (single x1)
snoc (single x1) x2 =

X

returnw 3 (twoZero x1 x2 (returnw 4 empty))
snoc (twoZero x1 x2 xs3) x4 =

X

pay 2 xs3 >>= λxs′3 →
X

returnw 0 (twoOne x1 x2 xs′3 x4)

snoc (twoOne x1 x2 xs3 x4) x5 =
X

xs3 >>= λxs′3 →
X

return (twoZero x1 x2 (snoc xs′3 (x4, x5)))

snoc (oneZero x1 xs2) x3 =
X

xs2 >>= λxs′2 →
X

returnw 0 (oneOne x1 xs′2 x3)
snoc (oneOne x1 xs2 x3) x4 =

X

pay 3 (snoc xs2 (x3, x4)) >>= λxs234 →
X

return (oneZero x1 xs234)

Note how the invariants encoded in the data structure, together with
the use of pay, ensure that we can show that the function takes
constant amortised time even though it is recursive.

Note also that using call-by-value or call-by-name to evaluate
snoc leads to worse time bounds. Consider a “saturated” queue q,
built up by repeated application of snoc to empty:

q = twoOne x x (twoOne (x, x) (x, x) (. . . empty . . .) (x, x)) x

In a strict setting it takesO(d) steps to evaluate snoc q x, where d is
the depth of the queue. If snoc q x is evaluated k times, this will take
O(kd) steps, and by choosing k high enough it can be ensured that
the average number of steps needed by snoc is not constant. If call-
by-name is used instead, then the lack of memoisation means that
q = snoc (snoc (. . . empty . . .) x) x will be evaluated to WHNF
each time snoc q x is forced, leading to a similar situation.

It remains to define the view� function (view left), which gives
the first element and the rest of the queue. Forcing the tail takes
longer than just viewing the head, so the following data type is
defined to wrap up the result of view�:

3The presentation used here is due to Ross Paterson (personal commu-
nication), with minor changes.

data View� (a : ?) : ? where
nil� : View� a
cons� : a→ Thunk 4 (Q a)→ View� a

The function itself is defined as follows:

view� : {a : ?} → Q a→ Thunk 1 (View� a)
view� empty = Xreturn nil�
view� (single x1) =

X

return (cons� x1 (returnw 3 empty))
view� (twoZero x1 x2 xs3) =

Xreturn (cons� x1
(pay 3 xs3 >>= λxs′3 →

X

return (oneZero x2 xs′3)))
view� (twoOne x1 x2 xs3 x4) =

Xreturn (cons� x1
(xs3 >>= λxs′3 →

X

return (oneOne x2 xs′3 x4)))

view� {a} (oneZero x1 xs2) =
X

return (cons� x1 (expand =<< view� =<< xs2))
where
expand : View� (a× a)→ Thunk 1 (Q a)
expand nil� = Xreturn empty
expand (cons� (y1, y2) ys3) =

X

return (twoZero y1 y2 (wait 0 ys3))
view� {a} (oneOne x1 xs2 x3) =

X

return (cons� x1 (expand =<< view� xs2))
where
expand : View� (a× a)→ Thunk 3 (Q a)
expand nil� = Xreturnw 1 (single x3)
expand (cons� (y1, y2) ys3) =

X

pay 1 ys3 >>= λys′3 →
X

return (twoOne y1 y2 ys′3 x3)

8.2 Calculating invariants
It should be noted that the library does not help much with the
design of efficient data structures, except perhaps by providing a
clear model of certain aspects of lazy evaluation. It may still be
instructive to see how the invariants used above can be obtained.
Assuming that the general structure of the code has been decided,
that the code is expected to be constant-time, and that the number
of debits on all the subqueues is also expected to be constant, this
is how it can be done:

1. Make all the subqueues thunked, also the one in the oneOne
constructor.

2. Denote the time bounds and the number of debits on the various
subqueues by variables. For instance:

oneZero : a→ Thunk d10 (Q (a× a)) → Q a
oneOne : a→ Thunk d11 (Q (a× a))→ a→ Q a

3. Assume a worst case scenario for how many pay annotations
etc. are necessary. Calculate the amounts to pay using the vari-
ables introduced in the previous step. For instance, the oneOne
case of snoc takes the following form, if s is the time bound for
snoc:

snoc (oneOne x1 xs2 x3) x4 =
X

xs2 >>= λxs′2 → X

pay (s− d10) (snoc xs′2 (x3, x4)) >>= λxs234 →
X

return? (oneZero x1 xs234)

(The function return? could be either return or returnw n, for
some n, depending on the outcome of the analysis.)

4. The basic structure of the code now gives rise to a number of
inequalities which have to be satisfied in order for the code to be

well-typed. For instance, the oneOne case of snoc gives rise to
the inequality 3+ d11+ (s− d10) ≤ s. Solve these inequalities.
If no solution can be found, then one of the assumptions above
was incorrect.

5. Optionally: If, for instance, a pay annotation was unnecessary,
then it may be possible to tighten the time bounds a little, since
a tick can be removed.

9. Correctness
The correctness of the library is established as follows:

1. Two small languages are defined: the simple one without the
Thunk type, and the thunked one with the library functions as
primitives. An erasure function p·q converts thunked terms to
simple ones.

2. A lazy operational semantics is defined for the simple language,
and another operational semantics is defined for the thunked
language. It is shown that, under erasure, the thunked semantics
is equivalent to the simple one.

3. The THUNK library guarantees (see Section 3) are established
for the thunked semantics. Since the two semantics are equiva-
lent this implies that the guarantees hold for erased terms eval-
uated using the simple semantics.

As shown in Section 4 the library is implemented by ignoring
all annotations. Hence what is actually run corresponds directly to
the erased terms mentioned above, so the correctness guarantees
extend also to the actual library (assuming that Agda has an oper-
ational semantics corresponding to the one defined for the simple
language; currently Agda does not have an operational semantics).
There are two caveats to this statement. One is the time needed to
evaluate the library functions. However, they all evaluate in con-
stant time, and I find it reasonable to ignore these times. The other
is the difference between the small languages defined here and a
full-scale language like Agda. These differences are discussed fur-
ther in Section 10.

All nontrivial results discussed in this section have been proved
formally using Agda.4 There are some differences between the for-
malisation presented here and the mechanised one, most notably
that de Bruijn indices are used to represent variables in the mech-
anisation. The verification of some of the extensions discussed in
Sections 10–11 have also been mechanised. For more details, see
Danielsson (2007).

9.1 Languages
Both of the two small languages are simply typed lambda calculi
with natural numbers and products. Using dependently typed lan-
guages for the correctness proof would be possible, but this aspect
of the type systems appears to be largely orthogonal to the correct-
ness result. Furthermore it would have been considerably harder to
mechanise the proofs. Hence I chose to use simply typed languages.

The syntax of contexts, types and terms for the simple language
is defined as follows (with x, y variables):

0 ::= ε | 0, x : τ
τ ::= Nat | τ1 × τ2 | τ1 → τ2
t ::= x | λx.t | t1 · t2
| (t1, t2) | uncurry (λxy.t)
| z | s t | natrec t1 (λxy.t2)

Here natrec is the primitive recursion combinator for natural num-
bers, and uncurry is the corresponding combinator for products.

4Agda currently does not check that all definitions by pattern matching
are exhaustive. Hence care has been taken to check this manually.

Common typing rules

0(x) = τ
0 ` x : τ

0 ` t1 : τ1 → τ2 0 ` t2 : τ1
0 ` t1 · t2 : τ2

0, x : τ1 ` t : τ2
0 ` λx.t : τ1 → τ2

0 ` t1 : τ1 0 ` t2 : τ2
0 ` (t1, t2) : τ1 × τ2

0, x : τ1, y : τ2 ` t : τ
0 ` uncurry (λxy.t) : τ1 × τ2 → τ 0 ` z : Nat

0 ` t : Nat

0 ` s t : Nat

0 ` t1 : τ 0, x : Nat, y : τ ` t2 : τ
0 ` natrec t1 (λxy.t2) : Nat→ τ

Extra typing rules for the thunked language

0 ` t : Thunk n τ
0 ` Xt : Thunk (1+ n) τ

0 ` t : τ
0 ` return t : Thunk 0 τ

0 ` t1 : Thunk n1 τ1 0 ` t2 : τ1 → Thunk n2 τ2
0 ` t1 >>= t2 : Thunk (n1 + n2) τ2

0 ` t : Thunk n τ
0 ` force t : τ

0 ` t : Thunk n τ
0 ` pay m t : Thunk m (Thunk (n− m) τ)

Figure 1. The type systems. All freshness side conditions have
been omitted.

The thunked language extends the syntax with the library prim-
itives as follows:

τ ::= . . . | Thunk n τ
t ::= . . . | Xt | return t | t1 >>= t2 | force t | pay n t

Here n stands for a natural number, not a term of type Nat.
The type systems for the two languages are given in Figure 1. In

the remaining text only well-typed terms are considered. No type
annotations are present in the syntax above, but this is just to sim-
plify the presentation. The mechanised versions of the languages
are fully annotated.

As noted above an erasure operation taking types and terms
from the thunked language to the simple one is defined:

pNatq = Nat
pτ1 × τ2q = pτ1q× pτ2q
pτ1 → τ2q = pτ1q→ pτ2q
pThunk n τq = pτq
pxq = x
pλx.tq = λx.ptq
pt1 · t2q = pt1q · pt2q
p(t1, t2)q = (pt1q, pt2q)
puncurry (λxy.t)q = uncurry (λxy.ptq)
pzq = z
ps tq = s ptq
pnatrec t1 (λxy.t2)q = natrec pt1q (λxy.pt2q)
pXtq = ptq
preturn tq = ptq
pt1 >>= t2q = pt2q · pt1q
pforce tq = ptq
ppay n tq = ptq

Erasure extends in a natural way to contexts, and term erasure can
easily be verified to preserve types,

0 ` t : τ ⇒ p0q ` ptq : pτq.

Free use of force or failure to insert ticks would invalidate all
time complexity guarantees, so a subset of the thunked language is
defined, the run-time terms:

e ::= x | λx.Xe | e1 · e2
| (e1, e2) | uncurry (λxy.Xe)
| z | s e | natrec (Xe1) (λxy.Xe2)
| Xe | return e | e1 >>= e2 | pay n e

Note that all the conventions set up in Section 5 are satisfied by the
run-time terms: every “right-hand side” starts with a tick, force is
not used, and library functions cannot be used partially applied.

9.2 Operational semantics
Let us now define the operational semantics for the two languages.
The semantics, which are inspired by Launchbury’s semantics for
lazy evaluation (1993), define how to evaluate a term to WHNF.

Simple semantics We begin with the semantics for the simple
language. Terms are evaluated in heaps (or environments); lists of
bindings of variables to terms:

6 ::= ∅ | 6, x 7→ t

Heaps have to be well-typed with respect to a context:

ε ` ∅
0 ` 6 0 ` t : τ
0, x : τ ` 6, x 7→ t

(x fresh)

Note that these rules ensure that there are no cycles in the heap.
This is OK since there is no recursive let allowing the definition of
cyclic structures, and even if there were a recursive let the THUNK
library would not be able to make use of the extra sharing anyway.

A subset of the terms are identified as being values:

v ::= λx.t
| (x1, x2) | uncurry (λxy.t)
| z | s x | natrec x1 (λxy.t2)

Note that these values are all in WHNF. Several of the constructors
take variables as arguments; this is to increase sharing. Once again,
THUNK cannot take advantage of this sharing, but I have tried to
keep the semantics close to what a real-world lazy language would
use. (Furthermore the generalised version of the library, described
in Section 11, can take advantage of some of this sharing.)

The big-step operational semantics for the simple language is
inductively defined in Figure 2. The notation 61 | t ⇓n 62 | v
means that t, when evaluated in the heap 61, reaches the WHNF v
in n steps; the resulting heap is62. (Here it is assumed that61 and t
are well-typed with respect to the same context.) In order to reduce
duplication of antecedents an auxiliary relation is used to handle
application: 61 | v1 • x2 ⇓

n 62 | v means that the application of
the value v1 to the variable x2 evaluates to v in n steps, with initial
heap 61 and final heap 62.

In the description of the semantics all variables are assumed to
be globally unique (by renaming, if necessary). The mechanised
version of the semantics uses de Bruijn indices, so name clashes
are not an issue there.

The semantics is syntax-directed, and hence deterministic. Fur-
thermore types are preserved,

01 ` 61 ∧ 01 ` t : τ ∧ 61 | t ⇓
n 62 | v ⇒

∃ 02. 02 ` 62 ∧ 02 ` v : τ.

In the mechanisation this is true by construction. It is easy to
make small mistakes when formalising languages, and working

Values

6 | λx.t ⇓0 6 | λx.t

6 | (t1, t2) ⇓
0 6, x1 7→ t1, x2 7→ t2 | (x1, x2)

6 | uncurry (λxy.t) ⇓0 6 | uncurry (λxy.t)

6 | z ⇓0 6 | z 6 | s t ⇓0 6, x 7→ t | s x

6 | natrec t1 (λxy.t2) ⇓
0 6, x1 7→ t1 | natrec x1 (λxy.t2)

Variables

61 | t ⇓
n 62 | v

61, x 7→ t, 6′ | x ⇓n 62, x 7→ v, 6′ | v

Application

61 | t1 ⇓
n1 62 | v1 62, x2 7→ t2 | v1 • x2 ⇓

n2 63 | v

61 | t1 · t2 ⇓
n1+n2 63 | v

61 | t1[x := x2] ⇓n 62 | v

61 | (λx.t1) • x2 ⇓
1+n 62 | v

61 | x2 ⇓
n1 62 | (x3, y3)

62 | t1[x := x3, y := y3] ⇓n2 63 | v

61 | uncurry (λxy.t1) • x2 ⇓
1+n1+n2 63 | v

61 | x3 ⇓
n1 62 | z 62 | x1 ⇓

n2 63 | v

61 | natrec x1 (λxy.t2) • x3 ⇓
1+n1+n2 63 | v

61 | x3 ⇓
n1 62 | s x′

62, y 7→ natrec x1 (λxy.t2) · x
′
| t2[x := x′] ⇓n2 63 | v

61 | natrec x1 (λxy.t2) • x3 ⇓
1+n1+n2 63 | v

Figure 2. Operational semantics for the simple language. Note that
only reductions (rules with • in the left-hand side) contribute to the
cost of a computation.

with well-typed syntax is nice since many mistakes are caught
early.

The cost model used by the semantics is that of the THUNK
library: only reductions cost something. Nothing is charged for
looking up variables (i.e. following pointers into the heap), for
instance.

Thunked semantics Now on to the thunked semantics, which
only applies to run-time terms. In order to be able to prove cor-
rectness the thunked semantics has more structure in the heap:

6 ::= ∅ | 6, x 7→ e | 6, x 7→n e

As before, only well-typed heaps are considered:

ε ` ∅
0 ` 6 0 ` e : τ
0, x : τ ` 6, x 7→ e

(x fresh)

0 ` 6 0 ` e : Thunk n τ
0, x : τ ` 6, x 7→n e

(x fresh)

The x 7→n e bindings are used to keep track of terms which have
already been paid off, but not yet evaluated. The credit associated
with a heap is the total tick count of such bindings:

credit ∅ = 0
credit (6, x 7→ e) = credit 6
credit (6, x 7→n e) = credit 6 + n

The credit will be used to state the correctness result later.
The thunked semantics uses the following values, which are all

run-time:

v ::= λx.Xe
| (x1, x2) | uncurry (λxy.Xe)
| z | s x | natrec (Xx1) (λxy.Xe2)
| returnn v

Here returnn v stands for n applications of X to return v.
The thunked semantics, denoted by 61 | e �n 62 | v, is

given in Figure 3 (and presented with the same assumptions as the
previous one). The thunked semantics preserves types, analogously
to the simple one. Note that only binds (>>=) introduce bindings
of the form x 7→n e, and that when a variable x bound like
this is evaluated, it is updated with an unannotated binding; this
memoisation is the one tracked by the library.

The following small example illustrates what can be derived
using the thunked semantics:

∅, x 7→1 (λy.Xreturn y) · z | x �1
∅, y 7→ z, x 7→ z | z.

Note that x : Nat and time Nat = 0, but the evaluation takes one
step; the change in heap credit “pays” for this step (compare with
the invariant in Section 9.3).

Equivalence The thunked semantics is both sound,

61 | e �
n 62 | v ⇒ p61q | peq ⇓

n p62q | pvq,

and complete,

p61q | peq ⇓
n 62 | v ⇒

∃ 6′2, v′. p6′2q = 62 ∧ pv
′q = v ∧ 61 | e �

n 6′2 | v
′,

with respect to the simple one. (Here erasure has been extended
in the obvious way to heaps.) These properties are almost trivial,
since the rules for the two semantics are identical up to erasure,
and can be proved by induction over the structure of derivations.
Some auxiliary lemmas, such as pe[x := y]q = peq[x := y], need
to be proved as well.

9.3 Time complexity guarantees
Now that we know that the two semantics are equivalent the only
thing remaining is to verify the time complexity guarantees for the
thunked semantics. It is straightforward to prove by induction over
the structure of derivations that the following invariant holds:

0 ` e : τ 61 | e �
n 62 | v

credit 62 + n ≤ credit 61 + time τ

(The time function was introduced in Section 3.) Note that when a
computation is started in an empty heap this invariant implies that
n ≤ time τ , i.e. the time bound given by the type is an upper bound
on the actual number of computation steps. In the general case the
inequality says that time τ is an upper bound on the actual number
of steps plus the increase in heap credit (which may sometimes
be negative), i.e. time τ is an upper bound on the amortised time
complexity with respect to the heap credit.

By using completeness the invariant above can be simplified:

0 ` e : τ p61q | peq ⇓
n 62 | v

n ≤ credit 61 + time τ

Values

6 | λx.Xe �0 6 | λx.Xe 6 | (e1, e2) �
0 6, x1 7→ e1, x2 7→ e2 | (x1, x2) 6 | uncurry (λxy.Xe) �0 6 | uncurry (λxy.Xe)

6 | z �0 6 | z 6 | s e �0 6, x 7→ e | s x 6 | natrec (Xe1) (λxy.Xe2) �
0 6, x1 7→ e1 | natrec (Xx1) (λxy.Xe2)

Variables

61 | e �
n 62 | v

61, x 7→ e, 6′ | x �n 62, x 7→ v, 6′ | v

61 | e �
n 62 | returnm v

61, x 7→m e, 6′ | x �n 62, x 7→ v, 6′ | v

Library primitives

61 | e �
n 62 | returnm v

61 |
Xe �n 62 | return1+m v

61 | e �
n 62 | v

61 | return e �n 62 | return0 v

61 | e �
n 62 | returnm1 v

61 | pay m2 e �n 62 | returnm2 (returnm1−m2 v)

61 | e2 �
n1 62 | v2 62, x1 7→

m1 e1 | v2 • x1 �
n2 63 | returnm2 v

61 | e1 >>= e2 �
n1+n2 63 | returnm1+m2 v

(if 01 ` e1 : Thunk m1 τ1)

Application

61 | e1 �
n1 62 | v1 62, x2 7→ e2 | v1 • x2 �

n2 63 | v

61 | e1 · e2 �
n1+n2 63 | v

61 | e1[x := x2] �n 62 | returnm v

61 | (λx.Xe1) • x2 �
1+n 62 | return1+m v

61 | x2 �
n1 62 | (x3, y3) 62 | e1[x := x3, y := y3] �n2 63 | returnm v

61 | uncurry (λxy.Xe1) • x2 �
1+n1+n2 63 | return1+m v

61 | x3 �
n1 62 | z 62 | x1 �

n2 63 | returnm v

61 | natrec (Xx1) (λxy.Xe2) • x3 �
1+n1+n2 63 | return1+m v

61 | x3 �
n1 62 | s x′ 62, y 7→ natrec (Xx1) (λxy.Xe2) · x

′
| e2[x := x′] �n2 63 | returnm v

61 | natrec (Xx1) (λxy.Xe2) • x3 �
1+n1+n2 63 | return1+m v

Figure 3. Operational semantics for the thunked language. If the right-hand side of an antecedent is returnm v, then the only possible
type-correct values are returnm v (for suitable m and v); this can be seen as a form of pattern matching.

This statement does not refer to the thunked semantics, but is not
compositional, since 62 does not carry any credit.

10. Extensions
This section discusses some possible extensions of the simple lan-
guages used to prove the library correct. These extensions are
meant to indicate that the correctness proof also applies to a full-
scale language such as Agda.

Partial applications Partial applications of library primitives
were disallowed in Section 5. Other partial applications are al-
lowed, though. As an example, two-argument lambdas can be in-
troduced (with the obvious typing rules):

t ::= . . . | λxy.t v ::= . . . | λxy.t

e ::= . . . | λxy.Xe v ::= . . . | λxy.Xe

The operational semantics are extended as follows:

6 | λxy.t ⇓0 6 | λxy.t

6 | (λxy.t1) • x2 ⇓
0 6 | λy.t1[x := x2]

6 | λxy.Xe �0 6 | λxy.Xe

6 | (λxy.Xe1) • x2 �
0 6 | λy.Xe1[x := x2]

The proofs of equivalence and correctness go through easily with
these rules.

Note that nothing is charged for the applications above; only
when all arguments have been supplied (and hence evaluation of the
right-hand side can commence) is something charged. If this cost
measure is too coarse for a certain application, then two-argument
lambdas should not be used. (Note that λx.Xλy.Xe still works.)

Partial applications of constructors can be treated similarly; in
the mechanised correctness proof the successor constructor s is a
function of type Nat→ Nat.

Inductive types The examples describing the use of THUNK made
use of various data types. Extending the languages with strictly
positive inductive data types or families (Dybjer 1994) should be
straightforward, following the examples of natural numbers and
products.

Equality When THUNK is implemented using a dependently
typed language such as Agda, one inductive family deserves further
scrutiny: the equality (or identity) type. In practice it is likely that
users of the THUNK library need to prove that various equalities
hold. As an example, in the append example given in Section 3 the
equality 1 + ((1 + 2 ∗ m) + (1 + 0)) = 1 + 2 ∗ (1 + m) must
be established in order for the program to type check. If the host
language type checker is smart enough certain such equalities may
well be handled automatically using various decision procedures,

but in the general case the user cannot expect all equalities to be
solved automatically.

One way to supply equality proofs to the type checker is to
use the equality type (≡) together with the subst function, which
expresses substitutivity of (≡):

data (≡) (x : a) : a→ ? where
refl : x ≡ x

subst : (P : a→ ?)→ x ≡ y→ P x→ P y
subst P refl p = p

Assuming a proof

lemma : (m : N)→ 1+ ((1+ 2 ∗ m)+ (1+ 0)) ≡
1+ 2 ∗ (1+ m)

the definition of (++) can be corrected:

(++) : {a : ?} → {m, n : N}
→ Seq a m→ Seq a n
→ Thunk (1+ 2 ∗ m) (Seq a (m+ n))

(++) nil ys = Xreturn ys
(++) {a} {suc m} {n} (x :: xs) ys =

subst (λx→ Thunk x (Seq a (suc m+ n))) (lemma m)
(Xxs++ ys>>= λxsys→ X

return (x :: xsys))

However, now subst and lemma interfere with the evaluation of
(++), so the stated time complexity is no longer correct.

One way to address this problem would be to let subst cost one
tick, and also pay for the equality proofs, just as if (≡) was any
other inductive family. However, this is not what we want to do.
We just want to use the proofs to show that the program is type
correct, we do not want to evaluate them.

A better solution is to erase all equality proofs and inline the
identity function resulting from subst (and do the same for similar
functions derived from the eliminator of (≡)). This is type safe as
long as the underlying logical theory is consistent and only closed
terms are evaluated, since then the only term of type x ≡ y is refl
(and only if x = y). Then subst (fully applied) can be used freely
by the user of the library, without having to worry about overheads
not tracked by the thunk monad.

Implementing proof erasure just for this library goes against
the spirit of the project, though, since modifying a compiler is
not lightweight. Fortunately proof erasure is an important, general
problem in the compilation of dependently typed languages (see
for instance Brady et al. 2004; Paulin-Mohring 1989), so it is
not unreasonable to expect a good compiler to guarantee that the
erasure outlined above will always take place.

Functions like subst have been used in the case studies accom-
panying this paper.

Fixpoints The simple languages introduced above are most likely
terminating, since they are very similar to Gödel’s System T. How-
ever, nothing stops us from adding a fixpoint combinator:

t ::= . . . | fix (λx.t) e ::= . . . | fix (λx.Xe)

0, x : τ ` t : τ
0 ` fix t : τ → τ

61, x 7→ fix (λx.t) | t ⇓n 62 | v

61 | fix (λx.t) ⇓1+n 62 | v

61, x 7→ fix (λx.Xe) | e �n 62 | v

61 | fix (λx.Xe) �1+n 62 | v

The mechanised correctness proof also includes fixpoint operators,
and they do not complicate the development at all.

There is one problem with unrestricted fixpoint operators,
though: they make logical systems inconsistent. This invalidates
the equality proof erasure optimisation discussed above, and hence
including an unrestricted fix may not be a good idea, at least not in
the context of Agda.

11. Paying for deeply embedded thunks
THUNK, as described above, has an important limitation: it is im-
possible to pay for thunks embedded deep in a data structure, with-
out a large overhead. This section describes the problem and out-
lines a solution.

The problem Let us generalise the lazy sequences from Section 7
by letting the cost needed to force tails vary throughout the se-
quence:

CostSeq : N→ ?
CostSeq n = Seq N n
data SeqL (a : ?) : (n : N)→ CostSeq n→ ? where

nilL : SeqL a 0 nil
(::L) : a→ Thunk c (SeqL a n cs)

→ SeqL a (1+ n) (c :: cs)

Here SeqL a n cs stands for a lazy sequence of length n, containing
elements of type a, where the costs needed to force the tails of the
sequence is given by the elements of cs.

Now, assume that xs : SeqL a n cs, where

cs = 0 :: 0 :: . . . :: 0 :: 2 :: 4 :: . . . :: nil.

Assume further that the analysis of an algorithm requires that the
first debit in xs is paid off, resulting in xs′ : SeqL a n cs′ where

cs′ = 0 :: 0 :: . . . :: 0 :: 1 :: 4 :: . . . :: nil.

In order to accomplish this the type of a tail embedded deep down
in xs needs to be changed. This requires a recursive function, which
does not take constant time to execute, and this is likely to ruin the
analysis of the algorithm.

The solution A way around this problem is to generalise the type
of pay:

payg : (C : Ctxt)→ (m : N)
→ C [Thunk n a]→ Thunk m (C [Thunk (n− m) a])

Here C is a context enabling payments deep down in the data
structure. These contexts have to be quite restrictive, to ensure
correctness of the analysis. For instance, they should have at most
one hole, to ensure that only one thunk is paid off. Similarly one
should not be allowed to pay off the codomain of a function, or the
element type of a list; the following types are clearly erroneous:

payFun : (m : N)→ (a→ Thunk n b)
→ Thunk m (a→ Thunk (n− m) b)

payList : (m : N)→ List (Thunk n a)
→ Thunk m (List (Thunk (n− m) a))

For instance, if payList were allowed one could take a list with n
elements, all of type Thunk 1 N, and obtain a List (Thunk 0 N) by
just paying for one computation step, instead of n.

To avoid such problems the following type of contexts is de-
fined:

data Ctxt : ?1 where
• : Ctxt
const• : ? → Ctxt
Thunk• : N→ Ctxt→ Ctxt

(•×) : Ctxt→ ? → Ctxt
(×•) : ? → Ctxt→ Ctxt

(The type ?1 is a type of large types.) These contexts can be turned
into types by instantiating the holes:

· [·] : Ctxt→ ?→ ?
• [b] = b
(const• a) [b] = a
(Thunk• n C) [b] = Thunk n (C [b])
(C •× a) [b] = C [b]× a
(a ×• C) [b] = a× C [b]

This definition of contexts may at first seem rather restrictive,
since no recursive type constructors are included. However, when
using dependent types one can define new types by explicit recur-
sion. A variant of SeqL can for instance be defined as follows:

SeqL : ?→ CostSeq n→ ?
SeqL a nil = Unit
SeqL a (c :: cs) = a× Thunk c (SeqL a cs)

(Here Unit is the unit type.) By using this type and payg it is
now possible to pay off any of the tails in the sequence with only
constant overhead:

payL : {a : ?} → (cs1 : CostSeq n1)→ (c′ : N)
→ SeqL a (cs1 ++ c :: cs2)
→ Thunk (1+ c′) (SeqL a (cs1 ++ (c− c′) :: cs2))

payL {a} cs1 c′ xs = X

cast lemma2 (payg (C a cs1) c′ (cast lemma1 xs))
where
C : ?→ CostSeq n→ Ctxt
C a nil = a ×• •
C a (c :: cs) = a ×• Thunk• c (C a cs)

lemma1 : SeqL a (cs1 ++ c :: cs2)
?
≡

(C a cs1) [Thunk c (SeqL a cs2)]
lemma2 :

Thunk c′ ((C a cs1) [Thunk (c− c′) (SeqL a cs2)])
?
≡

Thunk c′ (SeqL a (cs1 ++ (c− c′) :: cs2))

The equality (
?
≡) used above is a variant of the one introduced in

Section 10, but this one relates types:

(
?
≡) : ?→ ?→ ? cast : a

?
≡ b→ a→ b

The generalised pay can be used to analyse banker’s queues
(Okasaki 1998), which exhibit the problem with deep payments
mentioned above. Space considerations preclude further discussion
of this analysis, though. Interested readers are referred to the source
code of the analysis for details.

Finally note that payg has been proved correct, using the same
(mechanised) approach as above; for details see Danielsson (2007).

12. Limitations
This section discusses some limitations of THUNK.

Dependent bind One thing which may have bothered users famil-
iar with dependently typed languages is that the second (function)
argument to bind is non-dependent. This could be fixed by replac-
ing (>>=) with a more general function:

bind : (f : a→ N)→ (b : a→ ?)
→ (x : Thunk m a)→ ((y : a)→ Thunk (f y) (b y))
→ Thunk (m+ f (force x)) (b (force x))

However, this would not in itself be very useful: force is abstract
(see Section 4), so force x would not evaluate in the type of bind.

One way to work around this is by providing the library user with
a number of axioms specifying how the library primitives evaluate.
This can be useful anyway, since it makes it possible to prove
ordinary functional properties of annotated code inside Agda. This
solution is rather complicated, though.

A better approach is perhaps to avoid the dependently typed
bind, and this can often be achieved by using indexed types. Con-
sider the following two variants of the append function:

(++) : (xs : List a)→ List a
→ Thunk (1+ 2 ∗ length xs) (List a)

(++) : Seq a m→ Seq a n
→ Thunk (1+ 2 ∗ m) (Seq a (m+ n))

The result type of the first function depends on the value of the first
list. This is not the case for the second function, where the result
type instead depends on the index m. Putting enough information in
type indices is often a good way to avoid the need for a dependent
bind.

Aliasing Another limitation is that the library cannot track thunk
aliases, except in the limited way captured by pay and the 7→n

bindings of the thunked operational semantics. If x, y : Thunk n a
are aliases for each other, and x is forced, then the library has no
way of knowing that y is also forced; the type of y does not change
just because x is forced. Okasaki (1998) uses aliases in this way to
eliminate amortisation, through a technique called scheduling.

Interface stability If thunked types are exposed to external users
of a data structure library then another problem shows up: the
types of functions analysed using THUNK are not robust against
small changes in the implementation. A function such as maximum,
introduced in Section 7, has a rather precise type:

maximum : Seq a (1+ n)→ Thunk (13+ 14 ∗ n+ 4 ∗ nˆ2) a

A type based on big O notation would be more stable:

maximum : Seq a (1+ n)→ Thunk O(nˆ2) a

However, expressing big O notation in a sound way without a
dedicated type system seems to be hard. It is probably a good idea
to use force to avoid exporting thunked types.

13. Related work
Time complexity for lazy evaluation Several approaches to
analysing lazy (call-by-need) time complexity have been developed
(Wadler 1988; Bjerner 1989; Bjerner and Holmström 1989; Sands
1995; Okasaki 1998; Moran and Sands 1999). Many of them are
general, but have been described as complicated to use in practice
(Okasaki 1998).

It seems to be rather uncommon to actually use these techniques
to analyse non-trivial programs. The main technique in use is prob-
ably Okasaki’s banker’s method (1998), which is mainly used for
analysing purely functional data structures, and which this work is
based on. As described in Section 12 the banker’s method is more
general than the one described here, but it can also be seen as more
complicated, since it distinguishes between several kinds of cost
(shared and unshared) which are collapsed in this work.

Ross Paterson (personal communication) has independently
sketched an analysis similar to the one developed here, but without
dependent types or the annotated monad.

The ticks used in this work are related to those used by Moran
and Sands (1999), but their theory does not require ticks to be in-
serted to ensure that computation steps are counted; ticks are in-
stead used to represent and prove improvements and cost equiva-
lences, with the help of a tick algebra.

Benzinger (2004) describes a system for automated complex-
ity analysis of higher-order functional programs. The system is

parametrised on an annotated operational semantics, so it may be
able to handle a call-by-need evaluation strategy. No such experi-
ments seem to have been performed, though, so it is unclear how
practical it would be.

Tracking resource usage using types Several frameworks for
tracking resource usage using types have been developed. Usually
these frameworks do not address lazy evaluation (for instance Crary
and Weirich 2000; Constable and Crary 2002; Rebón Portillo et al.
2003; Brady and Hammond 2006; Hofmann and Jost 2006). There
can still be similarities; for instance, the system of Hofmann and
Jost uses amortised analysis to bound heap space usage, with po-
tential tracked by types.

Hughes, Pareto, and Sabry (1996) have constructed a type sys-
tem which keeps track of bounds on the sizes of values in a lazy
language with data and codata. This information is used to guaran-
tee termination or productivity of well-typed terms; more precise
time bounds are not handled.

The use of an annotated monad to combine time complexities
of subexpressions appears to be novel. However, there is a close
connection to Capretta’s partiality monad (2005), which is a coin-
ductive type constructor ·ν defined roughly as follows:

codata ·ν (a : ?) : ? where
return : a → aν

step : aν → aν

The following definition of bind turns it into a monad:

(>>=) : aν → (a→ bν)→ bν

return x>>= f = f x
step x >>= f = step (x>>= f)

Compare the definitions above to the following shallow embedding
of the thunk monad:

data Thunk (a : ?) : N→ ? where
return : a → Thunk a 0
X : Thunk a n→ Thunk a (1+ n)

(>>=) : Thunk a m→ (a→ Thunk b n)→ Thunk b (m+ n)
return x >>= f = f x
(Xx) >>= f = Xx>>= f

The only difference is that the thunk monad is inductive, and
annotated with the number of ticks. This indicates that it may be
interesting to explore the consequences of making the thunk monad
coinductive, annotated with the coinductive natural numbers (N
extended with ω).

14. Conclusions
A simple, lightweight library for semiformal verification of the time
complexity of purely functional data structures has been described.
The usefulness of the library has been demonstrated and its limita-
tions discussed. Furthermore the semantics of the library has been
precisely defined, the time complexity guarantees have been ver-
ified with respect to the semantics, and the correctness proof has
been checked using a proof assistant.

Acknowledgments
I would like to thank Ulf Norell, who has taught me a lot about
dependently typed programming, discussed many aspects of this
work, and fixed many of the bugs in Agda and AgdaLight that I
have reported. I am also grateful to Ross Paterson, who showed
me his analysis of implicit queues which turned out to yield a nice
and compact example. Other people who deserve thanks are Jeremy
Gibbons, Martin Hofmann, Patrik Jansson, Geraint Jones, David
Sands, Anton Setzer, and some anonymous reviewers.

References
Ralph Benzinger. Automated higher-order complexity analysis. Theoretical

Computer Science, 318:79–103, 2004.
Bror Bjerner and Sören Holmström. A compositional approach to time

analysis of first order lazy functional programs. In FPCA ’89, pages
157–165, 1989.

Bror Bjerner. Time Complexity of Programs in Type Theory. PhD thesis,
Department of Computer Science, University of Göteborg, 1989.

Edwin Brady and Kevin Hammond. A dependently typed framework for
static analysis of program execution costs. In IFL 2005, volume 4015 of
LNCS, pages 74–90, 2006.

Edwin Brady, Conor McBride, and James McKinna. Inductive families
need not store their indices. In TYPES 2003: Types for Proofs and
Programs, volume 3085 of LNCS, pages 115–129, 2004.

Venanzio Capretta. General recursion via coinductive types. Logical
Methods in Computer Science, 1(2):1–28, 2005.

Robert L. Constable and Karl Crary. Reflections on the Foundations of
Mathematics: Essays in Honor of Solomon Feferman, chapter Compu-
tational Complexity and Induction for Partial Computable Functions in
Type Theory. A K Peters Ltd, 2002.

Karl Crary and Stephanie Weirich. Resource bound certification. In POPL
’00, pages 184–198, 2000.

Nils Anders Danielsson. A formalisation of the correctness result from
“Lightweight semiformal time complexity analysis for purely functional
data structures”. Technical Report 2007:16, Department of Computer
Science and Engineering, Chalmers University of Technology, 2007.

Peter Dybjer. Inductive families. Formal Aspects of Computing, 6(4):440–
465, 1994.

Ralf Hinze and Ross Paterson. Finger trees: A simple general-purpose data
structure. Journal of Functional Programming, 16(2):197–217, 2006.

Martin Hofmann and Steffen Jost. Type-based amortised heap-space anal-
ysis. In ESOP 2006, volume 3924 of LNCS, pages 22–37, 2006.

John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of
reactive systems using sized types. In POPL ’96, pages 410–423, 1996.

Haim Kaplan and Robert E. Tarjan. Purely functional, real-time deques
with catenation. Journal of the ACM, 46(5):577–603, 1999.

Haim Kaplan, Chris Okasaki, and Robert E. Tarjan. Simple confluently
persistent catenable lists. SIAM Journal on Computing, 30(3):965–977,
2000.

John Launchbury. A natural semantics for lazy evaluation. In POPL ’93,
pages 144–154, 1993.

Daan Leijen and Erik Meijer. Domain specific embedded compilers. In 2nd
USENIX Conference on Domain-Specific Languages (DSL ’99), pages
109–122, 1999.

Andrew Moran and David Sands. Improvement in a lazy context: an
operational theory for call-by-need. In POPL ’99, pages 43–56, 1999.

Ulf Norell. Towards a practical programming language based on depen-
dent type theory. PhD thesis, Chalmers University of Technology and
Göteborg University, 2007.

Chris Okasaki. Purely Functional Data Structures. Cambridge University
Press, 1998.

Christine Paulin-Mohring. Extracting Fω’s programs from proofs in the
calculus of constructions. In POPL ’89, pages 89–104, 1989.

Simon Peyton Jones, editor. Haskell 98 Language and Libraries: The
Revised Report. Cambridge University Press, 2003.

Álvaro J. Rebón Portillo, Kevin Hammond, Hans-Wolfgang Loidl, and Pe-
dro Vasconcelos. Cost analysis using automatic size and time inference.
In IFL 2002, volume 2670 of LNCS, pages 232–247, 2003.

David Sands. A naı̈ve time analysis and its theory of cost equivalence.
Journal of Logic and Computation, 5(4):495–541, 1995.

The Agda Team. The Agda Wiki. Available at http://www.cs.
chalmers.se/~ulfn/Agda/, 2007.

Philip Wadler. Strictness analysis aids time analysis. In POPL ’88, pages
119–132, 1988.

