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Overview
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A Pure Functional Language

I C++ templates are Turing Complete

I Originally intended to allow generic function definitions

I All calculations are performed at compile time

I Types are the result, but the types themselves are untyped
I Often referred to as metaprogramming (TMP)

I ...so too involving metafunctions, metavalues and
metaexpressions

I The language is pure - no IO beyond error messages

template <class T> T add(T x, T y) { return x+y; }

template <class T, class ...Ts> struct Foo { using type = T; };

using f_t = Foo<int,double,char**>::type;
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Missing Features

I So, a pure functional language

I C++ standard library support; e.g. “type traits”

I ...but we would like a little more:

Shopping List:

I Higher Order Functions

I Currying

I Operators

I Lambda Functions

I Type Checking

I Type Inference

I Laziness

I Type Classes
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Higher Order Functions (HOFs) and Currying

I HOFs can be achieved
I without standard library support;
I using idiomatic TMP conventions

I Naive metafunction application, simply “returns” itself
I e.g. (id 43) returns (id 43)

I First order metavalues can be extracted ad-hoc...
I and used in any (type) expression: let n = getValue $ id 43

I But näıve higher-order metafunctions are not types...
I by analogy: let f = getValue $ id

I We can at least wrap metafunctions
I So allowing, say: let f = quote id

I Combinators such as invoke expect wrapped metafunctions:

$ invoke (quote id) 43
43



Currying

With the simple invoke and quote, we can support HOFs:

$ let id ’ = invoke (quote id) (quote id)
$ invoke id’ 43
43

I But invoke with a curried expression will fail: invoke (quote id)

I Here, quote id (and so id) 1 2 expects a single argument
I ...and so too the failing: invoke (quote id) (quote id) 43

I We now find the lack of currying a significant obstacle

1Hereafter, assume metafunctions have already been wrapped using quote
2As such, they are referred to as metafunction classes (MFCs)



Intrinsic Currying

I Function application in Haskell is written e1 e2

I ...where e2 is an arbitrary expression; and
I e1 is an expression with a function type.

I Application associates to the left

I So the parentheses may be omitted in (f x) y

I Function application is implicitly curried

I We seek a metafunction evaluator eval<e1,e2[,...]>

I Ellipsis represents an optional trailing list of type arguments

I Metafunction application should also associate to the left

I Hence eval<eval<F,X>,Y> could be denoted as eval<F,X,Y>
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Code Re-use and Functional Programming

I Common (type) lists are a basic but powerful data structure
I HOFs such as map and fold can create many list functions:3

> let sum = foldr (+) 0
> let length = foldr (\x n−> 1 + n) 0
> let reverse = foldr (\x xs−> xs ++ [x]) []
> let map f = foldr (\x xs−> f x : xs) []
> let foldl f v xs = foldr (\x g−> (\a−> g (f a x))) id xs v
> let scanr f z = foldr (hcons f) [z]
| where hcons g x xss = (x ‘g‘ head xss) : xss

I Note the subtle and intrinsic currying used above
I The f argument to map need not be unary

(the map result may be a list of functions)
I The use of foldr in foldl is given four arguments
I The hcons function application in scanr is clearly curried

I Even simple expressions such as ( foldr id 43 [id ])
...expect curried evaluation of (id id 43)
...which, as before, will fail when evaluated using invoke

3See Hutton, G. “A tutorial on the universality and expressiveness of fold” (1999)
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Reflecting on Aims

I Without implicit currying, we cannot build on FP algorithms

I We require an evaluation mechanism, but invoke is too weak

I Our aim is to build the evaluator itself using a (bootstrap) fold

I Targeting a concise, trusted, verified kernel

I Let the fold guide us past corner cases

I The left fold below will drive all our currying evaluators

I Idiomatically variadic; private; implementation level API:

template <class, class Z, class...>

struct ifoldl

{ using type = Z; };

template <class F, class Z, class T, class... Ts>

struct ifoldl<F,Z,T,Ts...>

{ using type = typename ifoldl<F,invoke<F,Z,T>,Ts...>::type; };

What binary combining operation will produce the evaluator?



3 Different Implicitly Currying Left-Folding Evaluators

1. Method 1: Classic
I Metafunctions with a single, intrinsic non-zero arity
I Positive alignment with Haskell/OCaml norms
I The simplest implementation: 30 lines

2. Method 2: Variadic
I Metafunctions with one or more valid arities, including zero
I Accommodates idiomatic nullary & variadic metafunctions
I Explicit, incremental type-check of each additional argument
I Albeit a heuristic search; stops (SFINAE) before the first failure

3. Method 3: Numeric
I Metafunctions with a single, explicit numeric arity
I A metafunction’s arity is reduced by one with each argument
I A step towards type-checking, but insufficient alone:

I Arity of (const :: a −> b −> a)?
I Count the arrows outwith parentheses; const has arity 2
I But the arity of (const x) depends on x
I (const id) has arity 2; (const const) has arity 3

I This scheme only works as all functions can have arity of 1



Method 1: Invocation with Conditional Currying

Precondition: f is a possibly curried metafunction class
Precondition: t is an arbitrary type
Postcondition: g is either a type, or curried metafunction class

1: function Curry-invoke(f , t)
2: if IsValidExpression(f (t)) then
3: g ← f (t)
4: else
5: g ← Curry(f , t)
6: end if
7: return g
8: end function



Method 2: Heuristic, Recursive Invocation

Precondition: f is a possibly curried metafunction class
Precondition: t is an arbitrary type
Postcondition: g is a curried metafunction class

1: function Curry-invoke-peek(f , t)
2: if IsValidExpression(f ()) ∧
¬IsValidExpression(f (t)) then

3: f ′ ← f ()
4: g ← Curry-invoke-peek(f ′, t)
5: else
6: g ← Curry(f , t)
7: end if
8: return g
9: end function



Using the Curtains API

template <class, class, class> struct foldr_c;

template <class F, class Z>

struct foldr_c<F,Z,list<>>

{ using type = Z; };

template <class F, class Z, class T, class... Ts>

struct foldr_c<F,Z,list<T,Ts...>>

{ using type = eval<F,T,eval<foldr,F,Z,list<Ts...>>>; };

using foldr = quote_c<foldr_c>;

I As before, consider in Haskell: ( foldr id 43 [id ])

I This reduces to (id id 43) and then to (43).

I Such an operation uses currying; all functions are unary

I So too eval<foldr,id,char,list<id>> ≡ char

I All fold expressions from earlier can be created similarly



Using the Curtains API

Likewise, the following simple Haskell expression:

const map () (1+) [0,1,2]

...can now be constructed in C++ TMP using the Curtains API:

eval<const_,map,void,eval<add,ic<1>>,ilist<0,1,2>>
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Defining Metafunctions using Equations

I Surprisingly a new way to define TMP HOFs becomes possible

I Using eval, the following nested definition seems reasonable:

template <class F, class G>

struct compose_t

{

template <class T>

using m_invoke = eval<F,eval<G,T>>;

};

I Nevertheless, the syntax is less than ideal; a little convoluted

I The definition is analagous to the following Haskell form:

(.) f g = \x−> f (g x)

I It can be convenient to also use an equational definition...
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Currently we have:

template <class F, class G>

struct compose_t

{

template <class T>

using m_invoke = eval<F,eval<G,T>>;

};

(.) f g = \x−> f (g x)

Now we can use:

template <class F, class G, class T>

using compose_t = eval<F,eval<G,T>>;

...which is comparable to the equational definition of compose:

(.) f g x = f (g x)
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Testing Compose

template <class F, class G, class T>

using compose_t = eval<F,eval<G,T>>;

I Let’s test a composition involving non-unary metafunctions

I Consider Haskell’s ((.) const id 1 2)

I ...and Curtains’ eval<compose,const_,id,int,char>

I As expected, they reduce to 1 and int respectively



The Strict Fixed-point Combinator

I Laziness allows Haskell a concise fixed-point combinator:

fix f = f (fix f)

I Languages with eager evaluation, can use an η-expanded form

I This form is known as the Z combinator (OCaml):

let rec fix f x = f (fix f) x;;

I The Curtains definition of fix is isomorphic:

template <class,class> struct fix_c;

using fix = quote<fix_c>;

template <class F, class X>

struct fix_c { using type = eval<F,eval<fix,F>,X>>; };
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Conclusion and Future Work

I Curtains: a TMP library for intrinsic currying
I Equational definition for higher order metafunctions
I Supports nullary and variadic metafunctions
I Check out the code on Bitbucket:

https://bitbucket.org/pgk/curtains
I Further folds are defined there; and in the TFP paper

Future work will target:

I Laziness

I Infix Operators

I Type Checking - perhaps via C++ Concepts

I Algebraic Data Types

I Type Classes

https://bitbucket.org/pgk/curtains

