
Intrinsic Currying for C++ Template
Metaprograms

Symposium on Trends in Functional Programming 2018

Paul Keir 1 Andrew Gozillon 1 Seyed Hossein HAERI 2

1School of Engineering and Computing
University of the West of Scotland, Paisley, UK

2ICTEAM Institute
Université catholique de Louvain, Louvain-la-Neuve, Belgium

June 11th, 2018

Overview

I C++ Template Metaprogramming

I Notably Absent Functional Programming Features

I The Benefits of Currying

I The Curtains Metaprogramming Library

I Interesting Observations

I Related Work

I Conclusions and Future Work

A Pure Functional Language

I C++ templates are Turing Complete

I Originally intended to allow generic function definitions

I All calculations are performed at compile time

I Types are the result, but the types themselves are untyped
I Often referred to as metaprogramming (TMP)

I ...so too involving metafunctions, metavalues and
metaexpressions

I The language is pure - no IO beyond error messages

template <class T> T add(T x, T y) { return x+y; }

template <class T, class ...Ts> struct Foo { using type = T; };

using f_t = Foo<int,double,char**>::type;

A Pure Functional Language

I C++ templates are Turing Complete

I Originally intended to allow generic function definitions

I All calculations are performed at compile time

I Types are the result, but the types themselves are untyped
I Often referred to as metaprogramming (TMP)

I ...so too involving metafunctions, metavalues and
metaexpressions

I The language is pure - no IO beyond error messages

template <class T> T add(T x, T y) { return x+y; }

template <class T, class ...Ts> struct Foo { using type = T; };

using f_t = Foo<int,double,char**>::type;

Missing Features

I So, a pure functional language

I C++ standard library support; e.g. “type traits”

I ...but we would like a little more:

Shopping List:

I Higher Order Functions

I Currying

I Operators

I Lambda Functions

I Type Checking

I Type Inference

I Laziness

I Type Classes

Missing Features

I So, a pure functional language

I C++ standard library support; e.g. “type traits”

I ...but we would like a little more:

Shopping List:

I Higher Order Functions

I Currying

I Operators

I Lambda Functions

I Type Checking

I Type Inference

I Laziness

I Type Classes

Higher Order Functions (HOFs) and Currying

I HOFs can be achieved
I without standard library support;
I using idiomatic TMP conventions

I Naive metafunction application, simply “returns” itself
I e.g. (id 43) returns (id 43)

I First order metavalues can be extracted ad-hoc...
I and used in any (type) expression: let n = getValue $ id 43

I But näıve higher-order metafunctions are not types...
I by analogy: let f = getValue $ id

I We can at least wrap metafunctions
I So allowing, say: let f = quote id

I Combinators such as invoke expect wrapped metafunctions:

$ invoke (quote id) 43
43

Currying

With the simple invoke and quote, we can support HOFs:

$ let id ’ = invoke (quote id) (quote id)
$ invoke id’ 43
43

I But invoke with a curried expression will fail: invoke (quote id)

I Here, quote id (and so id) 1 2 expects a single argument
I ...and so too the failing: invoke (quote id) (quote id) 43

I We now find the lack of currying a significant obstacle

1Hereafter, assume metafunctions have already been wrapped using quote
2As such, they are referred to as metafunction classes (MFCs)

Intrinsic Currying

I Function application in Haskell is written e1 e2

I ...where e2 is an arbitrary expression; and
I e1 is an expression with a function type.

I Application associates to the left

I So the parentheses may be omitted in (f x) y

I Function application is implicitly curried

I We seek a metafunction evaluator eval<e1,e2[,...]>

I Ellipsis represents an optional trailing list of type arguments

I Metafunction application should also associate to the left

I Hence eval<eval<F,X>,Y> could be denoted as eval<F,X,Y>

Intrinsic Currying

I Function application in Haskell is written e1 e2

I ...where e2 is an arbitrary expression; and
I e1 is an expression with a function type.

I Application associates to the left

I So the parentheses may be omitted in (f x) y

I Function application is implicitly curried

I We seek a metafunction evaluator eval<e1,e2[,...]>

I Ellipsis represents an optional trailing list of type arguments

I Metafunction application should also associate to the left

I Hence eval<eval<F,X>,Y> could be denoted as eval<F,X,Y>

Code Re-use and Functional Programming

I Common (type) lists are a basic but powerful data structure
I HOFs such as map and fold can create many list functions:3

> let sum = foldr (+) 0
> let length = foldr (\x n−> 1 + n) 0
> let reverse = foldr (\x xs−> xs ++ [x]) []
> let map f = foldr (\x xs−> f x : xs) []
> let foldl f v xs = foldr (\x g−> (\a−> g (f a x))) id xs v
> let scanr f z = foldr (hcons f) [z]
| where hcons g x xss = (x ‘g‘ head xss) : xss

I Note the subtle and intrinsic currying used above
I The f argument to map need not be unary

(the map result may be a list of functions)
I The use of foldr in foldl is given four arguments
I The hcons function application in scanr is clearly curried

I Even simple expressions such as (foldr id 43 [id])
...expect curried evaluation of (id id 43)
...which, as before, will fail when evaluated using invoke

3See Hutton, G. “A tutorial on the universality and expressiveness of fold” (1999)

Code Re-use and Functional Programming

I Common (type) lists are a basic but powerful data structure
I HOFs such as map and fold can create many list functions:3

> let sum = foldr (+) 0
> let length = foldr (\x n−> 1 + n) 0
> let reverse = foldr (\x xs−> xs ++ [x]) []
> let map f = foldr (\x xs−> f x : xs) []
> let foldl f v xs = foldr (\x g−> (\a−> g (f a x))) id xs v
> let scanr f z = foldr (hcons f) [z]
| where hcons g x xss = (x ‘g‘ head xss) : xss

I Note the subtle and intrinsic currying used above
I The f argument to map need not be unary

(the map result may be a list of functions)
I The use of foldr in foldl is given four arguments
I The hcons function application in scanr is clearly curried

I Even simple expressions such as (foldr id 43 [id])
...expect curried evaluation of (id id 43)
...which, as before, will fail when evaluated using invoke

3See Hutton, G. “A tutorial on the universality and expressiveness of fold” (1999)

Reflecting on Aims

I Without implicit currying, we cannot build on FP algorithms

I We require an evaluation mechanism, but invoke is too weak

I Our aim is to build the evaluator itself using a (bootstrap) fold

I Targeting a concise, trusted, verified kernel

I Let the fold guide us past corner cases

I The left fold below will drive all our currying evaluators

I Idiomatically variadic; private; implementation level API:

template <class, class Z, class...>

struct ifoldl

{ using type = Z; };

template <class F, class Z, class T, class... Ts>

struct ifoldl<F,Z,T,Ts...>

{ using type = typename ifoldl<F,invoke<F,Z,T>,Ts...>::type; };

What binary combining operation will produce the evaluator?

3 Different Implicitly Currying Left-Folding Evaluators

1. Method 1: Classic
I Metafunctions with a single, intrinsic non-zero arity
I Positive alignment with Haskell/OCaml norms
I The simplest implementation: 30 lines

2. Method 2: Variadic
I Metafunctions with one or more valid arities, including zero
I Accommodates idiomatic nullary & variadic metafunctions
I Explicit, incremental type-check of each additional argument
I Albeit a heuristic search; stops (SFINAE) before the first failure

3. Method 3: Numeric
I Metafunctions with a single, explicit numeric arity
I A metafunction’s arity is reduced by one with each argument
I A step towards type-checking, but insufficient alone:

I Arity of (const :: a −> b −> a)?
I Count the arrows outwith parentheses; const has arity 2
I But the arity of (const x) depends on x
I (const id) has arity 2; (const const) has arity 3

I This scheme only works as all functions can have arity of 1

Method 1: Invocation with Conditional Currying

Precondition: f is a possibly curried metafunction class
Precondition: t is an arbitrary type
Postcondition: g is either a type, or curried metafunction class

1: function Curry-invoke(f , t)
2: if IsValidExpression(f (t)) then
3: g ← f (t)
4: else
5: g ← Curry(f , t)
6: end if
7: return g
8: end function

Method 2: Heuristic, Recursive Invocation

Precondition: f is a possibly curried metafunction class
Precondition: t is an arbitrary type
Postcondition: g is a curried metafunction class

1: function Curry-invoke-peek(f , t)
2: if IsValidExpression(f ()) ∧
¬IsValidExpression(f (t)) then

3: f ′ ← f ()
4: g ← Curry-invoke-peek(f ′, t)
5: else
6: g ← Curry(f , t)
7: end if
8: return g
9: end function

Using the Curtains API

template <class, class, class> struct foldr_c;

template <class F, class Z>

struct foldr_c<F,Z,list<>>

{ using type = Z; };

template <class F, class Z, class T, class... Ts>

struct foldr_c<F,Z,list<T,Ts...>>

{ using type = eval<F,T,eval<foldr,F,Z,list<Ts...>>>; };

using foldr = quote_c<foldr_c>;

I As before, consider in Haskell: (foldr id 43 [id])

I This reduces to (id id 43) and then to (43).

I Such an operation uses currying; all functions are unary

I So too eval<foldr,id,char,list<id>> ≡ char

I All fold expressions from earlier can be created similarly

Using the Curtains API

Likewise, the following simple Haskell expression:

const map () (1+) [0,1,2]

...can now be constructed in C++ TMP using the Curtains API:

eval<const_,map,void,eval<add,ic<1>>,ilist<0,1,2>>

Using the Curtains API

Likewise, the following simple Haskell expression:

const map () (1+) [0,1,2]

...can now be constructed in C++ TMP using the Curtains API:

eval<const_,map,void,eval<add,ic<1>>,ilist<0,1,2>>

Defining Metafunctions using Equations

I Surprisingly a new way to define TMP HOFs becomes possible

I Using eval, the following nested definition seems reasonable:

template <class F, class G>

struct compose_t

{

template <class T>

using m_invoke = eval<F,eval<G,T>>;

};

I Nevertheless, the syntax is less than ideal; a little convoluted

I The definition is analagous to the following Haskell form:

(.) f g = \x−> f (g x)

I It can be convenient to also use an equational definition...

Defining Metafunctions using Equations

Currently we have:

template <class F, class G>

struct compose_t

{

template <class T>

using m_invoke = eval<F,eval<G,T>>;

};

(.) f g = \x−> f (g x)

Now we can use:

template <class F, class G, class T>

using compose_t = eval<F,eval<G,T>>;

...which is comparable to the equational definition of compose:

(.) f g x = f (g x)

Defining Metafunctions using Equations

Currently we have:

template <class F, class G>

struct compose_t

{

template <class T>

using m_invoke = eval<F,eval<G,T>>;

};

(.) f g = \x−> f (g x)

Now we can use:

template <class F, class G, class T>

using compose_t = eval<F,eval<G,T>>;

...which is comparable to the equational definition of compose:

(.) f g x = f (g x)

Testing Compose

template <class F, class G, class T>

using compose_t = eval<F,eval<G,T>>;

I Let’s test a composition involving non-unary metafunctions

I Consider Haskell’s ((.) const id 1 2)

I ...and Curtains’ eval<compose,const_,id,int,char>

I As expected, they reduce to 1 and int respectively

The Strict Fixed-point Combinator

I Laziness allows Haskell a concise fixed-point combinator:

fix f = f (fix f)

I Languages with eager evaluation, can use an η-expanded form

I This form is known as the Z combinator (OCaml):

let rec fix f x = f (fix f) x;;

I The Curtains definition of fix is isomorphic:

template <class,class> struct fix_c;

using fix = quote<fix_c>;

template <class F, class X>

struct fix_c { using type = eval<F,eval<fix,F>,X>>; };

The Strict Fixed-point Combinator

I Laziness allows Haskell a concise fixed-point combinator:

fix f = f (fix f)

I Languages with eager evaluation, can use an η-expanded form

I This form is known as the Z combinator (OCaml):

let rec fix f x = f (fix f) x;;

I The Curtains definition of fix is isomorphic:

template <class,class> struct fix_c;

using fix = quote<fix_c>;

template <class F, class X>

struct fix_c { using type = eval<F,eval<fix,F>,X>>; };

Related Work

I A. Sinkovics & Z. Porkoláb (2009): “Expressing C++
Template Metaprograms as Lambda Expressions”

I A. Sinkovics (2011) “Nested Lambda Expressions with Let
Expressions in C++ Template Metaprograms”

I Louis Dionne (2013) “Hana”

I Eric Niebler (2014) “Meta”

I Peter Dimov (2018) “Adding support for type-based
metaprogramming to the standard library” P0949R0

Conclusion and Future Work

I Curtains: a TMP library for intrinsic currying
I Equational definition for higher order metafunctions
I Supports nullary and variadic metafunctions
I Check out the code on Bitbucket:

https://bitbucket.org/pgk/curtains
I Further folds are defined there; and in the TFP paper

Future work will target:

I Laziness

I Infix Operators

I Type Checking - perhaps via C++ Concepts

I Algebraic Data Types

I Type Classes

https://bitbucket.org/pgk/curtains

