
Improving Haskell

Martin Handley and Graham Hutton

University of Nottingham

Haskell 1.0 Haskell 2.0

Improving Haskell Programs

2 seconds

30+ seconds

≥ ?

The Problem

Reasoning about time efficiency in Haskell is notoriously difficult

Efficiency in a lazy setting 
≠ 

Steps taken to evaluate to some normal form

1 : [] 1 : eventually []

tail (1 : []) tail (1 : eventually [])

0 steps to WHNF 0 steps to WHNF

1 step many steps

Example

A Solution: Improvement Theory
(Moran and Sands, POPL 1999)

• Compare evaluation steps in all contexts: 
 
 

• A context is a term with a “hole”: 
 
 C := λx ⟶ [-] C[x] = λx ⟶ x

• Compositional: improve a program “bit by bit”

• Based on a language that is comparable to GHC Core

∀C. steps (C[M]) ≥ steps (C[N])  
 
 M N “M is improved by N” 

• Formally shown to be time improvements:

• Worker/wrapper transformation (ICFP 2014)

• Common subexpression elimination (PPDP 2015)

• Short cut fusion (ICFP 2018)

Renewed Interest!

Example: Associativity of Append

• Correctness: simple inductive proof

• What about efficiency? 
 
The RHS is more efficient because… 
 
… “the LHS traverses xs twice”

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

Example: Associativity of Append

• Formally reason about efficiency: 
 
 

• Prove using improvement induction:

(xs ++ ys) ++ zs xs ++ (ys ++ zs)

✓ represents a unit time cost

(xs ++ ys) ++ zs ✓C[(xs ++ ys) ++ zs)]

✓C[xs ++ (ys ++ zs)] xs ++ (ys ++ zs)

Example: Associativity of Append

C[case M of { pati ⟶ Ni }] case M of { pati ⟶ C[Ni] }

1. T = C[case M of { pati ⟶ Ni }]  

2. C is an evaluation context 

3. FV(M) ∩ BV(C) = ∅  

4. FV(C) ∩ BV(pati) = ∅  

5. ⇒

• One step of the proof:

University of Nottingham
Improvement Engine (Unie)

• Inequational reasoning assistant written in Haskell,
~12,000 lines of code (available on GitHub)

• Supports mechanised improvement proofs

• Designed to allow users to focus on high-level
proof structure by handling technical details

• Inspired by the Hermit system (Farmer 2015), and 
uses the Kure library (JFP 2014)

Demo

Summary

• First system to support mechanised improvements

• Next: interface with Agda/Coq/Idris so that proofs
can be formally verified

• Comments and feedback welcome!  
 

https://github.com/mathandley/unie

