Improving Haskell

Haskell 1.0

Haskell 2.0

Martin Handley and Graham Hutton University of Nottingham

Improving Haskell Programs

30+ seconds

≥ ?

2 seconds

The Problem

Reasoning about time efficiency in Haskell is notoriously difficult

Efficiency in a lazy setting \neq Steps taken to evaluate to some normal form

Example

1 step

many steps

A Solution: Improvement Theory (Moran and Sands, POPL 1999)

• Compare evaluation steps in all contexts:

∀C. steps (C[M]) ≥ steps (C[N]) M \triangleright N "M is improved by N"

• A context is a term with a "hole":

 $\mathbf{C} := \lambda \mathbf{x} \rightarrow [-] \qquad \mathbf{C}[\mathbf{x}] = \lambda \mathbf{x} \rightarrow \mathbf{x}$

- Compositional: improve a program "bit by bit"
- Based on a language that is comparable to GHC Core

Renewed Interest!

- Formally shown to be time improvements:
 - Worker/wrapper transformation (ICFP 2014)
 - Common subexpression elimination (PPDP 2015)
 - Short cut fusion (ICFP 2018)

Example: Associativity of Append

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

- Correctness: simple inductive proof
- What about efficiency?

The RHS is more efficient because...

... "the LHS traverses xs twice"

Example: Associativity of Append

• Formally reason about efficiency:

(xs ++ ys) ++ zs ▷ xs ++ (ys ++ zs)

• Prove using *improvement induction:*

(xs ++ ys) ++ zs ≿ ✓C[(xs ++ ys) ++ zs)]

✓C[xs ++ (ys ++ zs)] <>> xs ++ (ys ++ zs)

✓ represents a unit time cost

(xs + ys) + zs \equiv { syntactic sugar } let ws = xs # ys in ws # zs $\triangleleft P \{ unfold \# \}$ let $ws = \sqrt{case \ xs}$ of $[] \rightarrow ys$ $(u:us) \rightarrow u:(us \# ys)$ in ws + zs $\triangleleft \mathbb{P} \{ unfold \# \}$ let $ws = \sqrt{case \ xs \ of}$ $\rightarrow ys$ $(u:us) \rightarrow u:(us \# ys)$ in $\sqrt{case ws}$ of [] $\rightarrow zs$ $(v:vs) \rightarrow v: (vs \# zs)$ ⊴⊳ { move tick inside \mathbb{D} 's hole, where $\mathbb{D} \equiv \mathbf{case} [-] \mathbf{of}$ $\rightarrow ys$ $(u:us) \rightarrow u:(us \# ys)$ let $ws = case \sqrt{xs}$ of $\rightarrow ys$ $(u:us) \rightarrow u:(us \# ys)$ in $\sqrt{case} ws$ of [] $\rightarrow zs$ $(v:vs) \rightarrow v: (vs \# zs)$ **⊴**⊳ $\{ move \mathbb{D} inside case, where \}$ $\mathbb{D} \equiv \mathbf{let} \ ws = [-]$ in $\sqrt{case} ws$ of $[] \rightarrow zs$ $(v:vs) \rightarrow v:(vs \# zs)$ case \sqrt{xs} of [] \rightarrow let ws = ys in \checkmark case ws of $\rightarrow zs$ $(v:vs) \rightarrow v:(vs \# zs)$ $(u:us) \rightarrow \mathbf{let} \ ws = u:(us \# ys) \ \mathbf{in} \ \sqrt{\mathbf{case}} \ ws \ \mathbf{of}$ $\rightarrow zs$ $(v:vs) \rightarrow v:(vs \# zs)$ $\triangleleft \triangleright$ $\{ move tick outside D's hole, where \}$ $\mathbb{D} \equiv \mathbf{case} [-] \mathbf{of}$ $\rightarrow \dots$ $(u:us) \rightarrow \ldots$ $\sqrt{case xs of}$ \rightarrow let ws = ys in \checkmark case ws of $\rightarrow zs$ $(v:vs) \rightarrow v:(vs \# zs)$ $(u:us) \rightarrow let ws = u: (us + ys) in \checkmark case ws of$ $\rightarrow zs$ $(v:vs) \rightarrow v: (vs \# zs)$ ⊲⊳ { fold # $\sqrt{case xs of}$

 \rightarrow let ws = ys in ws + zs $(u:us) \rightarrow \mathbf{let} \ ws = u:(us \# ys) \ \mathbf{in} \ \sqrt{\mathbf{case}} \ ws \ \mathbf{of}$ $\rightarrow zs$ $(v:vs) \rightarrow v:(vs \# zs)$ $\triangleleft \triangleright$ { inline *ws* and remove unused binding } $\sqrt{case xs of}$ $\rightarrow \sqrt{ys + zs}$ $(u:us) \rightarrow \mathbf{let} \ ws = u:(us \# ys) \ \mathbf{in} \ \sqrt{\mathbf{case}} \ ws \ \mathbf{of}$ $[] \rightarrow zs$ $(v:vs) \rightarrow v: (vs \# zs)$ ⊲⊳ $\{ move tick outside D's hole, where \}$ $\mathbb{D} \equiv [-] \# zs \}$ $\sqrt{case xs of}$ $\rightarrow \sqrt{(ys + zs)}$ [] $(u:us) \rightarrow \mathbf{let} \ ws = u:(us \# ys) \ \mathbf{in} \ \sqrt{\mathbf{case}} \ ws \ \mathbf{of}$ $\rightarrow zs$ $(v:vs) \rightarrow v:(vs \# zs)$ $\triangleleft \triangleright$ { inline ws and remove unused binding } $\sqrt{case xs of}$ $\rightarrow \checkmark (ys \# zs)$ $(u:us) \rightarrow \checkmark case \checkmark (u:(us \# ys)) of$ $] \rightarrow zs$ $(v:vs) \rightarrow v: (vs \# zs)$ ⊲Þ { move tick outside \mathbb{D} 's hole, where $\mathbb{D} \equiv \mathbf{case} [-] \mathbf{of}$ $[] \rightarrow zs$ $(v:vs) \rightarrow v:(vs \# zs)$ $\sqrt{case xs of}$ $\rightarrow \checkmark (ys \# zs)$ $(u:us) \rightarrow \checkmark case \ u:(us \# ys) \ of$ $\rightarrow zs$ $(v:vs) \rightarrow v:(vs + zs)$ $\triangleleft \triangleright$ { evaluate case } $\sqrt{case xs of}$ $\rightarrow \sqrt{(ys + zs)}$ [] $(u:us) \to \mathscr{N}(u:((us \# ys) \# zs))$ { remove ticks } $\sqrt{case xs of}$ $\rightarrow \sqrt{(ys \# zs)}$ $(u:us) \rightarrow u: ((us \# ys) \# zs)$ { renaming } \equiv $\sqrt{case xs of}$ $\rightarrow \checkmark (ys \# zs)$ $(x:xs) \rightarrow x: ((xs \# ys) \# zs)$ $\{ define \mathbb{C}, where \}$ \equiv $\mathbb{C} \equiv \mathbf{case} \ xs \ \mathbf{of}$ $\rightarrow \checkmark (ys \# zs)$ [] $(x:xs) \rightarrow x: [-] \}$ $\checkmark \mathbb{C}[(xs \# ys) \# zs]$

Example: Associativity of Append

• One step of the proof:

 $\mathbf{C}[\text{case M of } \{ \text{ pat}_{i} \rightarrow N_{i} \}] \quad \diamondsuit \quad \text{case M of } \{ \text{ pat}_{i} \rightarrow \mathbf{C}[N_{i}] \}$

- 1. $T = C[case M of \{ pat_i \rightarrow N_i \}]$
- 2. **c** is an *evaluation* context
- 3. $FV(M) \cap BV(C) = \emptyset$
- 4. $FV(C) \cap BV(pat_i) = \emptyset$

5. $\triangleleft \triangleright \Rightarrow \triangleright$

University of Nottingham Improvement Engine (Unie)

- Inequational reasoning assistant written in Haskell, ~12,000 lines of code (available on GitHub)
- Supports mechanised improvement proofs
- Designed to allow users to focus on high-level proof structure by handling technical details
- Inspired by the Hermit system (Farmer 2015), and uses the Kure library (JFP 2014)

Demo

Summary

- First system to support mechanised improvements
- Next: interface with Agda/Coq/Idris so that proofs can be formally verified
- Comments and feedback welcome!

https://github.com/mathandley/unie