Improving Haskell

Haskell 1.0 Haskell 2.0

Martin Handley and Graham Hutton
University of Nottingham

Improving Haskell Programs

30+ seconds

> 9

2 seconds

The Problem

Reasoning about time efficiency in Haskell is notoriously difficult

Efficiency in a lazy setting
+
Steps taken to evaluate to some normal form

Example

1 : [] l : eventually []
0 steps to WHNF O steps to WHNF
tail (1 : []) tail (1 : eventually [])

1 step many steps

A Solution: Improvement Theory
(Moran and Sands, POPL 1999)

Compare evaluation steps in all contexts:

VC. steps (C[M]) = steps (C[N])

M > N “M is improved by N”

A context is a term with a “hole”:

C := A\x = [-] C[x] = AXx —» X
Compositional: improve a program “bit by bit”

Based on a language that is comparable to GHC Core

Renewed Interest!

 Formally shown to be time improvements:
e Worker/wrapper transformation (ICFP 2014)
e Common subexpression elimination (PPDP 2015)

e Short cut fusion (ICFP 2018)

Example: Associativity of Append

(Xs ++ ys) ++ zs = Xs ++ (ys ++ zs)

e Correctness: simple inductive proof

 \What about efficiency?

The RHS is more efficient because...

... “the LHS traverses xs twice”

Example: Associativity of Append

* Formally reason about efficiency:
(Xs ++ ys) ++ zs D Xs ++ (ys ++ zs)

* Prove using improvement induction:

(xs ++ ys) ++ zs B JV/C[(xXs ++ ys) ++ zs)]

VC[Xs ++ (ys ++ 2s)] < Xs ++ (ys ++ 2zs)

v/ represents a unit time cost

(zs H ys) H zs [] — let ws = ys in ws H zs

= { syntactic sugar } (u: us) > let ws u: (us H# ys) in vcase ws of
let ws = s H ys in ws H zs [] — 28
> { unfold H# } (v:wvs) = v: (vs 4 28)
let ws = vcase zs of <> { inline ws and remove unused binding }
[] — ys vcase zs of
(u:wus) > u: (us H ys) [] — Vys H zs
in ws H zs (u:us) > let ws = u: (us H ys) in vcase ws of
<> { unfold H# } [] —> 28
let ws = vcase zs of (v:vs) = v: (vs H 2s)
[] — ys <> { move tick outside D’s hole, where
(u:us) — u: (us H ys) D=[—]H 2zs }
in vcase ws of vcase zs of
[] —> 28 [] — v(ys H zs)
(v:wvs) = v: (vsH 28) (u:us) > let ws = u: (us H# ys) in vcase ws of
<> { move tick inside D’s hole, where [] —> 28
D = case [—] of (v:wvs) = v: (vs H 2s)
[] — ys <> { inline ws and remove unused binding }
(w:us) > u: (us H ys) } vcase zs of
let ws = case vzs of [] — v(ys H 2s)
[] — ys (u: us) > vcase v(u: (us H ys)) of
(u:us) > u: (us H ys) [] —> 28
in vcase ws of (v:wvs) > v: (vs H 28)
[] —> 28 <> { move tick outside D’s hole, where
(v:vs) = v: (vs H 28) D = case [—] of
<> { move D inside case, where [] — 28
D= let ws = [—] (v:vs) &> v: (vs H 2s) }
in vcase ws of vcase zs of
[] —> 28 [] — v(ys H zs)
(v:vs) > v: (vs H 2s) } (u: us) > Wecase u : (us H ys) of
case vzs of [] — 28
[] — let ws = ys in vcase ws of (v:wvs) = v: (vs H 28)
[] —> 28 <> { evaluate case }
(v:vs) = v: (vs H 28) vcase zs of
(u:us) > let ws = u: (us H ys) in vcase ws of [] — v(ys H zs)
[] —> 28 (w:us) > Wlu: ((us H ys) H zs))
(v:wvs) = v: (vs H 28) > { remove ticks }
<> { move tick outside D’s hole, where vcase zs of
D = case [—] of [] — v(ys H zs)
[] —> .. (u:us) = u: ((us H ys) H 2zs)
(w:us) > ... } — { renaming }
vcase zs of vcase zs of
[] — let ws = ys in vcase ws of [] — v(ys H zs)
[] —> 28 (z:25) = z: ((zs H ys) H zs)
(v:wvs) = v: (vs H 28) o { define C, where
(u:us) = let ws = u: (us H ys) in vcase ws of C = case zs of
[] —> 28 [] — v(ys H 2s)
(v:wvs) = v: (vs H 28) (z:2z8) > z:[—] }
<> { fold # } VC[(zs H ys) H 2zs]

vcase zs of

Example: Associativity of Append

* One step of the proof:

Clcase M of { pati— Ni }] > case M of { pati— C[Ni] }

1. T = C[case M of { pati— Ni }]
2. C Is an evaluation context

3. FV(M) n BV(C) = @

4. FV(C) n BV(pati) = @

5. ¥ = D

University of Nottingham
Improvement Engine (Unie)

Inequational reasoning assistant written in Haskell,
~12,000 lines of code (available on GitHub)

Supports mechanised improvement proofs

Designed to allow users to focus on high-level
proof structure by handling technical details

Inspired by the Hermit system (Farmer 2015), and
uses the Kure library (JFP 2014)

Demo

Summary

* First system to support mechanised improvements

 Next: interface with Agda/Coqg/Idris so that proofs
can be formally verified

e Comments and feedback welcome!

https://github.com/mathandley/unie

