Active-Code Reloading in the
OODIDA Platform

12 June 2018

Gregor Ulm, Emil Gustavsson, Mats Jirstrand
Fraunhofer-Chalmers Research Centre
for Industrial Mathematics, Gothenburg, Sweden

OODIDA

% FRAUNHOFER CHALMERS
4 '

Paper:

OODIDA: On-board/Off-board Distributed Data Analysis for
Connected Vehicles

Gregor Ulm
FraunhoferChalmers Research

Emil Gustavsson
Fraunhofer-Chalmers Research

Mats Jirstrand
Fraunhofer-Chalmers Research

Centre for Industrial Mathe matics Centre for Industrial Mathematics Centre for Industrial Mathematics

Gothenburg, Sweden Gothenburg, Sweden Gothenburg, Sweden
gregorulm@fec.chalmers se emil.gustavsson @fcc.chalmers.se mats.jirstrand@fcc.chalmers se
ABSTRACT 1 INTRODUCTION

A modem connected vehicle produces dozens of gigabytes of data
per hour. Performing centralized data processing within a reason-
able amount of time with data generated by just one connected
vehicle would be taxing enough. Doing the same with a fleet of
hundreds or thousands of vehicles, onthe other hand, is impossible.
Arelated problem is the complexity invelved in not only distribut-
ing one task to edge devices, but having them perform multiple
distributed large-scale tasks concurrently. Consequently, there is
a need for both decentralized data processing and task manage-
ment. The OODIDA (On-board/off-board distributed data analysis)
platform tackles both issues. It has been designed for handling con-
current distributed data analysis. Its key feature is the ability to
concurrently execute multiple distributed data analysis tasks on
overapping subsets of client devices. Tasks can be finite or infinite.
An example of the former is training of a machine learning model
with a fixed number of iterations, while an example of the latter is
stream processing on each client.

The OODIDA platform is modular and language-agnostic, with
the exception of the central server process, which is based on the
actor model and implemented in Erlang. Assignments are specified
inJSON. Results can be specified in an arbitrary format, for instance
as plain text files. This means that the central server process is able
to accept assignments from any application that is able to output
JSON; even manual specification is possible. In addition, applica-
tions on the client can be implemented inan arbitrary programming
language. Asa consequence, the modular approach of the OODIDA
platform leads to great flexibility.

KEYWORDS

Distributed computing, Concurrent computing, Applied functional
programming, Data analysis, Distributed Data Processing, Erlang

While distributed systems are a commonplace phenomenon in the
computing industry, they constitute a nascent technology in many
traditional industries. One such example is the transportation indus-
try. As personal and commercial vehicles are increasingly network-
comnected and equipped with on-board units, which are general-
purpose computers in all but name, we explored approaches to
distributed data analysis for two international corporations in the
automotive industry. Both face the issue of handling a bona fide
deluge of data. As transferring dozens of gigabytes per vehicle per
hour via the network and performing centralized analysis is not fea-
sible, we therefore developed a system for distributed data analysis
that is based on the actor model (cf. Section 4.2). This was further
modified to enable the concurrent execution of distributed data
analysis tasks.

Figure 1: Overview of the OODIDA framework

OODIDA is a modular platform for concurrent distributed data
analysis. It has been created for the automotive domain with its

FRAUNHOFER CHALMERS

RESEARCH CENTRE FOR INDUSTRIAL MATHEMATICS

3

Overview

* OODIDA: Context

* OODIDA: System Details

* OODIDA: Sample Use Cases

* Limitations (Problem)
 Active-Code Reloading (Solution)

The OODIDA Platform in
Context

Context

 Big Data in the automotive industry
* Currently ~50 GB/hour generated per car

« Can be easily increased (more sensors, higher sampling rate)
* Large commercial fleets

» Current main paradigm, data is processed as a batch after-the-
fact

» Real-time capabilities lacking
» Goal: Platform for (pseudo) real-time analytics
* This is the OODIDA platform

Problem

» Quintessential big data problem

* Volume: dozens of gigabytes/hour per car
* Transfer to central server infeasible

* Velocity: we want timely insights
 Storage-and-process paradigm unsuitable

* Variety: myriad of signals and sensors to observe
« One-size-fits-all approach won’t work

* Privacy: very detailed profiling possible with big data
« Not possible if most data never leaves the client
* GDPR may apply

OODIDA Overview

 Data analysis platform written in Erlang and Python

* Interaction with hardware -> cyber-physical system
* On-board unit on clients (c_i)

* 0: OODIDA platform

 a: analyst (one for illustration)

* OODIDA is both a simulator and
a real-world system

Problem: Usabillity

* Different skills in big data analytics

» Analyst/Data Scientist: working with data, applying algorithms,
maybe implementing algorithms
 Python (libraries!)

» Software Engineer: creating and maintaining the platform
 Erlang, some Python

* Thus, different levels of access to OODIDA

Role of the Analyst

 Defining an assignment for clients
 Data collection
« Result can be final data or the input for further local processing

L]
°
« Example assignment: o

spec { "id" 1
, " "Mea t Task
, "d pt "Ave f vel t
, " | "Mea t
, "cl ts" "all’
' ity None
, " 1" "velo t
, "onboard" "aver:
R ffboard" "coll t
, "frequency” 5000
s ports 1
}

(In comparison, the Software Engineer ensures that the Analyst can do
their work.)

ESEARCH CE TRIA ATH TICS

// FRAUNHOFER CHALMERS
10

System Details

S
S rrauHOrER chaers
_ A ;

OODIDA in Context

« Analyst
« OODIDA
e Clients

Modularity of the System

Each client:

client.erl
edge.py °
Server/Cloud: / °

bridge.erl /\ _ >] »0

Analyst:
oodida.py
user.erl

edge.py is a placeholder

e.g.

edge_volvo_cars.py,
“with parameter for

particular car
% FRAUNHOFER CHALMERS

Client can run arbitrary code! Z 7 i covmerormousiuat maverarcs
(e.g. edge.java, edge.r)

OODIDA In Detall

Workflow (single-round assignment):
. U waits for assignment file
. if file received: u sends data to ¢
. C spawns assignment handler ¢’ (top)
. C’ (top) connects to clients k, |
. Clients k, | spawn their own (task)
handler
. handler on clients write assighment
as JSON, await completion
. external process takes over, does
assigned task
. when completed, task handler on client
reads results file, forwards to ¢’
- Red nodes: permanent . after all results have been received,

i . ¢’ sends aggregate to ¢
Blue nodes: tgmporary . ¢ forwards results to u, writes to file
(so-called assighment

handlers/task handlers)

- Analyst (u)
- Cloud (c)
- Clients (k, |, m

— N
2Hy® ROUNTIOERSOAER
/// 14

A Sample Assignment in Detall

Goal: make the job of the user Notes:
- The OODIDA library verifies that the
e G vehdde provided specification is correct
c nlannc". . P .\\h-nsurcxnc;‘lt ’I‘;]ask'.'t " (Structure, data types) range of Va[ues)
N aescription H Average o veloclity . . .
*mode" . "Measurement" - priority not yet implemented
"clients" : "all”
"priority” : None
"signal" : "velocity"
"onboard" : "average"
"offboard"” : "collect”
"frequency” : 5000
, "num_reports” : 1
}

import lib_user.oodida as o
o.createAssignment(spec)

(That’s it!)
—N

Z & TRAUNHOFER CHALMERS
_ a o

Grammar of an Assignment

1 # task 1: all vehicles "id” : positive integer
. "name" : arbitrary string, can be empty
spec = { "id 1 "description” : arbitrary string, can be empty
' , "name" : "Measurement Task" "mode" - one of: "Measurement" ,
| , "description" : "Average of velocity" "Filter" ,
, "mode" : "Measurement" ?Federated Learning”,
"clients " " all " 'EventDetection” s
L "ApplyCalculation”
» priority - None "clients" : list of positive integers or string "all"
, "signal" : "velocity" "priority" : positive integer
, "onboard" : "average" "signal” : one of: "velocity" s
. . - " "acceleration”,
, "offboard : "collect ; ;
. . fuel
8 . "frequency : 5000 "onboard" : one of: 'average',
12 ., "num_reports” : 1 'median' ,
13 } 'collect’
"offboard" : dto.
"frequency" : positive integer or string "indefinite"

"num_reports"” : positive integer

& FRAUNHOFER CHALMERS

RESEARCH CENTRE FOR INDUSTRIAL MATHEMATICS

16

Flexibility of Assignments

 Select all vehicles, or a subset thereof

» Each client executes 0 to n tasks concurrently (no clear upper
bound)

* Tasks can have finite duration or be indefinitely long
 Tasks have an arbitrary starting time
* Tasks can consist of 1 to m iterations

 Results of iteration i can be used as input for iterationi + 1,
e.g. result of 7 of f(x, d) is x’, iteration i + 1 is performed as
f(x’, d’) - new data and updated model x’

Sample Use Cases

ESEARCH CE TRIA ATH TICS

// FRAUNHOFER CHALMERS
18

Monitoring

* "Monitor status of sensor X, inform user if threshold exceeded”

* Specify sensor and threshold in assignment

 Client: collects values, sends values that exceed threshold to
cloud (runs indefinitely long)

Sampling

 "Create representative sample of data produced by sensor X"
 Specify sensor and sample rate in assignment

Can also run concurrently with other task
(each assignment executed on two clients):

Batch Processing

* "Process data generated by sensor X, using algorithm A"
 Specify amount of data points etc. in assighment

 Results are sent to cloud and processed further, maybe just
collected

Stream Processing

* "Process data generated by sensor X, using algorithm A"
 Specify amount of data points etc. in assighment

 Specify humber of iterations and send update to cloud
after each iteration

« Stream is modeled as a sequence of batches

* The shorter the interval, the closer
you get to real-time stream processing
(of course this is not real stream proces

MapReduce

* (I assume you all know MapReduce)
* Let's look at the basic word count example:
e client: map (word, 1) and reduce (word, count)

* server. aggregates all (word, count) pairs to (word, total
count)

Jo o

Ne—e

Distributed Machine Learning

* "Federated Learning” (misnomer because members of a
federation are independent; clients in FL are not)

* initialize global model, send to clients

* clients train their copy of the global model with local data and
send local model to server

* server produces new global model
 continues until stopping criterion is met

Limitations (Problem)

Limitations of the Platform

* No easy way to update client code
» Have to redeploy on client devices
 Shut down client, deploy, restart
* This terminates ongoing analytics tasks!
* Also: deployment is semi-permanent
* Removing code likewise requires redeployment
* Thus, experimentation discouraged

Workaround

 Use the Erlang core of OODIDA to send client code as data
 Client (Erlang) reads data, saves it

» Afterwards, client process (Python) treats it as executable
code

Active-Code Reloading
(Solution)

How it works (for the user)

» Define a Python function

* In principle arbitrary, but right now, almost all our operations
on the client are performed on lists of floating-point numbers

* Function call to update “custom function”, e.g.
import lib_user.code_update as c
f = "custom_code.py*
c.code_update(f)

* Right now, user has to ensure that his code is syntactically
correct; will be automated

How it works (for the user)

« Afterwards, user can specify custom code in assignments

task

spec

l:

{

Li” \'L'hiL‘lL'S

"id"

"name "
"description”
"mode "
"clients"”
"priority”
"signal"
"onboard"
"offboard”
"frequency"”
"num_reports”

1

"Measurement Task"
"Average of
"Measurement"”
"all”

None

"velocity"

velocity "

"average"
"collect”
5000

1

v

Replace with “custom”!

=

FRAUNHOFER CHALMERS

RESEARCH CENTRE FOR INDUSTRIAL MATHEMATICS

How it works (under the hood)

* Library lib_user.code_update treats Python code as data (string)
* Creates JSON file, which is picked up by OODIDA user process

* User process sends update to cloud, cloud disseminates custom code to
all clients

* Custom code written to file on each client

* With a new assignment/task, external client process (py) responds to
specification of “onboard” computation

* If “custom”, client process reads custom code and executes it with
provided input

« Limitation: Code reloading in Python doesn’t play nicely with
global state; thankfully, that doesn’t affect us

What you can do

* Experiment:

« Execute experimental algorithms on client, without
committing

* A/B Testing in parallel:
« 15 of clients receive custom code A, other V2 custom code B
* (Instead of sequential testing)

 All, while keeping ongoing tasks alive

What you (deliberately) can't do

* Trivial to add support for multiple custom code functions

* Simple approach: small number of slots, e.g. custom_1 to
custom_n

* Problem: don’t want users to rely too much on custom code

 Should be uses temporarily, not as a workaround for the
proper deployment process

Acknowledgments

* Vinnova

 Volvo Cars Corporation

 Volvo Group Trucks Technology

* Chalmers University of Technology
 Alkit Communications

