
1

High-performance defunctionalization in Futhark

Anders Kiel Hovgaard Troels Henriksen Martin Elsman

Department of Computer Science
University of Copenhagen

(DIKU)

Trends in Functional Programming, 2018

2

Motivation

Massively parallel processors, like GPUs, are common but
difficult to program.
Functional programming can make it easier to program GPUs:

Referential transparency.
Expressing data-parallelism.

Problem Higher-order functions cannot be directly
implemented on GPUs.

Can we do higher-order functional GPU programming anyway?

3

Motivation

Higher-order functions on GPUs?

Yes!
Using moderate type restrictions, we can eliminate all
higher-order functions at compile-time.
Gain many benefits of higher-order functions without any
run-time performance overhead.

4

Reynolds’s defunctionalization

5

Defunctionalization (Reynolds, 1972)
John Reynolds: “Definitional interpreters for higher-order
programming languages”, ACM Annual Conference 1972.

Basic idea:

Replace each function abstraction by a tagged data value that
captures the free variables:

λx : int. x + y =⇒ LamN y

Replace application by case dispatch over these functions:

f a =⇒ case f of Lam1 . . .
Lam2 . . .
LamN y → a+ y

. . .

Branch divergence on GPUs.

6

Language and type restrictions

7

Futhark

A purely functional, data-parallel array language with an optimizing
compiler that generates GPU code via OpenCL.

Parallelism expressed through built-in higher-order functions,
called second-order array combinators (SOACs):

map, reduce, scan, ...

No recursion, but sequential loop constructs:
loop pat = init for x in arr do body

8

Type-based restrictions on functions

To permit efficient defunctionalization, we introduce type-based
restrictions on the use of functions.

Statically determine the form of every applied function.

Transformation is simple and eliminates all higher-order functions.

Instead of allowing unrestricted functions and relying on subsequent
analysis, we entirely avoid such analysis.

9

Type-based restrictions on functions

Conditionals may not produce functions:

let f = if b1 then ...
if bN then λx → e_n

else ... λx → e_k
in ... f y

Which function f is applied?

If our goal is to eliminate higher-order functions without introducing
branching, we must restrict conditionals from returning functions.

Require that branches have order zero type.

10

Type-based restrictions on functions

Arrays may not contain functions:

let fs = [λy → y+a, λz → z+b, ...]
in ... fs[n] 5

Which function fs[n] is applied?

Also need to restrict map to not create array of functions:

map (λx → λy → ...) xs

11

Type-based restrictions on functions

Loops may not produce functions:

loop f = (λz → z+1) for x in xs
do (λz → x + f z)

The shape of f depends on the number of iterations of the loop.

Require that loop has order zero type.

All other typing rules are standard and do not restrict functions.

12

Defunctionalization

13

Defunctionalization

Type restrictions enable us to track functions precisely.
Control-flow is restricted so every applied function is known
and every application can be specialized.

14

Defunctionalization

Defunctionalization in a nutshell:

let a = 1
let b = 2
let f = λx → x+a
in f b

let a = 1
let b = 2
let f = {a=a}
in f’ f b

Create lifted function:

let f’ env x =
let a = env.a
in x+a

15

Defunctionalization

Static values:

sv ::= Dyn τ
| Lam x e0 E

| Rcd {(`i 7→ sv i)i∈1..n}

Static approximation of the value of an expression.
Precisely capture the closures produced by an expression.

Translation environment E maps variables to static values.

16

Defunctionalization

let twice (g: int → int) = λx → g (g x)
let main = let f = let a = 5

in twice (λy → y+a)
in f 1

16

Defunctionalization

let twice (g: int → int) = λx → g (g x)
let main = let f = let a = 5

in twice (λy → y+a)
in f 1

let twice = {} Lam g (λx → g (g x)) []

16

Defunctionalization

let twice (g: int → int) = λx → g (g x)
let main = let f = let a = 5

in twice (λy → y+a)
in f 1

let twice = {} Lam g (λx → g (g x)) []
let main = let f = let a = 5

in twice (λy → y+a)
in f 1

16

Defunctionalization

let twice (g: int → int) = λx → g (g x)
let main = let f = let a = 5

in twice (λy → y+a)
in f 1

let twice = {} Lam g (λx → g (g x)) []
let main = let f = let a = 5

in twice (λy → y+a)
in f 1

twice twice
(λy → y + a) {a = a}, Lam y (y + a) [a 7→ Dyn int]

λx → g (g x) {g = g},
Lam x (g (g x)) [g 7→ Lam y (y + a) ...)]

16

Defunctionalization

let twice (g: int → int) = λx → g (g x)
let main = let f = let a = 5

in twice (λy → y+a)
in f 1

let twice = {} Lam g (λx → g (g x)) []
let main = let f = let a = 5

in twice’ twice {a = a}
in f 1

let twice’ (env: {}) (g: {a: int}) = λx → g (g x)

twice twice
(λy → y + a) {a = a}, Lam y (y + a) [a 7→ Dyn int]

λx → g (g x) {g = g},
Lam x (g (g x)) [g 7→ Lam y (y + a) ...)]

16

Defunctionalization

let twice (g: int → int) = λx → g (g x)
let main = let f = let a = 5

in twice (λy → y+a)
in f 1

let twice = {} Lam g (λx → g (g x)) []
let main = let f = let a = 5

in twice’ twice {a = a}
in f 1

let twice’ (env: {}) (g: {a: int}) = λx → g (g x)

twice twice
(λy → y + a) {a = a}, Lam y (y + a) [a 7→ Dyn int]︸ ︷︷ ︸

g

λx → g (g x) {g = g},
Lam x (g (g x)) [g 7→ Lam y (y + a) ...)]

16

Defunctionalization

let twice (g: int → int) = λx → g (g x)
let main = let f = let a = 5

in twice (λy → y+a)
in f 1

let twice = {} Lam g (λx → g (g x)) []
let main = let f = let a = 5

in twice’ twice {a = a}
in f 1

let twice’ (env: {}) (g: {a: int}) = λx → g (g x)

twice twice
(λy → y + a) {a = a}, Lam y (y + a) [a 7→ Dyn int]︸ ︷︷ ︸

g

λx → g (g x) {g = g},
Lam x (g (g x)) [g 7→ Lam y (y + a) ...)]

16

Defunctionalization

let twice (g: int → int) = λx → g (g x)
let main = let f = let a = 5

in twice (λy → y+a)
in f 1

let twice = {} Lam g (λx → g (g x)) []
let main = let f = let a = 5

in twice’ twice {a = a}
in f 1

let twice’ (env: {}) (g: {a: int}) = {g = g}

twice twice
(λy → y + a) {a = a}, Lam y (y + a) [a 7→ Dyn int]︸ ︷︷ ︸

g

λx → g (g x) {g = g},
Lam x (g (g x)) [g 7→ Lam y (y + a) ...)]

16

Defunctionalization

let twice (g: int → int) = λx → g (g x)
let main = let f = let a = 5

in twice (λy → y+a)
in f 1

let twice = {} Lam g (λx → g (g x)) []
let main = let f = let a = 5

in {g = {a = a}}
in f 1

let twice’ (env: {}) (g: {a: int}) = {g = g}

twice twice
(λy → y + a) {a = a}, Lam y (y + a) [a 7→ Dyn int]︸ ︷︷ ︸

g

λx → g (g x) {g = g},
Lam x (g (g x)) [g 7→ Lam y (y + a) ...)]

16

Defunctionalization

let twice (g: int → int) = λx → g (g x)
let main = let f = let a = 5

in twice (λy → y+a)
in f 1

let main = let f = let a = 5
in {g = {a = a}}

in f 1

16

Defunctionalization

let twice (g: int → int) = λx → g (g x)
let main = let f = let a = 5

in twice (λy → y+a)
in f 1

let main = let f = let a = 5
in {g = {a = a}}

in f 1

f 7→ Lam x (g (g x))

[g 7→ Lam y (y + a) (a 7→ Dyn int)]

16

Defunctionalization

let twice (g: int → int) = λx → g (g x)
let main = let f = let a = 5

in twice (λy → y+a)
in f 1

let main = let f = let a = 5
in {g = {a = a}}

in f’ f 1

let f’ (env: {g: {a: int}}) (x: int) =
let g = env.g in g (g x)

f 7→ Lam x (g (g x))

[g 7→ Lam y (y + a) (a 7→ Dyn int)]

16

Defunctionalization

let twice (g: int → int) = λx → g (g x)
let main = let f = let a = 5

in twice (λy → y+a)
in f 1

let main = let f = let a = 5
in {g = {a = a}}

in f’ f 1

let f’ (env: {g: {a: int}}) (x: int) =
let g = env.g in g (g x)

g 7→ Lam y (y + a) [a 7→ Dyn int]

16

Defunctionalization

let twice (g: int → int) = λx → g (g x)
let main = let f = let a = 5

in twice (λy → y+a)
in f 1

let main = let f = let a = 5
in {g = {a = a}}

in f’ f 1

let f’ (env: {g: {a: int}}) (x: int) =
let g = env.g in g’ g (g’ g x)

let g’ (env: {a: int}) (y: int) =
let a = env.a in y+a

g 7→ Lam y (y + a) [a 7→ Dyn int]

16

Defunctionalization

let twice (g: int → int) = λx → g (g x)
let main = let f = let a = 5

in twice (λy → y+a)
in f 1

let main = let f = let a = 5
in {g = {a = a}}

in f’ f 1

let f’ (env: {g: {a: int}}) (x: int) =
let g = env.g in g’ g (g’ g x)

let g’ (env: {a: int}) (y: int) =
let a = env.a in y+a

17

Correctness

18

Correctness

Defunctionalization has been proven correct:

Defunctionalization terminates and yields a consistently typed
residual expression.

For order 0, the type is unchanged.
Proof using a logical relations argument.

Meaning is preserved.

More details in the paper.

19

Implementation

20

Implementation

Type checking

Static interpretation

Monomorphization

Defunctionalization

Internalizer Compiler back end

Futhark program

Typed Futhark program

Module-free program

Module-free, monomorphic

Module-free, monomorphic, first-order

Compiler IR

21

Implementation
Polymorphism and defunctionalization

What if type a is instantiated with a function type?

let ite ’a (b: bool) (x: a) (y: a) : a =
if b then x else y

Distinguish lifted type variables:

’a regular type variable
’^a lifted type variable

21

Implementation
Polymorphism and defunctionalization

What if type a is instantiated with a function type?

let ite ’a (b: bool) (x: a) (y: a) : a =
if b then x else y

Distinguish lifted type variables:

’a regular type variable
’^a lifted type variable

22

Evaluation

23

Evaluation

Does defunctionalization yield efficient programs?

Rewrite benchmark programs to use higher-order functions.

Most SOACs converted to higher-order library functions.
Higher-order utility functions

Function composition, application, flip, curry, etc.

Segmented operations and sorting functions in library use
higher-order functions instead of parametric modules.

24

Evaluation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

1.0
00

1.0
00

1.0
02

0.9
99 1.0

20
1.0

09
1.0

01
0.9

99
0.9

98
0.9

99
1.0

00
0.9

90
1.0

09
1.0

02

FFT
12.06ms

Pagerank
12.85ms

CFD
2260.70ms

K-means
350.47ms

MRI-Q
16.13ms

Stencil
132.56ms

TPACF
3534.01ms

Immediately after adding defunctionalization
Using higher-order SOACs, utilities etc.

Run-time performance is unaffected.
Relies on the optimizations performed by the compiler.

25

Functional images

Represent images as functions:

type image ’a = point → a

type filter ’a = image a → image a

Due to Conal Elliott.
Implemented in the Haskell EDSL Pan.

The entire Pan library has been translated to Futhark.

25

Functional images

Represent images as functions:

type image ’a = point → a

type filter ’a = image a → image a

Due to Conal Elliott.
Implemented in the Haskell EDSL Pan.

The entire Pan library has been translated to Futhark.

26

Function-type conditionals

27

Support for function-type conditionals

let r = if b then {f = λx → x+1, a = 1}
else {f = λx → x+n, a = 2}

in r.f r.a

27

Support for function-type conditionals

let r = if b then {f = λx → x+1, a = 1}
else {f = λx → x+n, a = 2}

in r.f r.a

Introduce new form of static value:

Or sv1 sv2

Static value representation of r:

Rcd {f 7→ Or (Lam x (x + 1) [])
(Lam x (x + n) [n 7→ Dyn int])

a 7→ Dyn int}

27

Support for function-type conditionals

let r = if b then {f = λx → x+1, a = 1}
else {f = λx → x+n, a = 2}

in r.f r.a

Straightforward translation is ill-typed:

 if b then {f = {}, a = 1}
else {f = {n=n}, a = 2}

Even worse with nested conditionals.

Binary sum types to complement Or static value:

τ1 + τ2

27

Support for function-type conditionals

let r = if b then {f = λx → x+1, a = 1}
else {f = λx → x+n, a = 2}

in r.f r.a

let r = if b then {f = inl {}, a = 1}
else {f = inr {n=n}, a = 2}

in let x = r.a
in case r.f of

inl e → x+1
inr e → let n = e.n

in x+n

28

Conclusion

General and practical approach to implementing higher-order
functions in high-performance functional languages for GPUs.
Proof of correctness.
Implementation in Futhark.
No performance overhead, but gain many of the benefits.

Questions, comments?

	Reynolds's defunctionalization
	Language and type restrictions
	Defunctionalization
	Correctness
	Implementation
	Evaluation
	Function-type conditionals
	

