High-performance defunctionalization in Futhark

Anders Kiel Hovgaard Troels Henriksen ~ Martin Elsman

Department of Computer Science
University of Copenhagen
(DIKU)

Trends in Functional Programming, 2018

Motivation

= Massively parallel processors, like GPUs, are common but
difficult to program.
m Functional programming can make it easier to program GPUs:

m Referential transparency.
m Expressing data-parallelism.

Problem Higher-order functions cannot be directly
implemented on GPUs.

Can we do higher-order functional GPU programming anyway?

Motivation

Higher-order functions on GPUs?

= Yes!

= Using moderate type restrictions, we can eliminate all
higher-order functions at compile-time.

= Gain many benefits of higher-order functions without any
run-time performance overhead.

Reynolds’s defunctionalization

Defunctionalization (Reynolds, 1972)

John Reynolds: “Definitional interpreters for higher-order
programming languages’, ACM Annual Conference 1972.

Basic idea:

= Replace each function abstraction by a tagged data value that
captures the free variables:

Axiint.x+y = LamNy
= Replace application by case dispatch over these functions:

fa = casefof Laml...
Lam2 ...
LamNy — a+y

= Branch divergence on GPUs.

Language and type restrictions

Futhark

A purely functional, data-parallel array language with an optimizing
compiler that generates GPU code via OpenCL.

m Parallelism expressed through built-in higher-order functions,
called second-order array combinators (SOACs):
map, reduce, scan,
= No recursion, but sequential loop constructs:

loop pat = init for x in arr do body

Type-based restrictions on functions

To permit efficient defunctionalization, we introduce type-based
restrictions on the use of functions.

Statically determine the form of every applied function.
Transformation is simple and eliminates all higher-order functions.

Instead of allowing unrestricted functions and relying on subsequent
analysis, we entirely avoid such analysis.

Type-based restrictions on functions

Conditionals may not produce functions:

let f = if bl then ...
if bN then \x — e_n
else ... \Xx—e_k
in ... fy

Which function f is applied?

If our goal is to eliminate higher-order functions without introducing
branching, we must restrict conditionals from returning functions.

Require that branches have order zero type.

Type-based restrictions on functions

Arrays may not contain functions:

let fs = [A\y — y+a, Az — z+b, ...]
in ... fs[n] 5

Which function fs[n] is applied?

Also need to restrict map to not create array of functions:

map (AX = Ay — ...) Xs

Type-based restrictions on functions

Loops may not produce functions:

loop f = (Az — z+1) for x in xs
do (\z—>x + f 2)

The shape of f depends on the number of iterations of the loop.

Require that loop has order zero type.

All other typing rules are standard and do not restrict functions.

Defunctionalization

Defunctionalization

m Type restrictions enable us to track functions precisely.

= Control-flow is restricted so every applied function is known
and every application can be specialized.

Defunctionalization

Defunctionalization in a nutshell

let a
let b
let f
in f b

AX — x+a

leta=1
let b =2
let f = {a=a}
in f' f b

Create lifted function:

let f' env x =
let a = env.a
in x+a

Defunctionalization

Static values:

sv.=DynTt
| Lam x ey E
| Red {(4; — sv;)"€-m

= Static approximation of the value of an expression.

m Precisely capture the closures produced by an expression.

Translation environment E maps variables to static values.

Defunctionalization

let twice (g: int — int) AX =g (g x)
let main = let f = let a 5
in twice ()\y — y+a)

in f 1

Defunctionalization

let twice (g: int — int) = Ax —g (g x)
let main = let f = let a 5
in twice (A\y — y+a)
in f 1

~

let twice = {} Lam g (Ax — g (g x)) []

Defunctionalization

let twice (g: int — int) X =g (g x)
let main = let f = let a 5
in twice ()\y — y+a)

in f 1
A
let twice = {} Lam g (Ax — g (g x)) []
let main = let f = let a =5
in twice (\y — y+a)
in f 1

Defunctionalization

let twice (g: int — int) = A>x —> g (g x)
let main = let f = let a =5
in twice ()\y — y+a)
in f 1
A
let twice = {} Lam g (Ax — g (g x)) []
let main = let f = let a =5
in twice (\y — y+a)
in f 1

twice ~> twice

()\y — y _|_ a) PUNN {a — 3}7 Lam y (y + a) [a — D_yn int]

Defunctionalization

let
let

let
let

let

twice (g: int — int) = Ax — g (g x)
main = let f = let a = 5
in twice ()\y — y+a)
in f 1

twice = {} Lam g (Ax — g (g x)) []
main = let f = let a = 5
in twice’ twice {a = a}
in f 1
twice’ (env: {}) (g: {a: int}) = \Ax — g (g x)

twice ~> twice

()\y — y _|_ a) PUNN {a — 3}7 Lam y (y + a) [a — D_yn int]

Defunctionalization

let twice (g: int — int) = A&x—g (g x)
let main = let f = let a =5
in twice ()\y — y+a)
in f 1

let twice = {} Lam g (Ax — g (g x)) []
let main = let f = let a =5
in twice’ twice {a = a}
in f 1
let twice’ (env: {}) (g: {a: int}) = Mx —g (g x)

twice ~> twice

()\y — y _|_ a) PUNN {a — 3}7 Lam y (y + a) [a — D_yn int]

g

Defunctionalization

let twice (g: int — int) = A&x—g (g x)
let main = let f = let a =5
in twice ()\y — y+a)
in f 1
A
let twice = {} Lam g (Ax — g (g x)) []
let main = let f = let a =5
in twice’ twice {a = a}
in f 1
let twice’ (env: {}) (g: {a: int}) = Mx —g (g x)

twice ~> twice

()\y — y _|_ a) PUNN {a — 3}7 Lam y (y + a) [a — D_yn int]

g

Mx—g(gx) ~ {g=g}
Lam x (g (g x)) [+ Lam y (y +a) ...)]

Defunctionalization

let twice (g: int — int) = A>x —> g (g x)
let main = let f = let a =5
in twice ()\y — y+a)
in f 1
A
let twice = {} Lam g (Ax — g (g x)) []
let main = let f = let a =5
in twice’ twice {a = a}
in f 1
let twice’ (env: {}) (g: {a: int}) = {g = g}

twice ~» twice

()\y — y _|_ a) PUNN {a — 3}7 Lam y (y + a) [a — D_yn int]

g

Mx—g(gx) ~ {g=g}
Lam x (g (g x)) [+ Lam y (y +a) ...)]

Defunctionalization

let twice (g: int — int) = A>x —> g (g x)
let main = let f = let a =5
in twice ()\y — y+a)

in f 1
A
let twice = {} Lam g (Ax — g (g x)) []
let main = let f = let a =5
in {g = {a = a}}
in f 1

let twice’ (env: {}) (g: {a: int}) = {g = g}

twice ~» twice

()\y — y _|_ a) PUNN {a — 3}7 Lam y (y + a) [a — D_yn int]

g

Mx—g(gx) ~ {g=g}
Lam x (g (g x)) [+ Lam y (y +a) ...)]

Defunctionalization

let twice (g: int — int) X =g (g x)
let main = let f = let a 5
in twice ()\y — y+a)

in f 1

let main = let f = let a =
in {g

|
w

{a = a}}
in f 1

Defunctionalization

let twice (g: int — int) = Ax —g (g x)
let main = let f = let a = 5
in twice (Ay — y+a)
in f 1

let main = let f = let a =
in {g

|
w

{a = a}}
in f 1

f— Lam x (g (g x))
[g — Lam y (y + a) (a — Dyn int)]

Defunctionalization

let twice (g: int — int) = A>x —> g (g x)
let main = let f = let a =5
in twice (A\y — y+a)
in f 1

let main = let f = let a =5
in {g = {a = a}}
in f' f 1

let f’' (env: {g: {a: int}}) (x: int) =
let g = env.g in g (g x)

f— Lam x (g (g x))
[g — Lam y (y + a) (a — Dyn int)]

Defunctionalization

let twice (g: int — int) X =g (g x)
let main = let f = let a 5
in twice ()\y — y+a)

in f 1

let main = let f = let a =5
in {g = {a = a}}
in f' f 1

let f’' (env: {g: {a: int}}) (x: int) =
let g = env.g in g (g Xx)

g+ Lamy (y + a) [a+ Dyn int]

Defunctionalization

let twice (g: int — int) X =g (g x)
let main = let f = let a 5
in twice ()\y — y+a)

in f 1

let main = let f = let a =5
in {g = {a = a}}
in f' f 1

let f’' (env: {g: {a: int}}) (x: int) =
let g = env.g in g’ g (g’ g x)

let g’ (env: {a: int}) (y: int) =
let a = env.a in y+a

g+ Lamy (y + a) [a+ Dyn int]

Defunctionalization

let twice (g: int — int) X =g (g x)
let main = let f = let a 5
in twice ()\y — y+a)

in f 1

let main = let f = let a =5
in {g = {a = a}}
in f' f 1

let f’' (env: {g: {a: int}}) (x: int) =
let g = env.g in g’ g (g’ g x)

let g’ (env: {a: int}) (y: int) =
let a = env.a in y+a

Correctness

Correctness

Defunctionalization has been proven correct:

= Defunctionalization terminates and yields a consistently typed
residual expression.

® For order 0, the type is unchanged.
® Proof using a logical relations argument.

= Meaning is preserved.

More details in the paper.

Implementation

Implementation

Futhark program B P
| Type chec |ng‘

Typed Futhark program

’ Static interpretation ‘

Module-free program

‘ Monomorphization ‘

Module-free, monomorphic

‘ Defunctionalization ‘

Module-free, monomorphic, first-order

Internalizer Compiler IR {Compiler back end}

Implementation

Polymorphism and defunctionalization

What if type a is instantiated with a function type?

let ite 'a (b: bool) (x: a) (y: a) : a =
if b then x else y

Implementation

Polymorphism and defunctionalization

What if type a is instantiated with a function type?
let ite 'a (b: bool) (x: a) (y: a) : a =
if b then x else y
Distinguish lifted type variables:

"a regular type variable

"~a lifted type variable

Evaluation

Evaluation

Does defunctionalization yield efficient programs?

Rewrite benchmark programs to use higher-order functions.

= Most SOACs converted to higher-order library functions.
® Higher-order utility functions
= Function composition, application, flip, curry, etc.

= Segmented operations and sorting functions in library use
higher-order functions instead of parametric modules.

Evaluation

m Immediately after adding defunctionalization
I Using higher-order SOACs, utilities etc.

1.2
1.0
o 0.8
0.6

Speedu

0.4
0.2

0.0

FFT Pagerank CFD K-means MRI-Q Stencil TPACF
12.06ms 12.85ms 2260.70ms 350.47ms 16.13ms 132.56ms 3534.01ms

= Run-time performance is unaffected.
= Relies on the optimizations performed by the compiler.

24

Functional images
;‘?‘%\

'

Represent images as functions:

’

type image ’'a = point — a

’

type filter 'a = image a — image a

= Due to Conal Elliott.
= Implemented in the Haskell EDSL Pan.

Functional images

Function-type conditionals

Support for function-type conditionals

let r = if b then {f = AXx — x+1, a
else {f = \Ax — x+n, a

in r.f r.a

1}
2}

Support for function-type conditionals

let r = if b then {f = AXx — x+1, a
else {f = \Ax — x+n, a

1}
2}

in r.f r.a
Introduce new form of static value:
Or svi svy
Static value representation of r:

Red {f — Or (Lam x (x+ 1) [])
(Lam x (x + n) [n— Dyn int])
a+ Dyn int}

Support for function-type conditionals

let r = if b then {f = Ax —» x+1, a = 1}
else {f = \x — x+n, a = 2}
in r.f r.a

Straightforward translation is ill-typed:

~» 1if b then {f = {}, a =1}
else {f = {n=n}, a = 2}

Even worse with nested conditionals.

Binary sum types to complement Or static value:

1+ T2

Support for function-type conditionals

let r = if b then {f = Ax —» x+1, a = 1}
else {f = \x — x+n, a = 2}
in r.f r.a
s
let r = if b then {f = inl {}, a =1}
else {f = inr {n=n}, a = 2}

in let x = r.a
in case r.f of
inl e — x+1
inr e > let n = e.n
in x+n

Conclusion

® General and practical approach to implementing higher-order
functions in high-performance functional languages for GPUs.

® Proof of correctness.
= |mplementation in Futhark.

= No performance overhead, but gain many of the benefits.

Questions, comments?

	Reynolds's defunctionalization
	Language and type restrictions
	Defunctionalization
	Correctness
	Implementation
	Evaluation
	Function-type conditionals
	

