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Motivation

Massively parallel processors, like GPUs, are common but
difficult to program.
Functional programming can make it easier to program GPUs:

Referential transparency.
Expressing data-parallelism.

Problem Higher-order functions cannot be directly
implemented on GPUs.

Can we do higher-order functional GPU programming anyway?
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Motivation

Higher-order functions on GPUs?

Yes!
Using moderate type restrictions, we can eliminate all
higher-order functions at compile-time.
Gain many benefits of higher-order functions without any
run-time performance overhead.
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Reynolds’s defunctionalization
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Defunctionalization (Reynolds, 1972)
John Reynolds: “Definitional interpreters for higher-order
programming languages”, ACM Annual Conference 1972.

Basic idea:

Replace each function abstraction by a tagged data value that
captures the free variables:

λx : int. x + y =⇒ LamN y

Replace application by case dispatch over these functions:

f a =⇒ case f of Lam1 . . .
Lam2 . . .
LamN y → a+ y

. . .

Branch divergence on GPUs.
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Language and type restrictions
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Futhark

A purely functional, data-parallel array language with an optimizing
compiler that generates GPU code via OpenCL.

Parallelism expressed through built-in higher-order functions,
called second-order array combinators (SOACs):

map, reduce, scan, ...

No recursion, but sequential loop constructs:
loop pat = init for x in arr do body
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Type-based restrictions on functions

To permit efficient defunctionalization, we introduce type-based
restrictions on the use of functions.

Statically determine the form of every applied function.

Transformation is simple and eliminates all higher-order functions.

Instead of allowing unrestricted functions and relying on subsequent
analysis, we entirely avoid such analysis.
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Type-based restrictions on functions

Conditionals may not produce functions:

let f = if b1 then ...
if bN then λx → e_n

else ... λx → e_k
in ... f y

Which function f is applied?

If our goal is to eliminate higher-order functions without introducing
branching, we must restrict conditionals from returning functions.

Require that branches have order zero type.
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Type-based restrictions on functions

Arrays may not contain functions:

let fs = [λy → y+a, λz → z+b, ...]
in ... fs[n] 5

Which function fs[n] is applied?

Also need to restrict map to not create array of functions:

map (λx → λy → ...) xs
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Type-based restrictions on functions

Loops may not produce functions:

loop f = (λz → z+1) for x in xs
do (λz → x + f z)

The shape of f depends on the number of iterations of the loop.

Require that loop has order zero type.

All other typing rules are standard and do not restrict functions.
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Defunctionalization
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Defunctionalization

Type restrictions enable us to track functions precisely.
Control-flow is restricted so every applied function is known
and every application can be specialized.
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Defunctionalization

Defunctionalization in a nutshell:

let a = 1
let b = 2
let f = λx → x+a
in f b

let a = 1
let b = 2
let f = {a=a}
in f’ f b

Create lifted function:

let f’ env x =
let a = env.a
in x+a
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Defunctionalization

Static values:

sv ::= Dyn τ
| Lam x e0 E

| Rcd {(`i 7→ sv i )i∈1..n}

Static approximation of the value of an expression.
Precisely capture the closures produced by an expression.

Translation environment E maps variables to static values.
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Defunctionalization

let twice (g: int → int) = λx → g (g x)
let main = let f = let a = 5

in twice (λy → y+a)
in f 1
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Correctness
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Correctness

Defunctionalization has been proven correct:

Defunctionalization terminates and yields a consistently typed
residual expression.

For order 0, the type is unchanged.
Proof using a logical relations argument.

Meaning is preserved.

More details in the paper.
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Implementation
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Implementation

Type checking

Static interpretation

Monomorphization

Defunctionalization

Internalizer Compiler back end

Futhark program

Typed Futhark program

Module-free program

Module-free, monomorphic

Module-free, monomorphic, first-order

Compiler IR
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Implementation
Polymorphism and defunctionalization

What if type a is instantiated with a function type?

let ite ’a (b: bool) (x: a) (y: a) : a =
if b then x else y

Distinguish lifted type variables:

’a regular type variable
’^a lifted type variable
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Evaluation
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Evaluation

Does defunctionalization yield efficient programs?

Rewrite benchmark programs to use higher-order functions.

Most SOACs converted to higher-order library functions.
Higher-order utility functions

Function composition, application, flip, curry, etc.

Segmented operations and sorting functions in library use
higher-order functions instead of parametric modules.
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Evaluation
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Immediately after adding defunctionalization
Using higher-order SOACs, utilities etc.

Run-time performance is unaffected.
Relies on the optimizations performed by the compiler.
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Functional images

Represent images as functions:

type image ’a = point → a

type filter ’a = image a → image a

Due to Conal Elliott.
Implemented in the Haskell EDSL Pan.

The entire Pan library has been translated to Futhark.
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Function-type conditionals
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Support for function-type conditionals

let r = if b then {f = λx → x+1, a = 1}
else {f = λx → x+n, a = 2}

in r.f r.a
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Support for function-type conditionals

let r = if b then {f = λx → x+1, a = 1}
else {f = λx → x+n, a = 2}

in r.f r.a

Introduce new form of static value:

Or sv1 sv2

Static value representation of r:

Rcd {f 7→ Or (Lam x (x + 1) [ ])
(Lam x (x + n) [n 7→ Dyn int])

a 7→ Dyn int}
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Support for function-type conditionals

let r = if b then {f = λx → x+1, a = 1}
else {f = λx → x+n, a = 2}

in r.f r.a

Straightforward translation is ill-typed:

 if b then {f = {}, a = 1}
else {f = {n=n}, a = 2}

Even worse with nested conditionals.

Binary sum types to complement Or static value:

τ1 + τ2
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Support for function-type conditionals

let r = if b then {f = λx → x+1, a = 1}
else {f = λx → x+n, a = 2}

in r.f r.a

 

let r = if b then {f = inl {}, a = 1}
else {f = inr {n=n}, a = 2}

in let x = r.a
in case r.f of

inl e → x+1
inr e → let n = e.n

in x+n
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Conclusion

General and practical approach to implementing higher-order
functions in high-performance functional languages for GPUs.
Proof of correctness.
Implementation in Futhark.
No performance overhead, but gain many of the benefits.

Questions, comments?
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