
Parallel Prefix Computation

RICHARD E. LADNER AND MICHAEL J. FISCHER

Umverstty of Washington, Seattle, Washington

ABSTRACT The prefix problem is to compute all the products x t o x2 o xk for i ~ k .~ n, where o is an
associative operation A recurstve construction IS used to obtain a product circuit for solving the prefix problem
which has depth exactly [log:n] and size bounded by 4n An application yields fast, small Boolean ctrcmts
to simulate fimte-state transducers. By simulating a sequentml adder, a Boolean clrcmt which has depth
2[Iog2n] + 2 and size bounded by 14n Is obtained for n-bit binary addmon The size can be decreased significantly
by permitting the depth to increase by an addmve constant

KEY WORDS AND PHRASES automaton, binary addmon, clrcmt, combinational complexity, depth, fanout,
parallehsm, size, transducer

CR CATEGORIES 5.22, 5 25, 6 1, 6 32

1. Introduction

M a n y a lgor i thmic p rob lems are easy to solve sequent ia l ly wi th f ini te memory . E x a m p l e s
are the add i t i on o f two b ina ry n u m b e r s a n d the d iv is ion o f a b i n a r y n u m b e r by a cons tan t .
By way o f contrast , efficient para l le l so lu t ions to these same p r o b l e m s (res t r ic ted to inpu t s
o f a fixed length) seem compl ica ted a n d mys te r ious a n d h ighly d e p e n d e n t o n special

proper t ies o f the par t i cu la r p rob lem. F o r example , the "ca r ry l o o k a h e a d " circui t for b i n a r y
add i t ion [6, 10] seems to rely on the detai ls o f carry p r o p a g a t i o n for its opera t ion .

In this pape r we give a genera l m e t h o d for de r iv ing eff icient para l le l so lu t ions to the
f ixed- length vers ion o f any p r o b l e m solved by a f ini te-s tate t ransducer . O u r cons t ruc t i on
consists o f two parts . Firs t we exhibR a class o f eff icient para l le l so lu t ions to a f u n d a m e n t a l
abs t rac t p rob lem, the prefix p rob lem. W e then show h o w to use such a so lu t ion to

" s imu la t e " a f ini te-state t r ansduce r efficiently. T h e resul t is a n eff icient para l le l so lu t ion to
the or ig ina l p r o b l e m solved by the f ini te-state t ransducer .

Let o be a n associat ive ope ra t i on o n a d o m a i n D. The prefix problem is to compu te , for
g iven xl, . . . , xn E D, each o f the p roduc t s Xl o x2 xk, 1 _< k ~= n.

By ana logy wi th Boo lean c o m b i n a t i o n a l circuits [7, 8], we cons ider product circuits,
which are d i rec ted acyclic o r i en ted graphs . Each node o f indegree 2 represen ts a p roduc t

o f its two inputs . All o the r nodes have indegree 0 a n d are labe led wi th a n in teger be tween
! a n d n. These are the inpu t nodes. W i t h each n o d e v we associate a n e l emen t o f D in the
obv ious way.

W e cons ider two complex i ty measures o n a p r o d u c t circuit ~ C(.A/'), the size, is the
n u m b e r o f p roduc t nodes in ~ , a n d D(~Ar), the depth, is the m a x i m u m n u m b e r o f p roduc t
nodes on any di rected pa th in ~A/. F o r example , the c i rcmt o f F igu re 1 ha s d e p t h 3, size 4,
a n d compu te s Xl o x~ o xa o x~ o xa. No te tha t ~t also c o m p u t e s Xl o xa o xa o x2, x j o x3, and

X3 o X 2 .

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the pubhcauon and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission
A preliminary version of this paper was presented at the 1977 International Conference on Parallel Processing,
Bellatre, Mtch, August 1977
This material is based on work supported by the National Science Foundation under Grant DCR 74-12997-A01,
through a subcontract from M.1.T, and Grants MCS 74-12764 and MCS 77-02474
Authors' address. Department of Computer Science, FR-35, University of Washington, Seattle, WA 98195
© 1980 ACM 0004-5411/80/1000-0831 $00 75

Journal of the AssoclaUon for Computing Machinery, Vol 27, No 4, October 1980, pp 831-838

832

FIe. I. A product circuit.
(All arcs are dtrected down-

ward)

R. E. LADNER AND M. J. FISCHER

oo/I
oo /o Ol/o
o , , , Co@" .CO ,o,o
I 0 / I I I / I

II10

FIG. 2. A sequential adder.

The depth of a circuit corresponds to the computation time in a parallel computation
environment, whereas the size represents the amount of hardware required. For the prefix
problem it is straightforward to construct a circuit of the minimum possible size, n - 1, but
its depth is also n - 1. Similarly, it is not difficult to find a circuit of depth exactly [logzn],
the minimum possible depth, but the immediate recursive construction yields a circuit of
size ~(n log n). ~ In Section 2 we find a solution to the prefix problem of minimum depth
[log2n] and size <4n.

In Section 3 we obtain a family of circuits for simulating a given arbitrary finite-state
transducer on inputs of length n which all have depth O(log n) and size O(n). In Section
4 we apply those constructions to the simple machine for binary addition of Figure 2 and
analyze the constants carefully. One result of our general methods is a circuit o f
size 8n + 6 and depth 4[log2n] + 2 which is essentially the same as the "carry looka-
head" adder [10]. Changing the parameters of the construction decreases the depth to only
2[log2n] + 2, while the size increases to 14n, which is possibly advantageous in certain
practical situations. Asymptotically, there is still a factor-of-2 gap between the depth
achieved by our general methods and the best depth obtainable for addition. Brent has an
adder of depth log2n + O(~/logzn), but its size is ~(n log2n) [2]. Krapchenko achieves the
same bound on depth with a linear size circuit [5, 8].

2. Circuits for the Prefix Problem

In this section we define a family of circuits ~ (n) for solving the prefix problem on n
inputs. For each k the depth D(~(n)) _< k + [log2n]. The size C(~(n)) _< 2(1 + l/2k)n
- 4 for all n _> 1 and 0 <_ k _< [log2n'l. For small n the size is substantially smaller than this
bound would suggest.

The recursive construction of ~0(n) is shown in Figure 3, and the construction of ~k(n)
for k _> 1 is shown in Figure 4. When n ffi 1, ~gk(n) is simply a single input node and
contains no products. In the figures, circles represent concatenation nodes.

Figure 5 illustrates the construction of ~ (n) for small values of n.

ANALYSIS OF SIZE AND DEPTH. That the constructions achieve the desired depth
follows easily by induction, given the additional fact, also proved by induction, that the
last output in ~k(n) has depth exactly [log2n], even when k > 0. The correctness of the
construction is also easily shown by induction and is left to the reader.

Let Sh(n) ffi C(~k(n)). Then S satisfies the following recurrences:

/ r . . , 1 ~

S k (n) - - S k - ~ (l ~ l) + n - l , neven and n_>2, k _ > l ;
, k / ~ [

n o d d and n_>3, k > l;

k_>0. Sk(l)----0,

'fffi leg) ,fig ffi o(f) .

Parallel Prefix Computation

I

Fnl21
, , A

i
FIG 3.

Ln/2J
A

o

I I I
The constructton of ~o(n),

n inputs
A

l i n e

~nl If
t e n

833

Fio 4 The construction of ~k(n), k >_ I

W h e n n is a power o f 2, we get exact solut ions

So(n) = 4n - F (5 + l o ~ n) + 1,
Sl(n) = 3n - F (4 + l o ~ n) ,

a n d more general ly , w h e n 0 _< k _< log2n,

= 2 1 + ~ - F (5 + l o N n - k) + l - k .

Here F(m) denotes the ru th F ibonacc i n u m b e r , a n d F(m) ffi (~m _ ~m)/~,,~, where @ =
(1 + J 5) / 2 and ~, = (l - , /5) /2 (cf. [3]). Thus for large n and fixed k, S~(n) is bounded by
2 0 + l /2k)n -- ak" n °6~24 , where a , > 0 is a cons t an t d e p e n d i n g on ly o n k. S o m e va lues

o f Sk(n) are s h o w n in F igure 6.

834

Pk (') pk(2)

Pk(S)

R. E. LADNER AND M. J. FISCHER

Pk (4)

Po(S) Pk(5),k) l

FIG. 5 The ~k(n) circuits for 1 _< n _< 5

I l l l l l l
k

0 I 2. 3 4 5 6 7

I 0
2 I
4 4
8 12
16 31

32 74
64 168
128 369

I
4 4
II 11 II

27 26 26 26
62 58 57 57 57
137 125 121 120 120 120

295 264 252 248 247 247 247

P, (8)

Flu 6 S,(n) for n a small power of 2 FIG. 7. A solution to the 9-input
prefix problem

When n is not a power of 2, we do not have an exact solution, but it is easily verified by
induction that Sk(n) < 2(1 + l /2~)n -- 2, n >-- 1. In fact, we know that ~ (n) is not optimal
for n not a power of 2. For example, C(~o(9)) = 13, but the circuit of Figure 7 has size
only 12 since $1(8) = 11, and it also has minimal depth 4. It is an open problem to
determine just how to split the circuit to optimize the construction using the methods of
Figures 3 and 4.

There is an analogy between product circuits and addit ion chains [4, 9]. Let D be the
natural numbers, o be ordinary addition, and fix each input to I. Then the minimum size
circuit for computing a number n is exactly the length of the shortest addit ion chain for m.
A prefix circuit on n inputs under this interpretation constructs each of the integers from
1 to n. Unlike most of the work on addit ion chains, we are interested in the depth as well
as in the size. As with addit ion chains, analysis becomes much more difficult for n not a
power o f 2.

ANALYSIS OF FANOUT. The fanout of an input or product node in a circuit is its
outdegree, and the fanout of a circuit is the maximum fanout o f any node. In some
applications, fanout is an important consideration along with size and depth.

For the circuits ~ (n) , we happen to be able to give an exact characterization o f the
fanout. To begin, define the ith output node to be the one which computes the ith output
value of the network. A node which is neither an input nor an output node is said to be
internal. (In Figures 3-5 and 7 the output nodes are identified by vertical lines leading up
from the bottom, but these lines are not counted in the fanout calculations.)

Parallel Prefix Computation 835

In ~k(n) the first output node is the first input node, and the other outputs are product
nodes. Every input node has fanout _<2, and for every internal node there is an output
node o f fanout at least as great. These facts are easily verified by induction on n, where the
induction hypothesis is strengthened to show that the first input has fanout <_ 1 and no
output node has fanout exceeding n - 1. We conclude that the fanout of ~k(n) equals the
maximum fanout of an output node unless that quantity is 1. That happens, as we shall
see, only for n _< 3, in which case the fanout is easily determined from Figure 5.

Let fo(k, n, i) be the fanout of the ith output node of Ok(n). An easy induction establishes
that fo(k, n, 1) ffi 1 for all n # 1 and fo(k, n, n) ffi 0 for all n. Also, fo(k, 3, 2) ffi 1. For
n _> 4 and 1 < i < n, fo(k, n, i) satisfies the following recurrences:

I f k = 0, fo(k, n, i) =

f:l fo 1, , i if i < ;

i f i i s o d d and i ~ l ;

if i i s e v e n and i < n - 1;

0

fo(k l :)+,
If k > 0, fo(k, n, i) =

(["] fo k - 1, .~ , if i i s e v e n and i _ > n - 1.

Let B(k, n) = [(n + 2 k - 1)/2 ~÷~] + k. It can be shown that for all n > 2 k÷~,
fo(k, n, i) _< B(k , n). Moreover, this bound is best possible; that is, there is an i(k, n) such
that fo(k, n, i(k, n)) = B(k, n). i(k, n) ts given by the formula

if 2 k+l < n_< 2 k+l + 2~-1;

if n > 2 ~+1+2 ~-l.

i(k, n) =

Putting these results together with the fact that when n _< 2 k+~ and k >_ 1, then #k(n) =
~k-l(n), we have a complete characterization o f the fanout o f ~ (n) for all k and n.

3. Application to Finite-State Machines

A classic example of a sequential process is a finite-state transducer (of. [1]). Given an
input of length n and an imtial state, we show below how to compute in parallel the output
and final state. This method leads to the construction of fast Boolean circuits that simulate
finite-state transducers.

We use the Mealy model of a finite-state transducer which ts a five-tuple M = (Q, X, A,
8, y), where Q is a finite set of states, X is the input alphabet, A is the output alphabet,

: Q x X ~ Q is the transition function, and -y: Q x ~ ~ A is the output function.
For each input symbol a we define a function Ma :Q ~ Q by qMa ffi 6(q, a). (The

argument to Ma is on the left.) Given an input word a~a2 . . . ak, the state qM~, o M~2 o
. . . . M, , is the state of M after reading a~ . . . ak starting in state q, where o denotes
functional composition.

A parallel algorithm for computing the output and final state given the input a~a2 • . .
ak and the initial state qo is

1 Compute Mo,. M~. , M~., m parallel.

2 Compute N~ = M~, Nz ffi M. , o M ~ Nn = Ma. o M~ M.° by a parallel prefix algorithm

836 R. E. LADNER AND M. J. FISCHER

function
gz Pz

O0 OI I0

input funchon

xy gp

00 00

10 01

O I OI

I I I0

g = x ^ y

p=xe y

FIG. 8 Computation of the function
from the inputs.

function
gl Pl

00 00 00

01 00 01

I0 00 I0

g = % v (gl AP2)
P = Pi A PZ

FIG. 9 Composmon table

I0

I0

I0

3. Compute q] ffi qoNJ, q2 = q o N 2 qn ffi qoN, m parallel
4. Compute b~ ffi 7(qo, a0, b2 ffi 7(q,, a2) b, ffi 7(q,-h an) m parallel

The output is bib2 . . . b, and the final state is q, .
Let c~ (&) be the size (depth) of computing Ma, c2 (&) be the size (depth) of computing

functional composition, c3 (d3) be the size (depth) of computing functional evaluation, and
c4 (d4) be the size (depth) of computing y(q, a). Given an input of length n and an initial
state, the size and depth for computing the output and final state is

SIZE <_ c~c(n) + (cl + c3 + con,
DEPTH _< d2d(n) + d~ + d3 + d4,

where c(n) (d(n)) is the size (depth) of a product circuit for solving the prefix problem.
(Note: we assume that the state qo can be coded or decoded at no cost.)

There are several ways of obtaining Boolean circuits from this method. One simple way
is to represent the Ma's as s × s Boolean matrices, where s is the number of states.
Functional composition is Boolean matrix multiplication, and functional evaluation is the
Boolean product of a matrix and a vector. For this representation, using the stan-
dard matrix multiplication algorithm and the prefix circuit ~o (or ~k for fixed k),
we can construct a Boolean circuit for mputs of length n with linear size and depth
(1 + log2s)logen + d, where d is a constant depending only on M.

For a fixed finite-state machine there may be a particularly good representation for the
functions which would lead to a smaller or faster circuit. In the next section we find such
a representation for the addition finite-state machine of Figure 2.

4. Application to Binary Addition

Consider the finite-state transducer A of Figure 2. There are three functions A00, Aol = A m,
A n on states which are closed under composition. We repesent them by a pair of bits
g , p (for generate and propagate, respectively) as shown m Figure 8. The composition table
is shown in Figure 9, and the evaluation table in Figure 10.

F rom Figure 8 the inputs can be represented by the initial g, p pair, so we get the
output table shown in Figure 11.

By observation we can calculate the constants

c l - -2 , d l - - l ,
c2=3, dz= 2,
c3= 2, d3= 2,
C4-~l, d 4 = l .

The basic costs for addit ion are SIZE _< 3c(n) + 5n and DEPTH .~ 2d(n) + 4. There are
certain refinements that can be made.

Parallel Prefix Computation

function
gP

O0 OI

0 0 0
state

s I 0 I

I0

state
t

input
gP

O0 OI I0

0 I 0

I 0 I

837

t=gv (s ̂ p)

FIG, 10 EvaluaUon table

z = t o p

Fm 1 I. Output table.

number
of bits

k
0 I 2 3

DEPTH SIZE DEPTH SIZE DEPTH SIZE DEPTH SIZE

8

16

'32

64

128

6 20

8 52

iO 125

12 286

14 632

16 1363

FIG 12

I
8 20 I0 20 I

I I0 49 12 49

12 113 14 I10
I

14 250 16 238]

q 16 5'39 18 503

18 1141 20 1048

DEPTH and SIZE of small adders

14 49

16 I10

18 235

20 491

22 1012

(1) Let the input state be the constant 0. The evaluauon table reduces to t = g. There
is no "evaluation," so there is no need to compute p at the last level before step 3.
This results in a total savings of 3n in size and 2 in depth, so SIZE _< 3c(n) + 2n and
DEPTH _< 2d(n) + 2.

(2) We may obtain an n-bit adder with the state as an addit ional "carry-in" input by
forming an (n + l)-bit adder which starts in state 0 and uses the lowest order bits to
simulate the incoming state. This observation leads to an adder of SIZE _< 3c(n + 1) + 2n
and DEPTH _< 2d(n + l) + 2.

(3) These techniques can also be used to construct ones-complement adders. Because of
the "end-around" carry the input state is a function of the input numbers. The input state
is computed in step 2, which makes it available for step 3 where it is used. In this case the
adder has SIZE _< 3c(n) + 5n and DEPTH _< 2d(n) + 4.

Using the results o f Section 2 and observation (l) above, it is seen that there exist
Boolean circuits to compute n-bit sums (with no carry in) of

SIZE _< 8 + ~ and DEPTH _< 2 log2n + 2k + 2

for 0 _< k _< log2n.
Notice that If we set k ffi log2n, then we obtain a circuit o f SIZE _< 8n + 6 and

DEPTH _< 4 log2n + 2. These bounds are similar to those obtained for the "carry-
lookahead" adder [10]. We believe that our circuit ~k(n) for k = l o ~ n is essentially the
same as the "carry-lookahead" adder.

The table of Figure 12 illustrates the trade-offs that can be made between size and depth
in small adders. The numbers of Figure 12 are based on those of Figure 6 together with
observation (1).

ACKNOWLEDGMENTS. We wish to thank Glenn Goodrich and Garret Swart for several
helpful discussions.

838 R. E. LADNER AND M. J. FISCHER

REFERENCES

1. BOOTtl, T.L. Sequential Machines and Automata Theory. Wdey, New York, 1967.
2. BRENT, R. On the addiUon ofbmary numbers. IEEE Trans. Comput. C-19, 8 (1970), 758-759
3. KNUTH, D.E. The Art of Computer Programming, Vol. L Addtson-Wesley, Reading, Mass., 1968
4. KNUTH, D.E. The Art of Computer Programming, Vol. 2. Addtson-Wesley, Reading, Mass, 1969.
5 KRAPCHENKO, V.M. Asymptotic estimation of addition time of a parallel adder Syst. Theory Res. 19 (1970),

105-122 [Probl Kibern. 19, 107-122 (Russ.)].
60FMAN, YU. On the algorithmic complexity of discrete functions. Soy Phys Dok! 7 (1963), 589-591
7. PATERSON, M S An introduction to Boolean function complexity. Soo~t~ Math de France Ast~nsque 38-39

1976, 183-201 Also Tech. Rep STAN-CS-76-557, Computer Science Department, Stanford U m v , Stanford,
Cahf , August 1976

8. SAVAGE, J E. The Complexity of Computing. Wdey, New York, 1976
9 SCHONHAGE, A Alowerboundforthelengthofaddtttonchams. Theor Comput. Sct 1(1975),i-12

10 TUNG, C Anthmettc In Computer Sctence, A F Cardenas, L. Presser, and M A Marm, Eds, Wdey-
lnterscience, New York, 1972

RECEIVED JULY 1978, REVISED NOVEMBER 1979; ACCEPTED DECEMBER 1979

Journal ofthe Assoaatton for Computing Mactnnery, Vol 27. No 4, October 1980

