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ABSTRACT The prefix problem is to compute all the products x t o x2 . . . .  o xk for i ~ k .~ n, where o is an 
associative operation A recurstve construction IS used to obtain a product circuit for solving the prefix problem 
which has depth exactly [log:n] and size bounded by 4n An application yields fast, small Boolean ctrcmts 
to simulate fimte-state transducers. By simulating a sequentml adder, a Boolean clrcmt which has depth 
2[Iog2n] + 2 and size bounded by 14n Is obtained for n-bit binary addmon The size can be decreased significantly 
by permitting the depth to increase by an addmve constant 
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1. Introduction 

M a n y  a lgor i thmic  p rob lems  are easy to solve sequent ia l ly  wi th  f ini te  memory .  E x a m p l e s  
are the  add i t i on  o f  two b ina ry  n u m b e r s  a n d  the  d iv is ion  o f  a b i n a r y  n u m b e r  by  a cons tan t .  
By way o f  contrast ,  efficient para l le l  so lu t ions  to these same  p r o b l e m s  ( res t r ic ted to inpu t s  
o f  a fixed length)  seem compl ica ted  a n d  mys te r ious  a n d  h ighly  d e p e n d e n t  o n  special  

proper t ies  o f  the  par t i cu la r  p rob lem.  F o r  example ,  the  "ca r ry  l o o k a h e a d "  circui t  for  b i n a r y  
add i t ion  [6, 10] seems to rely on  the  detai ls  o f  carry  p r o p a g a t i o n  for  its opera t ion .  

In  this  pape r  we give a genera l  m e t h o d  for  de r iv ing  eff icient  para l le l  so lu t ions  to the  
f ixed- length  vers ion  o f  any  p r o b l e m  solved by  a f ini te-s tate  t ransducer .  O u r  cons t ruc t i on  
consists  o f  two parts .  Firs t  we exhibR a class o f  eff icient  para l le l  so lu t ions  to a f u n d a m e n t a l  
abs t rac t  p rob lem,  the  prefix p rob lem.  W e  then  show h o w  to use such  a so lu t ion  to 

" s imu la t e "  a f ini te-state  t r ansduce r  efficiently. T h e  resul t  is a n  eff icient  para l le l  so lu t ion  to 
the  or ig ina l  p r o b l e m  solved by  the  f ini te-state  t ransducer .  

Let  o be a n  associat ive ope ra t i on  o n  a d o m a i n  D. The  prefix problem is to compu te ,  for  
g iven  xl,  . . . ,  xn E D, each  o f  the  p roduc t s  Xl o x2 . . . . .  xk, 1 _< k ~= n. 

By ana logy  wi th  Boo lean  c o m b i n a t i o n a l  circuits  [7, 8], we cons ider  product circuits, 
which  are d i rec ted  acyclic o r i en ted  graphs .  Each  node  o f  indegree  2 represen ts  a p roduc t  

o f  its two inputs .  All  o the r  nodes  have  indegree  0 a n d  are labe led  wi th  a n  in teger  be tween  
! a n d  n. These  are  the  inpu t  nodes.  W i t h  each  n o d e  v we associate  a n  e l emen t  o f  D in the  
obv ious  way. 

W e  cons ider  two complex i ty  measures  o n  a p r o d u c t  circuit  ~ C(.A/'), the  size, is the  
n u m b e r  o f  p roduc t  nodes  in ~ ,  a n d  D(~Ar), the  depth, is the  m a x i m u m  n u m b e r  o f  p roduc t  
nodes  on  any  di rected pa th  in ~A/. F o r  example ,  the  c i rcmt  o f  F igu re  1 ha s  d e p t h  3, size 4, 
a n d  compu te s  Xl o x~ o xa o x~ o xa. No te  tha t  ~t also c o m p u t e s  Xl o xa o xa o x2, x j  o x3, and  

X3 o X 2 .  
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FIe.  I. A product circuit. 
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FIG. 2. A sequential  adder. 

The depth of  a circuit corresponds to the computation time in a parallel computation 
environment, whereas the size represents the amount of  hardware required. For the prefix 
problem it is straightforward to construct a circuit of  the minimum possible size, n - 1, but 
its depth is also n - 1. Similarly, it is not difficult to find a circuit of  depth exactly [logzn], 
the minimum possible depth, but the immediate recursive construction yields a circuit of  
size ~(n log n). ~ In Section 2 we find a solution to the prefix problem of  minimum depth 
[log2n] and size <4n. 

In Section 3 we obtain a family of  circuits for simulating a given arbitrary finite-state 
transducer on inputs of  length n which all have depth O(log n) and size O(n). In Section 
4 we apply those constructions to the simple machine for binary addition of  Figure 2 and 
analyze the constants carefully. One result of  our general methods is a circuit o f  
size 8n + 6 and depth 4[log2n] + 2 which is essentially the same as the "carry looka- 
head" adder [10]. Changing the parameters of  the construction decreases the depth to only 
2[log2n] + 2, while the size increases to 14n, which is possibly advantageous in certain 
practical situations. Asymptotically, there is still a factor-of-2 gap between the depth 
achieved by our general methods and the best depth obtainable for addition. Brent has an 
adder of  depth log2n + O(~/logzn), but its size is ~(n log2n) [2]. Krapchenko achieves the 
same bound on depth with a linear size circuit [5, 8]. 

2. Circuits for the Prefix Problem 

In this section we define a family of  circuits ~ ( n )  for solving the prefix problem on n 
inputs. For each k the depth D(~(n))  _< k + [log2n]. The size C(~(n)) _< 2(1 + l/2k)n 
- 4 for all n _> 1 and 0 <_ k _< [log2n'l. For small n the size is substantially smaller than this 
bound would suggest. 

The recursive construction of  ~0(n) is shown in Figure 3, and the construction of  ~k(n) 
for k _> 1 is shown in Figure 4. When n ffi 1, ~gk(n) is simply a single input node and 
contains no products. In the figures, circles represent concatenation nodes. 

Figure 5 illustrates the construction of  ~ ( n )  for small values of  n. 

ANALYSIS OF SIZE AND DEPTH. That the constructions achieve the desired depth 
follows easily by induction, given the additional fact, also proved by induction, that the 
last output in ~k(n) has depth exactly [log2n], even when k > 0. The correctness of  the 
construction is also easily shown by induction and is left to the reader. 

Let Sh(n) ffi C(~k(n)). Then S satisfies the following recurrences: 

/ r  . . , 1 ~  

S k ( n ) - - S k - ~ ( l ~ l ) + n - l ,  neven  and n_>2, k _ > l ;  
, k /  ~ [  

n o d d  and n_>3, k >  l; 

k_>0.  Sk(l)----0, 

'fffi leg) ,fig ffi o(f) .  



Parallel Prefix Computation 

I 

Fnl21 
, , A  

i 
FIG 3. 

Ln/2J 
A 

o 

I I I 
The constructton of ~o(n), 

n inputs 
A 

l i n e  

~nl If 
t e n  

833 

Fio 4 The construction of ~k(n), k >_ I 

W h e n  n is a power  o f  2, we get exact  solut ions  

So(n) = 4n  - F ( 5  + l o ~ n )  + 1, 
Sl(n) = 3n - F ( 4  + l o ~ n ) ,  

a n d  more  general ly ,  w h e n  0 _< k _< log2n, 

= 2  1 + ~  - F ( 5 + l o N n - k ) + l - k .  

Here  F(m)  denotes  the  ru th  F ibonacc i  n u m b e r ,  a n d  F(m)  ffi (~m _ ~m)/~,,~, where  @ = 
(1 + J 5 ) / 2  and  ~, = (l - , /5) /2  (cf. [3]). Thus  for large n and  fixed k, S~(n) is bounded  by 
2 0  + l /2k)n  -- ak" n °6~24 , where  a ,  > 0 is a cons t an t  d e p e n d i n g  on ly  o n  k. S o m e  va lues  

o f  Sk(n) are s h o w n  in F igure  6. 
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FIG. 5 The ~k(n) circuits for 1 _< n _< 5 
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I 0 
2 I 
4 4 
8 12 
16 31 

32 74 
64 168 
128 369 

I 
4 4 
II 11 II 

27 26 26 26 
62 58 57 57 57 
137 125 121 120 120 120 

295 264 252 248 247 247 247 

P, (8) 

Flu 6 S,(n) for n a small power of 2 FIG. 7. A solution to the 9-input 
prefix problem 

When n is not a power of  2, we do not have an exact solution, but it is easily verified by 
induction that Sk(n) < 2(1 + l /2~)n -- 2, n >-- 1. In fact, we know that ~ ( n )  is not optimal 
for n not a power of  2. For  example, C(~o(9)) = 13, but the circuit of  Figure 7 has size 
only 12 since $1(8) = 11, and it also has minimal depth 4. It is an open problem to 
determine just how to split the circuit to optimize the construction using the methods of  
Figures 3 and 4. 

There is an analogy between product circuits and addit ion chains [4, 9]. Let D be the 
natural  numbers, o be ordinary addition, and fix each input to I. Then the minimum size 
circuit for computing a number n is exactly the length of  the shortest addit ion chain for m. 
A prefix circuit on n inputs under this interpretation constructs each of  the integers from 
1 to n. Unlike most of  the work on addit ion chains, we are interested in the depth as well 
as in the size. As with addit ion chains, analysis becomes much more difficult for n not a 
power o f  2. 

ANALYSIS OF FANOUT. The fanout of  an input or product node in a circuit is its 
outdegree, and the fanout of  a circuit is the maximum fanout o f  any node. In some 
applications, fanout is an important  consideration along with size and depth. 

For  the circuits ~ ( n ) ,  we happen to be able to give an exact characterization o f  the 
fanout. To begin, define the ith output node to be the one which computes the ith output 
value of  the network. A node which is neither an input nor an output node is said to be 
internal. (In Figures 3-5 and 7 the output nodes are identified by vertical lines leading up 
from the bottom, but these lines are not counted in the fanout calculations.) 
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In ~k(n) the first output node is the first input node, and the other outputs are product 
nodes. Every input node has fanout _<2, and for every internal node there is an output 
node o f  fanout at least as great. These facts are easily verified by induction on n, where the 
induction hypothesis is strengthened to show that the first input has fanout <_ 1 and no 
output node has fanout exceeding n - 1. We conclude that the fanout of  ~k(n) equals the 
maximum fanout of  an output node unless that quantity is 1. That happens, as we shall 
see, only for n _< 3, in which case the fanout is easily determined from Figure 5. 

Let fo(k, n, i) be the fanout of  the ith output node of  Ok(n). An easy induction establishes 
that fo(k, n, 1) ffi 1 for all n # 1 and fo(k, n, n) ffi 0 for all n. Also, fo(k, 3, 2) ffi 1. For  
n _> 4 and 1 < i < n, fo(k, n, i) satisfies the following recurrences: 

I f  k = 0, fo(k, n, i) = 

f:l fo 1, , i  if  i <  ; 

i f  i i s o d d  and i ~ l ;  

if  i i s e v e n  and i < n -  1; 

0 

fo(k l :)+, 
If  k > 0, fo(k, n, i) = 

( ["] fo k -  1, .~ , if  i i s e v e n  and i _ > n -  1. 

Let B(k,  n) = [(n + 2 k - 1)/2 ~÷~] + k. It can be shown that for all n > 2 k÷~, 
fo(k, n, i) _< B(k ,  n). Moreover, this bound is best possible; that is, there is an i(k,  n) such 
that fo(k, n, i(k, n)) = B(k,  n). i(k, n) ts given by the formula 

if  2 k+l < n_< 2 k+l + 2~-1; 

if  n > 2  ~+1+2 ~-l. 

i(k, n) = 

Putting these results together with the fact that when n _< 2 k+~ and k >_ 1, then #k(n) = 
~k-l(n), we have a complete characterization o f  the fanout o f  ~ ( n )  for all k and n. 

3. Application to Finite-State Machines 

A classic example of  a sequential process is a finite-state transducer (of. [1]). Given an 
input of  length n and an imtial state, we show below how to compute in parallel  the output 
and final state. This method leads to the construction of  fast Boolean circuits that simulate 
finite-state transducers. 

We use the Mealy model of  a finite-state transducer which ts a five-tuple M = (Q, X, A, 
8, y), where Q is a finite set of  states, X is the input alphabet, A is the output alphabet,  

: Q x X ~ Q is the transition function, and -y: Q x ~ ~ A is the output function. 
For  each input symbol a we define a function Ma :Q ~ Q by qMa ffi 6(q, a). (The 

argument to Ma is on the left.) Given an input word a~a2 . . .  ak, the state qM~, o M~2 o 
. . . .  M, ,  is the state of  M after reading a~ . . .  ak starting in state q, where o denotes 
functional composition. 

A parallel algorithm for computing the output and final state given the input a~a2 • . .  
ak and the initial state qo is 

1 Compute Mo,. M~. , M~., m parallel. 

2 Compute N~ = M~,  Nz ffi M. ,  o M ~  . . . . .  Nn = Ma. o M~ . . . . .  M.° by a parallel prefix algorithm 
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function 
gz Pz 

O0 OI I0 

input funchon 

xy gp 

00 00 

10 01 

O I OI 

I I  I0  

g = x ^ y  

p=xe y 

FIG. 8 Computation of the function 
from the inputs. 

function 
gl Pl 

00 00 00 

01 00 01 

I0 00 I0 

g = % v  (gl AP2) 
P = Pi A PZ 

FIG. 9 Composmon table 

I0  

I0  

I0 

3. Compute q] ffi qoNJ, q2 = q o N 2  . . . . .  qn ffi qoN, m parallel 
4. Compute b~ ffi 7(qo, a0, b2 ffi 7(q,, a2) . . . . .  b, ffi 7(q,-h an) m parallel 

The output is bib2 . . .  b,  and the final state is q, .  
Let c~ (&) be the size (depth) of  computing Ma, c2 (&) be the size (depth) of  computing 

functional composition, c3 (d3) be the size (depth) of  computing functional evaluation, and 
c4 (d4) be the size (depth) of  computing y(q, a). Given an input of  length n and an initial 
state, the size and depth for computing the output and final state is 

SIZE <_ c~c(n) + (cl + c3 + con, 
DEPTH _< d2d(n) + d~ + d3 + d4, 

where c(n) (d(n)) is the size (depth) of  a product circuit for solving the prefix problem. 
(Note: we assume that the state qo can be coded or decoded at no cost.) 

There are several ways of  obtaining Boolean circuits from this method. One simple way 
is to represent the Ma's as s × s Boolean matrices, where s is the number  of  states. 
Functional  composition is Boolean matrix multiplication, and functional evaluation is the 
Boolean product of  a matrix and a vector. For  this representation, using the stan- 
dard matrix multiplication algorithm and the prefix circuit ~o (or ~k for fixed k), 
we can construct a Boolean circuit for mputs of  length n with linear size and depth 
(1 + log2s)logen + d, where d is a constant depending only on M. 

For  a fixed finite-state machine there may be a particularly good representation for the 
functions which would lead to a smaller or faster circuit. In the next section we find such 
a representation for the addition finite-state machine of  Figure 2. 

4. Application to Binary Addition 

Consider the finite-state transducer A of  Figure 2. There are three functions A00, Aol = A m, 
A n  on states which are closed under composition. We repesent them by a pair  of  bits 
g , p  (for generate and propagate, respectively) as shown m Figure 8. The composition table 
is shown in Figure 9, and the evaluation table in Figure 10. 

F rom Figure 8 the inputs can be represented by the initial g, p pair, so we get the 
output table shown in Figure 11. 

By observation we can calculate the constants 

c l - -2 ,  d l - - l ,  
c2=3,  dz=  2, 
c3= 2, d3= 2, 
C4-~l,  d 4 = l .  

The basic costs for addit ion are SIZE _< 3c(n) + 5n and DEPTH .~ 2d(n) + 4. There are 
certain refinements that can be made. 
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function 
gP 

O0 OI 

0 0 0 
state 

s I 0 I 

I0 

state 
t 

input 
gP 

O0 OI I0 

0 I 0 

I 0 I 
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t=gv (s ̂ p) 

FIG, 10 EvaluaUon table 

z = t o p  

Fm 1 I. Output table. 

number 
of bits 

k 
0 I 2 3 

DEPTH SIZE DEPTH SIZE DEPTH SIZE DEPTH SIZE 

8 

16 

'32 

64 

128 

6 20 

8 52 

iO 125 

12 286 

14 632 

16 1363 

FIG 12 

I 
8 20 I0 20  I 

I I0 49 12 49 

12 113 14 I10 
I 

14 250 16 238 ] 

q 16 5'39 18 503 

18 1141 20 1048 

DEPTH and SIZE of small adders 

14 49 

16 I10 

18 235 

20 491 

22 1012 

(1) Let the input state be the constant 0. The evaluauon table reduces to t = g. There 
is no "evaluation," so there is no need to compute p at the last level before step 3. 
This results in a total savings of  3n in size and 2 in depth, so SIZE _< 3c(n) + 2n and 
DEPTH _< 2d(n) + 2. 

(2) We may obtain an n-bit adder with the state as an addit ional "carry-in" input by 
forming an (n + l)-bit  adder which starts in state 0 and uses the lowest order bits to 
simulate the incoming state. This observation leads to an adder  of  SIZE _< 3c(n + 1) + 2n 
and DEPTH _< 2d(n + l) + 2. 

(3) These techniques can also be used to construct ones-complement adders. Because of  
the "end-around" carry the input state is a function of  the input numbers. The input state 
is computed in step 2, which makes it available for step 3 where it is used. In this case the 
adder  has SIZE _< 3c(n) + 5n and DEPTH _< 2d(n) + 4. 

Using the results o f  Section 2 and observation ( l )  above, it is seen that there exist 
Boolean circuits to compute n-bit  sums (with no carry in) of  

SIZE _< 8 + ~ and DEPTH _< 2 log2n + 2k + 2 

for 0 _< k _< log2n. 
Notice that If we set k ffi log2n, then we obtain a circuit o f  SIZE _< 8n + 6 and 

DEPTH _< 4 log2n + 2. These bounds are similar to those obtained for the "carry- 
lookahead" adder [10]. We believe that our circuit ~k(n) for k = l o ~ n  is essentially the 
same as the "carry-lookahead" adder. 

The table of  Figure 12 illustrates the trade-offs that can be made between size and depth 
in small adders. The numbers of  Figure 12 are based on those of  Figure 6 together with 
observation (1). 
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