
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

A framework for developing measurement systems and its industrial evaluation

Miroslaw Staron a,*, Wilhelm Meding b, Christer Nilsson b

a IT University of Göteborg, SE-412 96 Göteborg, Sweden
b Ericsson SW Research, Ericsson AB, Sweden

a r t i c l e i n f o

Article history:
Received 25 February 2008
Received in revised form 15 September
2008
Accepted 28 October 2008
Available online 5 December 2008

Keywords:
Software metrics
ISO/IEC 15939
Measurement systems

a b s t r a c t

As in every engineering discipline, metrics play an important role in software development, with the dif-
ference that almost all software projects need the customization of metrics used. In other engineering
disciplines, the notion of a measurement system (i.e. a tool used to collect, calculate, and report quanti-
tative data) is well known and defined, whereas it is not as widely used in software engineering. In this
paper we present a framework for developing custom measurement systems and its industrial evaluation
in a software development unit within Ericsson. The results include the framework for designing mea-
surement systems and its evaluation in real life projects at the company. The results show that with
the help of ISO/IEC standards, measurement systems can be effectively used in software industry and that
the presented framework improves the way of working with metrics. This paper contributes with the pre-
sentation of how automation of metrics collection and processing can be successfully introduced into a
large organization and shows the benefits of it: increased efficiency of metrics collection, increased adop-
tion of metrics in the organization, independence from individuals and standardized nomenclature for
metrics in the organization.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

In a large software development organization metrics collection
and analysis is an important part of daily work. In such organiza-
tions, large numbers of software metrics are collected and ana-
lyzed in order to monitor organizations, projects, and products,
leading in the long run to optimizations and increased operational
excellence. Metrics collection and analysis, however, requires sig-
nificant effort to effectively present the results of measurement
processes. A way of optimizing measurement processes is to use
custom measurement systems, which collect information from
several sources, automatically analyze it and inform the user
(stakeholder) about the key status indicators or problems. Despite
numerous advantages, developing such custom measurement sys-
tems requires a significant amount of time as standard metrics
need to be adapted to the concrete information needs which the
measurement systems should fulfill [1,2].

By using measurement systems the managers, can focus on a
few key indicators (metrics with associated interpretations) in-
stead of monitoring large number of metrics. This, in consequence
leads to increased performance of managers and efficiency of their
projects and organizations. Furthermore, using comparable mea-
surement systems in multiple projects, can lead to easier bench-

marking of projects or even organizations; naturally if the
metrics have appropriate definitions (as indicated in [3–5]).

This paper presents a framework which addresses the need of
quick development and creation of measurement systems. The
framework implements ISO/IEC 15939 standard, in particular its
information model, and after instantiation forms a measurement
system which satisfies information needs of its stakeholder (e.g.
product manager’s need to monitor post-release product reliabil-
ity) by collecting, analyzing and presenting data from measure-
ment instruments. These measurement instruments are tools
used to obtain a value of a metric; a task which in software engi-
neering is performed by ‘‘metric tools”. As effective use of these
measurement instruments in decision support processes requires
combining the resulting values and presenting them as key indica-
tors, measurement systems combine metric values, interpret them
using pre-defined decision criteria and later present the indicators
to the stakeholders.

The main purpose of the framework is to make the work with
metrics more efficient and effective in large organizations. The
framework presented in this paper is primarily dedicated for engi-
neers and managers working with metrics collection and data
analysis. These tasks are supported by the mechanisms built into
the framework: pre-defined kinds of metrics (base metrics, derived
metrics, and indicators as defined in Appendix A), methods for cal-
culating derived metrics and indicators, and methods for assigning
interpretation to indicators. The framework is a pre-prepared MS
Excel file with Visual Basic for Applications (VBA) scripts automat-

0950-5849/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2008.10.001

* Corresponding author. Tel.: +46 31 772 1081.
E-mail address: Miroslaw.Staron@ituniv.se (M. Staron).

Information and Software Technology 51 (2009) 721–737

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/ locate/ infsof

Author's personal copy

ing the process of data collection, analysis and customizing the
resulting measurement system. The framework is instantiated by
using built-in wizards to add metrics of the kinds defined in
ISO/IEC 15939, links between these metrics and decision criteria
for interpreting the indicators. The instantiated framework is an
MS Excel file which automatically calculates and interprets indica-
tors from the data provided by metric tools or from databases.

The framework is evaluated in this paper through its use in one
of the development units with several hundred employees within
Ericsson. Using the framework does not require programming
(for most tasks) and therefore makes the development and use of
measurement systems much simpler task than collecting and ana-
lyzing the same data manually.

In addition to presenting the framework, this paper also con-
tributes with the presentation of how automation of metrics col-
lection and processing can be successfully introduced into a large
organization through the use of a framework based on ISO/IEC
15939 standard (exemplified by our framework). The paper shows
benefits of such a framework: increased efficiency of metrics col-
lection (no manual work is required for daily collection of metrics),
increased adoption of metrics in the organization (daily updates of
information, minimized effort required to set-up measurement
systems, customization for stakeholders), independence from met-
ric experts and standardized nomenclature for metrics in the orga-
nization based on the ISO/IEC standards.

The remaining of this paper is structured as follows. Section 2
discusses the most related work to this research, which influenced
the existing shape of the framework and its introduction into the
company. Section 3 describes the organizational context of our re-
search – the development unit at Ericsson, its history of working
with metrics, and their current metric program. Section 4 outlines
the design of our study which resulted in the development of the
framework. Section 5 presents the framework itself, while Section
6 presents an example of how this framework is used. Section 7
shows the evaluation of the framework and the benefits observed
when using it at Ericsson. Section 8 presents threats to validity of
the study and Section 9 summarizes the contributions of our re-
search. Finally Section 10 presents conclusions.

2. Related work

2.1. Previous empirical studies of metric programs

Our framework for constructing measurement systems is in-
tended to support organizations establishing metric programs.
We investigated the following publications in order to elicit factors
important when introducing metric programs into organizations in
general, and not to be constrained only to Ericsson’s context:

� Umarji and Emurian [6]: the study describes the use of technol-
ogy adoption theory when implementing metric programs with
focus on social issues. One of the important results from that
study was the importance of the factor ‘‘ease of use”. When
developing our framework we invested in making the frame-
work easy to use and making the presentation of the indicators
easy to interpret.

� Gopal et al. [7,8]: these studies present results and conclusions
from a survey about metric program implementation conducted
with managers at various levels (over 200 data points). The
results indicated the importance of such factors as management
commitment and the relative low importance of such factors as
data collection. In order to check how important the framework
is for the managers who we work with, we included the line
manager and the project manager in our interviews when eval-
uating the framework.

� Atkins et al. [9]: among other aspects, this paper discusses how
metrics can be reused by projects working on similar things in par-
allel. We used their experiences when reasoning about
the reuse of metrics between different instances of the framework.

� Lawler and Kitchenham [10]: based on the experiences of sev-
eral case studies, this paper discusses the issues of using metrics
at different levels and combining metrics together (e.g. combin-
ing metrics from particular designers to provide the status of the
whole project). This work affected the design of the framework
in such a way that the metrics in the framework can be reused
and combined in a way consistent with the study by Lawler
and Kitchenham.

� Kilpi [11]: this paper describes how a metric program was
implemented at Nokia. We used their experiences when evalu-
ating the framework.

� Niessink and van Vliet [12 and 13]: these studies describe exter-
nal factors important for software metric implementation,
including the importance of the goal of software measurement
processes. Our experiences support this conclusion, and the
need for the monitoring status and progress resulted in finally
choosing the ISO/IEC 15939 standard as a basis for our work
with metrics.

� de Panfilisi et al. [14]: this study describes experiences from
introducing a GQM-based metric program. Our experiences
showed slightly contradicting picture that one of the most
important aspects is not the sole moment of adoption of a pro-
gram (as advocated by GQM) and possibilities of using subjec-
tive metrics, but the use of objective metrics to monitor
entities over longer periods of time. A more detailed guidelines
supporting the introduction of metric programs can be found in
Goodman [15] or Möller [16].

2.2. Other approaches

We deliberately chose the ISO/IEC 15939 (:2002 in the start of
the study and :2007 when the study concluded) in our work as
the main standard. It is not the only standard (others are men-
tioned in the appendix), but it is an accepted one and was best-sui-
ted for our purposes, which were: (i) need for constant monitoring
of status and progress; (ii) need for specification of how to set up
infrastructure of measurement systems; (iii) ability to define main
attributes; and (iv) a requirement from Ericsson to use an interna-
tional standard. A good comparison of other related measurement
frameworks and models was conducted by Chirinos et al. [17], who
considered such frameworks and models as ISO/IEC 15939 and
Goal-Question-Metric (GQM). Despite the recommendations from
Chirinos et al. to use their measurement framework (MOSME),
the ISO/IEC standard was more applicable due to its wider adop-
tion in industry, the fact that it is standardized by an international
standardization body and the easy coupling of theory and practice.
The use of standardized view on measurement processes also pro-
vided the possibility for future benchmarking with other organiza-
tions (e.g. as indicated in [18]).

An alternative to the ISO/IEC 15939 is the GQM framework,
although some differences exist. In particular, frameworks like
GQM [20] are used to elicit a set of metrics which support decision
processes in organizations, follow up on goals but not directly to
monitor entities. The focus of measurement systems, however, is
to support long-term monitoring of entities rather than to attain
a specific goal. Software metrics need to be introduced, collected,
and used during setting up of measurement programs (also called
metric programs, which usually involves creating multiple mea-
surement systems). To our best knowledge there exist a few frames
of reference for assessing such programs. Jeffery and Berry [21]
developed a framework for assessing whether a metric program

722 M. Staron et al. / Information and Software Technology 51 (2009) 721–737

Author's personal copy

has chances of being successfully adopted. Several of their factors
are related to such aspects as wide understanding and adoption
of metrics, ease of use or flexibility of measurement systems. When
designing our framework we addressed these issues. When assess-
ing the success we combined Jeffery and Berry’s framework with
guidelines of Hall and Fenton [22] who presented a study of two
companies, one of them being in the embedded software develop-
ment, alike Ericsson. We also used the questionnaire developed by
Jeffery and Berry to assess the potential for success of the metric
program in our research project.

Factors contributing to successes and failures of metric pro-
grams are discussed by Fenton and Neil [23], who identify such
fundamental problems as irrelevance of academically developed
metrics for industrial use. Our approach is based on the identifica-
tion of a stakeholder in the organization who is used as the refer-
ence point for assessing the usability of the developed
measurement system (using the framework) – in other words,
the measurements are developed with a particular use in mind
rather than starting from theoretical considerations.

2.3. Similar measurement systems

The concept of a measurement system is not new in engineering
or in software engineering – measurement instruments and sys-
tems are one of the cornerstones of engineering. In software engi-
neering, we are used to working with metric tools rather than
measurement systems. The difference is that metric tools and mea-
surement instruments seem to be very similar, but metric tools and
measurement systems are not. Measurement instruments (in other
engineering disciplines) are suited for single purposes and usually
collect one metric (e.g. voltage) whereas metric tools collect usually
a number of metrics at the same time (e.g. length of the program, its
complexity). Our framework is placed on top of metric tools with
the focus on presenting calculating and presenting indicators rather
than collecting metrics and is intended to be composed of multiple
measurement instruments (metric tools). Other examples of mea-
surement systems built in the same principles are:

� A measurement system presented by Wisell [24]: where the
concept of using multiple measurement instruments to define
a measurement system is also used.

� Computerized measurement systems in other disciplines facili-
tating the concept of measuring instruments, as presented in
the following papers: [19,25–31]. All these measurement sys-
tems are (i) using the concept of measurement instruments,
(ii) used in established engineering fields or physics, (iii) focused
on monitoring current value of an attribute (status in our case)
not on collecting metrics. Although differing in domains of
applications these measurement systems show that concepts
which we adopt from the international standards (like [32])
are successfully used in other engineering disciplines.

� Lowler and Kitchenham [10] present a generic way of modeling
measures and building more advanced measures from less com-
plex ones. Their work is linked to the TychoMetric [33] tool. The
tool is a very powerful measurement system framework, which
has many advanced features not present in our framework (e.g.
advanced ways of combining metrics). TychoMetric provides a
possibility of setting up advanced and distributed (over several
computers) filters and queries for multiple data sources as it is
intended to cover all (or at least very many) kinds of metrics
and projects. The configuration of a set-up of one measurement
system is much more difficult than developing a custom mea-
surement system using our framework. The plethora of features
and the fact that we intended our framework to be simple, easy
to use and interpret rendered the TychoMetric tool too advanced
for building measurement systems for wide spread throughout

our organization. A similar approach to the TychoMetric’s way
of using metrics was presented by Garcia et al. [34]. Despite
its complexity, the TychoMetric tool can be seen as an alterna-
tive as this tool can be used for more generic purposes not
related to software metrics (e.g. advanced data presentation
and advanced statistical analysis over time).

We also investigated metric tools used in software industry to
compare the differences between these measurement instruments
in other disciplines – in particular we studied publications on:

� Using video recordings in the process of measurements of fluids
(hydrology), where the problem of ‘‘digitalizing” information
from a physical world was discussed [35]. This problem is often
encountered in software development organizations when using
resource metrics.

� Network load measurements for a specific protocol using a ded-
icated measurement system (computer science), where we stud-
ied how a software measurement system is constructed and
integrated with general software [30].

� Auto-calibration of measurement systems using feedback loops,
where we studied the possibility of building-in auto-calibration
mechanisms in our framework [36].

The above measurement systems used elements important for
the measurement systems – auto-calibration, use of measurement
instruments, and use of software components to increase flexibility
of measurement systems.

3. Organizational context

In this section we briefly characterize the organizational con-
text of working with metrics at the studied development unit with-
in Ericsson (which we refer to as ‘‘organization” in the paper). The
development unit develops software for a number of telecommu-
nication network products. The software development projects
executed in the development unit are usually large (100–200 per-
sons) and span over long time – around 1 year.

3.1. History of metrics

The history of measuring at the studied organization started
around 2002 when the need for quantitative data for decision sup-
port arose. In 2002, the awareness and the need for controlled met-
ric program came into existence. The discussions continued for a
number of years, including prototypes and early pitfalls. During
2003, the organization built various kinds of prototype metric pro-
grams including presentations for decision makers, which resulted
in the development of common performance reporting in 2004.
Since the awareness of measuring during these years was still being
built-up, different metrics were used for same purposes (e.g. man-
hours used, man-hours actual vs. planned, and use of time buffer
were three metrics used to monitor cost) and same metrics for dif-
ferent purposes (e.g. using number of defects as a measure of prod-
uct quality and test effectiveness) in the development unit. During
2005, an effort was undertaken to systematize the metrics and re-
duce the number of metrics collected. In 2006 an effort was estab-
lished to build a single metric program for the whole development
unit to control and monitor projects, products, and resources.

Over the years, the metrics used changed, although several are
still valid (e.g. the in-service-performance, which is a measure of
system availability with the criteria that the system should be fully
operational 99.999% of the time, [37]). In this development unit,
projects have been executed according to either RUP (Rational
Unified Process, [38]), lean development or their variations.

M. Staron et al. / Information and Software Technology 51 (2009) 721–737 723

Author's personal copy

Projects have been managed using the PROPS method [39]. The size
of the studied development organization is several hundred per-
sons working in several medium and large projects.

3.2. Types of metrics collected

The quality managers within the development unit work with
quality-related metrics, for example number of defects reported,
and test progress. These metrics are usually specified in quality
assurance plans for each project, collected during projects and pre-
sented at project status meetings and daily/on-demand (for both
the management team and the project management team). The
metrics in quality assurance plans were collected in order to mon-
itor project and product quality. And, since the maturity of the
organization grew over time, the metrics evolved. At the beginning
(around 2002), there were around 20 different areas, containing
between 70 and 100 metrics. Some of the areas were intended to
monitor whether a project adheres to process descriptions (e.g.
measuring different activities in the projects). The metrics were
collected manually and then used in performance reports (which
were created manually as well). Nowadays, as the organization is
much more mature, many of these metrics are not necessary – pro-
cesses are followed and there is no need to spend resources on con-
trolling that. Due to this, and similar factors, currently the
organization collects metrics in seven areas, and the number of
metrics decreased to approximately 20 metrics that monitor key
aspects of projects. These metrics are updated automatically every
day and always show the current status of the project. The mea-
surement systems are available via web sites and there is no need
for manual performance reporting of these metrics. As the compe-
tence in the company w.r.t. metrics collection and analysis is sig-
nificantly higher than before, the demands for measurement
systems grow constantly and there is a need to make the knowl-
edge available to more persons than just a few individuals (as it
was at the beginning).

The quality managers also work with high level project metrics
supporting project managers (e.g. budget follow up, requirement
coverage, time) and metrics for product managers (e.g. product
performance after release). Moreover, the number of metrics col-
lected using ISO/IEC 15939 based measurement systems is con-
stantly growing. A growing number of stakeholders realized the
benefits of having automated and daily updated information very
easily accessible, which makes the number of measurement sys-
tems and metrics grow. Using the framework presented in this pa-
per makes the development of measurement systems easier, faster
and helps to satisfy the growing demands for measurement
systems.

One of the factors facilitating automated metric collection and
calculation is easy access to different databases and files. Metrics
collected in the development unit are stored at such databases/files
as:

� Requirement databases.
� Defect reporting databases.
� Log files.
� Databases storing information about the resources and economy

– e.g. budgets, resource allocation, vacation plans.
� MS Excel worksheets with source information, for example:

product downtime per unit of time, project progress, and sub-
project status information.

� MS PowerPoint presentations with specifications of targets and
organization goals.

There is also a deal of information which can only be obtained
from experts (e.g. predictions, estimates). This information needs
to be manually inputted to the measurement systems. The variety

of data sources makes it hard to obtain an overall picture of the
metrics collected and to present them in a simple way that is
quickly understandable by the stakeholders. Therefore there is a
need for graphical specifications of metrics used in particular mea-
surement systems.

3.3. Current goals and stakeholders

One of the goals of improving the work with metrics, which this
study is a part of, was to provide a set of reusable metrics that
could be used to compose indicators for various stakeholders. As
the organization collects metrics related to products, projects,
and resources; the number of metrics is quite large and there are
multiple stakeholders who monitor and control the situation in
the organization from different perspectives. Their information
needs require presenting the data in different ways and calculating
metrics differently. An example of multiple stakeholders for simi-
lar information is controlling the ISP (in-service-performance
[37]) of the products in operation developed by the organization:

� The product managers have the information presented per prod-
uct, which means that the information is aggregated from the
information of ISP per release for all releases of the monitored
product.

� The line managers have the information aggregated per organi-
zation – i.e. the ISP is aggregated from all releases of several rel-
evant products (not all products are developed by the
corresponding organization so the line managers do not need
to control those that are not, unlike product managers).

The ISP of a particular node is always measured and stored in
the same way to allow for comparison in the future and across
development units within Ericsson.

4. Case study

This section introduces the design of the case study and outlines
the execution of the study.

4.1. Design of the case study

Our goal was to study the way in which metrics are defined and
collected in the studied organization. The objective was to improve
the above processes and decrease the amount of manual labor for
building, using, and maintaining information products. Therefore,
our research question was:

How to simplify using and building measurement systems at
Ericsson?

In order to address this research question we conducted an ac-
tion research with a flexible design [40] at one of the units at Erics-
son. We decided to use flexible design for the case study as defined
by Robson [40] as we lacked fully detailed information about the
needs for introducing the metric program in the organization. In
order to address this overall goal we devised a plan, which was re-
vised regularly as new facts were encountered. The final version of
the plan is presented in Table 1 as a sequence of steps.

Steps 3 and 4 were repeated several times until the framework
was approved by the stakeholders and contained sufficient amount
of features to improve their work.

The study was a part of an action research project. The roles of
the three authors in the action research were:

� Practitioner 1 was the initiator of this research project since the
part of the work of this practitioner was to improve measure-

724 M. Staron et al. / Information and Software Technology 51 (2009) 721–737

Author's personal copy

ment processes in the development unit. His role in this action
research study was to develop, implement, and evaluate mea-
surement systems and introduce them into the organization
and to state requirements for our framework. He had over 5
years experience as quality manager at Ericsson. This practi-
tioner also had previous experience (over 5 years) in a similar
position in automotive domain.

� Practitioner 2 was working with introducing metrics into pro-
jects and organizations for over 5 years. His role was to
provide feedback about the good practices of working with met-
rics at the company, evaluate, and assess the framework. He had
over 20 years of experience at Ericsson as a system
designer, software process manager, line manager and quality
manager.

� Researcher was working as a guest researcher at Ericsson (2
years) in the area of software metrics. His role was also to
improve the measurement processes in the organization, in par-
ticular to identify metric dependencies, relationships and to
optimize the number of metrics collected in the organization.
His responsibilities in this study were to develop the framework,
evaluate it and instantiate it to develop several measurement
systems.

4.2. Execution of the case study

The steps 1–5 in our research process were conducted over a
period of 1.5 years. The identification of the needs (step 1) of the
company started in August 2006 and included developing predic-
tion models for defect inflow in projects [41–43]. These models
were linear equations for predicting defect inflow on weekly and
monthly basis. We used multivariate linear regression and princi-
pal component analysis to create these models. The particular rea-
son for working with prediction models was to understand the
dependencies between processes and metrics in the company
(i.e. to achieve objective ii for this step). We introduced these mod-
els into the organization, which resulted in improving accuracy of
predicting the number of defects which need to be addressed be-
fore the software is released. In order to develop these models
we performed statistical analyses but also conducted interviews

with project and quality managers in order to identify factors
important when making predictions and evaluating usefulness of
the resulting models.

The interviews with managers and designers were conducted at
several occasions with the goal to obtain their opinion on the
requirements for measurement systems (step 1, objectives (i) and
(iii)). Since we followed iterative development with prototyping,
similar interviews were repeated regularly (after each prototype
was ready) during the whole duration of the study.

Step 2 was conducted during a 3 month period during fall 2006.
We performed literature searches and studies both in internal
Ericsson databases and external ones (e.g. ISO/IEC, IEEE, ACM,
Springer-Link, Science Direct). We also asked experts within Erics-
son about the standards they might find applicable.

Since January 2007 several measurement systems were built by
the unit and introduced into use (step 3). These measurement sys-
tems were structured according to the ISO/IEC 15939:2002 stan-
dard, in particular they presented information in the form of
indicators. One of the observations was that the development of
a measurement system was an effort intensive task and involved
quite a deal of script programming.

At the same time we observed a growing demand for measure-
ment systems at the organization and the company. With this re-
spect the process of building measurement systems was time
consuming and was one of the blocking factors for wide spreading
of measurement programs in the organization. By using the frame-
work together with a set of pre-defined metrics the needs for new
measurement systems could be satisfied as smaller programming
effort allowing more persons to develop and maintain measure-
ment systems.

The framework for the measurement system was developed in
December 2007 and was intended to (i) decrease the amount of
time required to develop a measurement system, and (ii) remove
the requirement for script programming (in case a metric was
available or could be imported from another measurement sys-
tem). At that time a new version of the standard was released:
ISO/IEC 15939:2007. The new version did not introduce changes
in the parts used in our research. The framework was developed
by the guest researcher and was introduced into use by the
practitioners.

Table 1
Research plan.

Step Objective(s) Research method(s) Expected result(s)

1 (i) to understand the organization context Qualitative analysis of interviews with: History of metric initiatives in the
organization; dependencies between
metrics; requirements for measurement
systems

(ii) to understand dependencies between
processes and metrics in the organization

� line manager
� quality managers
� designer of measurement systems

(iii) to collect requirements for
measurement systems

Statistical methods: development of
prediction models (regression) for defect
inflow prediction and their evaluation in
projects.

2 (i) to identify relevant standards
for measurement processes

Qualitative analysis: literature studies and
informal interviews with managers within
organization.

A set of international and internal standards
specifying which metrics should be collected
and how metric processes should be integrated
in the organization.

3 (i) to create a framework for efficient
development of measurement systems

Iterative development with prototyping. A framework for developing measurement
systems; measurement systems created by
instantiating the framework

4 (i) to evaluate the framework in
industrial environment

Qualitative analysis: interviews and
workshop with
� line manager
� quality managers
� designer of measurement systems
� project manager

Improvement issues for the framework; aspects
important when introducing metric programs
into the organization and the role of the
framework in these aspects.

(ii) to evaluate which factors might have
contributed to the success of the metric program
(in addition to the framework)

Design and implementation of several
measurement systems and their
evaluation via interviews.

M. Staron et al. / Information and Software Technology 51 (2009) 721–737 725

Author's personal copy

5. Results

In this section we present the measurement framework, how it
is used to build measurement systems and its evaluation in the
projects. The principles that govern the structure of measurement
systems are presented in Section 5.1. These principles influence
how the framework is used (i.e. how the measurement systems
are being built), which is described later in this section. A glossary
of terms used in this section from ISO/IEC 15939:2007 (e.g. base/
derived measures, indicators) can be found in Appendix A.

5.1. Requirements for framework

The requirements for the framework were elicited during the
whole duration of the study. In this section we briefly present
the final set of high-level requirements, which the framework ful-
fills (validation was done together with the designers of measure-
ment systems and stakeholders):

1. The framework should realize the information model from the
ISO/IEC 15939 standard.

2. The framework should be based on MS Excel and other MS
Office software.

3. The framework should be able to collect the data from existing
tools in the company (the list of tools was provided).

4. The framework should provide easy ways of defining, updating,
and removing metrics and indicators (including decision
criteria).

5. The framework should provide the possibility to programmati-
cally modify measurement systems (e.g. by using automated
tools to add/remove metrics without manually changing the
source code).

6. The framework should enable building modular measurement
systems (i.e. separation of base, derived measures and
indicators).

7. The framework should enable run-time importing/exporting of
values of metrics between separate measurement systems;
metrics should not be redefined at several places in order to
minimize the risk of inconsistent definitions.

8. The framework should support defining metrics compatible
with quality metrics defined in ISO/IEC 9126 [44] (which was
found to be important for the development unit).

9. The framework should support the notion of measurement
instrument as defined in standard ISO/IEC Vocabulary in
Metrology [32].

From the non-functional requirements, usability of the frame-
work, reliability of resulting measurement systems, and maintain-
ability were of premiere importance. It should be very simple to
set-up and maintain measurement systems using this framework
(otherwise we risked that the framework was not adopted by the

designers of measurement systems or the resulting measurement
systems not being adopted by the stakeholders).

5.2. Framework for building measurement systems

The framework for building measurement systems which we
developed in our research is a predefined MS Excel workbook (real-
izing requirement 2) which contains:

� API for measurement systems in form of Visual Basic for Appli-
cation modules with functions and procedures for defining and
using the metrics (providing the possibility of programmatically
modifying measurement systems at run-time, realizing require-
ment 5).

� Built-in logging component (which uses the existing logging
component available at the company).

� Wizards supporting the development of measurement systems,
e.g. adding indicators, building derived measures, updating val-
ues of base measures (realizing requirement 4). A base measure
is a metric which measures a single attribute of a single entity
– for example number of defects found in a component. A
derived measure is a metric which combines base measures –
e.g. average number of defects per component (combination of
number of defect and number of components). We choose to
keep the original terms base measure and derived measure as
defined in the ISO/IEC standard rather than changing them to
base/derived metrics to be consistent with the vocabulary of
the standard.

The API is intended to provide the possibility of automatic
reconfiguration of measurement systems during their execution
(e.g. to dynamically change decision criteria for indicators, obtain
values of metrics and store them in a measurement database).

5.2.1. Architecture of the framework
The framework allows building measurement systems of a spe-

cific architecture, which is presented in Fig. 1. The arrows repre-
sent data flow.

The measurement systems are built on top of MS Excel in order
to reuse the toolkit that is already used to collect metrics and data
in the company. The measurement system contains three main
components, corresponding to the elements in the measurement
information model specified in the ISO/IEC 15939:2007 standard:
indicators, derived measures (DM), and base measures (BM). The
dotted line around these components is intended to show that
these three components might exist in one or several execution
spaces – i.e. being separate MS Excel instances (any combination
is allowed, e.g. BM and DM in one file whereas indicators in an-
other one). In the case of using several instances, the metrics are
imported when needed, e.g. base measures are imported when
needed for calculation of derived measures. The possibility to split

MS Excel

BM DMIndicators

Measurement system

Information
sources

MI1

MIn

…

Fig. 1. Architecture of measurement systems.

726 M. Staron et al. / Information and Software Technology 51 (2009) 721–737

Author's personal copy

different parts in different files was one of the requirements for the
framework.

The component with base measures contains the possibility of
defining additional scripts that can obtain data from databases –
measurement instruments (MI), since these scripts are used to as-
sign values to metrics (i.e. to measure). In cases when measuring is
done manually, the measurement instruments are outside the
scope of the physical architecture of the measurement system.
Although the manual measurements are usually supported by
the use of checklists and documents describing the measurement
processes, we distinguish here between the automated measure-
ment process with the use of measurement instruments and the
manual process using other means. The measurement system nat-
urally supports the manual process since it provides wizards for
assigning values to metrics.

Since MS Excel has the possibility of using COM (Component
Object Model) components, the measurement instruments can
measure values in the following way:

� open and import values from other MS Excel workbooks,
� connect to databases via their COM API,
� open text files, convert them to MS Excel format and import val-

ues from these (provided that the text files are of a specific
structure).

The complexity of such scripts depends naturally on the com-
plexity of the measurement process and the need for reconfiguring
the data. The reconfiguration might be a complex task and might
require extrapolations. A typical example is the reconfiguration
of data presented by week into data presented by month, which

might require assumptions about the mapping since months and
weeks do not match (each month has a non-integer number of
weeks). Automated reconfiguration of data reduces the amount
of manual work when working with software metrics.

As the measurement process should not alter the measured ob-
ject, the development of the measurement instruments does not
require changes in the structure of information available in the
organization. The measurement systems built by instantiating
the framework can be integrated with the existing tools in the
organization.

5.2.2. APIs of the framework
Each of the components in the measurement system has a cor-

responding API (Ind_API, DM_API, and BM_API) to support the
requirement for adding/removing/updating metrics programmati-
cally. The logical view of the architecture is shown in Fig. 2 (the ex-
act parameters are omitted for clarity of presentation). In addition
to the above APIs, the system provides also API for automatic up-
dates of the measurement system. The updating API is used to up-
date the measurement systems during a specified time (or on
demand) from external tools that support COM interfacing.

Each of the interfaces on the right-hand side is used to add/re-
move/update metrics in the measurement system. The manipula-
tion of metrics (i.e. measuring and obtaining the values) is done
by the procedures and functions that have a suffix ‘‘Value”, e.g.
‘‘updateBaseMeasureValue()” which updates the value of a given
base measure, whereas ‘‘updateBaseMeasure()” updates the defini-
tion of the metric itself. Attaching scripts, which are measurement
instruments, is done via a simple subscriber–publisher mecha-
nism. The mechanism invokes registered scripts that in their turn

Indicators
<<excel file>>

Ind_API

addIndicator()
removeIndicator()
updateIndicator()
updateIndicatorValue()
getIndicatorValue()
addAnalysisModel()
removeAnalysisModel()
updateAnalysisModel()
getListOfIndicators()

<<Interface>>

DM
<<excel file>>

DM_API

addDerivedMeasure()
removeDerivedMeasure()
updateDerivedMeasure()
updateDerivedMeasureValue()
getDerivedMeasureValue()
getListOfDerivedMeasures()

<<Interface>>

BM
<<excel file>>

BM_API

addBaseMeasure()
removeBaseMeasure()
updateBaseMeasure()
updateBaseMeasureValue()
getBaseMeasureValue()
getListOfBaseMeasures()

<<Interface>>

Updating_API

updateAll()
updateImports()
updateMeasurements()
onUpdate()

<<Interface>>

MeasurementInstrument
<<excel file>>

Fig. 2. Logical view of APIs in measurement systems.

M. Staron et al. / Information and Software Technology 51 (2009) 721–737 727

Author's personal copy

measure an object’s attribute and invoke ‘‘updateBaseMeasure-
Value()” to update the value of the metric. A typical scenario when
an external program (or a person by using a menu option) requests
the update of the measurement system is presented in Fig. 3.

Fig. 3 shows a scenario (as a message sequence chart/sequence
diagram) when an external program (e.g. a task scheduled to col-
lect the data during nighttime) updates the value of a base mea-
sure. The process starts when the update process invokes the
updateAll() operation for a component which contains base mea-
sures (:BM). The component invokes the operation onUpdate() of
the measurement instrument (:MeasurementInstrument), which
reads the values from the database (db: Database). As measure-
ment processes are specific for various kind of databases, attributes
being measured, etc. this part is represented as a note in this dia-
gram. After the information is obtained from the database (i.e.
the measurement process has been successfully finished) the mea-
surement instrument updates the value of the base measure by
invoking the operation updateBaseMeasureValue().

As shown in the diagram in Fig. 3, it is the measurement instru-
ment that is used to perform the measurement process (in this sce-

nario interacting with, and fetching information from, a database).
The data source of the information – the database – is an external
entity (thus not part of the architecture view in Fig. 2) and since
the interaction with the databases depends on the measured attri-
butes, no generic way has been developed so far.

5.2.3. Measurement instruments
Measurement instruments play an important role as they sepa-

rate the measurement system (i.e. the information model from ISO/
IEC 15939) from the process of measurement. The role of measure-
ment instruments is to transform an attribute of an entity to its
numerical representation and store it as the base measure. This
separation of ISO/IEC 15939 from physical measurement processes
addresses the requirement for modularization of measurement
systems and allows the measurement instruments be reused (to
some extent). The way in which measurement instrument work
can best be presented in the following example.

A measurement instrument for measuring number of require-
ments for a project is presented in Fig. 4. This measurement instru-
ment measures the number of functional requirements (denoted as

External
program
External
program

: BM: BM : MeasurementInstrument: MeasurementInstrument db : Databasedb : Database

2: onUpdate()

5: updateBaseMeasureValue()

1: updateAll()

3:

4:

Measurement
process

Fig. 3. Using a measurement instrument when updating the measurement system.

Fig. 4. Measurement instrument code for counting number of requirements in requirements database.

728 M. Staron et al. / Information and Software Technology 51 (2009) 721–737

Author's personal copy

‘‘FR” in Line 8) in a given project (denoted as ‘‘strProjectName” in
Line 1). The data is stored in a requirements database (for confi-
dentiality reasons the vendor cannot be provided). It is written in
Visual Basic for Applications (VBA), which is a component of
Microsoft Excel.

The function starts with connecting to the requirement data-
base (symbolically denoted as ‘‘requirements_db” in Line 2) and
iterating over all projects (Line 3), opening the project (Line 4),
and checking if the project is the desired one (Line 5). If the project
is the one which is measured (Line 5) then the code searches for
the functional requirements (Line 8) and retrieves the collection
of all functional requirements (Line 9). The measurement is per-
formed in Line 15, which is also the line where the value is re-
turned. The code corresponds to steps 3–4 in sequence diagram
presented in Fig. 3, denoted as ‘‘measurement process” and pre-
sents the process of quantifying an attribute (number of require-
ments) of an entity (project).

This measurement instrument is used to measure a specific ob-
ject – in this case a specific project. An example code which uses
this measurement instrument to measure the object ‘‘MyProject”
is presented in Fig. 5.

The code using this measurement instrument sets the objects to
be measured (Line 2) and stores the result of the measurement
(Line 3).

5.2.4. Wizards and error logging
In order to successfully develop measurement systems the

framework contains wizards which guide the designer in creation
of the measurement system and later the stakeholders in updating
measurement systems (if needed). The wizards only provide a
graphical user interface for the API so that the developers and

stakeholders of the measurement systems need not to resolve to
programming to create a measurement system. The wizards signif-
icantly increase the usability of the framework and provide the
stakeholders with the possibility to customize their measurement
systems.

In order to be able to notify the stakeholders and designers
when an automated measurement process is not successful, the
measurement framework has a built in logging subsystem. It uses
existing error logging infrastructure at the studied organization as
that was one of the requirements (requirement 3). The measure-
ment systems are intended to be run automatically (usually during
night time) so they have to be fail-safe, i.e. they cannot crash the
servers where they run or start infinite loops. The error handling
procedures prevent such situations and use the logging subsystem
to leave traces of problems with measurement during the updates
of measurements. The error reporting also notifies a dedicated per-
son via e-mail that errors have occurred.

5.3. Developing measurement systems

This section presents the process of developing a measurement
system in general. An example measurement system to illustrate
the point is shown in the evaluation section (Section 5.4).

When developing measurement systems we need to specify
metrics used, measurement instruments, and measured entities.
These specifications are presented in Fig. 6.

At the initial stage one needs to describe which entities are to
be measured and which metrics are to be collected, as it is pre-
sented as the top plain of Fig. 6. This specification is a model that
describes metrics (based and derived) and indicators for specific
entities, but it does not specify which objects are measured. In this

Fig. 5. Using the measurement instrument.

Specification of measures

Specification of files

Files

Measured entities

Models

Reality

Fig. 6. Dependencies between specifications of measures, specification of files, files and measured entities.

M. Staron et al. / Information and Software Technology 51 (2009) 721–737 729

Author's personal copy

sense, the top level is the model of metrics and measured entities.
The rectangular planes mean that these elements are specifica-
tions, whereas the oval plane means that these elements are
real-world objects – files – which constitute a measurement
system.

This specification (‘‘model”) is instantiated for each information
product, which is shown in the specification of files. This specifica-
tion is a model of how metrics are instantiated – i.e. metrics col-
lected and files used. Each file in this model corresponds to
exactly one element from the specification of metrics. The specifi-
cation/model of files corresponds one-to-one with the actual files
which contain actual metric values (which are shown as ‘‘Files”
in the figure). The scripts in the files connect to the databases
and collect data (in other words measure) from real products.
The databases, on the other hand contain data collected from ob-
jects (e.g. nodes in operation in a telecom network, or an on-going
project).

The goal of having the specification of metrics and specification
of files separated is that the metrics are to be reused for measuring
different objects. The reuse is done by making a copy of the file
with base measures, and adjusting the objects that are measured
(i.e. applying the same measurement instruments on different ob-
jects). The goal of the organization is to have (as time goes by and
more measurement systems are built) a repository of reusable
instruments, which can be used to build new measurement sys-
tems for new purposes.

An important aspect of the use of the framework is the ability of
reusing metrics via importing. This provides the possibility of cre-
ating a metrics repository and thus to reuse metrics as Lego bricks
to build different measurement systems. The exact calculations
naturally have to adhere to the state-of-the-art in measurement
theory (e.g. combining values, admissible transformations).

5.4. Examples of measurement systems

The studied development unit has created and uses a number of
measurement systems, for example:

� Measuring ISP (as presented in the example in this paper –
Table 2) for the manager of the product management organi-
zation; example metrics in this measurement system are:
– Product downtime per month in minutes.

– Number of nodes in operation.
� Measuring project status and progress – for project managers

who need to have daily updated information about require-
ments coverage in the project, test progress, costs, etc.; exam-
ple metrics in this measurement system are:
– Number of work packages finished during the current

week.
– Number of work packages planned to be finished during

the current week.
– Number of test cases executed during the current week.
– Cost of the project up till the current date.
– Budgeted cost of the project up to the current time.

� Measuring post-release defect inflow – for product managers
who need to have weekly and monthly reports about the num-
ber of defects reported from external customers; examples of
metrics:
– Number of defects reported from field operation of a prod-

uct during the last month.
– Number of nodes in operation last month.
– Number of nodes which reported defects.

� Summarizing status from several projects – for department
manager who needs to have an overview of the status of all
projects conducted in the organization, e.g. number of projects
with all indicators ‘‘green”.

These measurement systems were instantiated for a number of
projects and products (depending on the measured entities). Each
of these instances has a distinct individual as stakeholder (who has
the role of project manager, product manager, etc.) who uses the
measurement system regularly.

Metrics used in our measurement systems can both be collected
automatically from databases or manually from persons when the
data is not stored in databases (e.g. by asking the project manager
how many designers are assigned to remove defects from the soft-
ware in a particular week). The sources of information are defined
in the metrics specification and the infrastructure specification for
the particular measurement systems.

6. Demonstration of using the framework

As an example how to use the framework we present a mea-
surement system constructed to measure ISP (in-service-

Table 2
Specification of the measurement system for monitoring In-Service-Performance (ISP).

Stakeholder Product manager

Information need Are we fulfilling the X1 availability promise?

Indicator Unplanned downtime for all products

Analysis model (decision criteria) Green: X1 to 100% availability
Yellow: X2 to X1 availability
Red: below X2 availability

Derived measures PA: Product availability last month extrapolated for one year [minutes]

Measurement Function PA = sum(RA for all releases)/NR

Base measures Object: Release
RA: Release availability last month extrapolated for one year [minutes/year]

Object: Product
NR: Number of releases [number]

Measurement method For RA:
1. Collect downtime logs from all nodes running the release for the last month
2. Calculate average downtime for all nodes running the release
3. Count the number of minutes in last month
4. RA = number of minutes in last month – average downtime for all nodes running the release

For NR:
1. Count the Number of Releases of software which are in operations

730 M. Staron et al. / Information and Software Technology 51 (2009) 721–737

Author's personal copy

performance) of telecom network nodes in operation. The mea-
surement system is defined in Table 2 and Fig. 7; the values in
the analysis model are not given due to confidentiality agreement
with Ericsson.

As the studied organization has developed several releases of
the software for the nodes, the organization collects the informa-
tion per each release for each product. In total the organization
monitors three products (Product A, Product B, and Product C) so
there are three instances of derived measures. Each product has
a number of releases in operation (the releases which are no-long-
er maintained, out-dated are excluded): Product A – three releases
in operation; Product B – three releases in operation; Product C –
one release in operation. Therefore there are multiple instantia-
tions of base measures for each product (Product A – three in-
stances of base measures, Product B – three instances of base
measures, and Product C – one instance of the base measure).
Therefore, the specification is instantiated as presented in Fig. 7.

In practice, each rectangle in Fig. 7 is a separate file in this exam-
ple (although there is no requirement that it should be a separate
file). Each file measuring a release is identical in structure, but dif-
fers w.r.t. which object is used as input for the measurement instru-
ment (i.e. measurement systems are instantiated for different
products/releases). The measurement instruments are the same
(i.e. they realize the same algorithm/measurement method). The
files with derived measures are also identical in structure for all
products, but they differ in the values they import. Finally, there
is only one file with the indicator that satisfies the information need
of the stakeholder. The positioning of the specification and the files
are presented in Fig. 8.

The measurement system used at the company is presented
in Fig. 9. The measurement system contains the total ISP indica-
tor (the first indicator from the top), and several more detailed
indicators, which use the same analysis model to present ISP
indicators per product and per release. The values of the indica-
tors (downtimes) have been hidden due to confidentiality of the
data.

The measurement system updates the information from dat-
abases daily and updates the presented information accordingly.

7. Evaluation of the framework

After the framework was in its first release we instantiated it in
a number of measurement systems and evaluated through work-
shops with stakeholders, a developer of other measurement sys-
tems, and quality managers.

7.1. Industrial evaluation

Our intention is to present the framework for constructing the
measurement systems and its evaluation. The evaluation is done
by:

� Using the framework to construct measurement systems
which are used in the organization.

� Conduct interviews with stakeholders, developers of measure-
ment systems and quality managers working with measure-
ment processes in the organization, in particular:
– Stakeholder 1: an open interview with a line manager with

several years of experience in management and software
development. The stakeholder was also involved in the
development of a measurement system for him, during
which he (in addition to defining indicators and metrics)
contributed with feedback.

– Stakeholder 2: an open interview with a project manager
with several years of experience; this stakeholder was
also involved in developing one of the first measurement
systems where (as stakeholder 1) contributed with
feedback.

– Developer of other measurement systems: continuous
feedback during the development from a senior quality
manager with more than 10 years experience in the
position; also an interview after the framework was
used.

– Quality managers: workshop with two senior quality man-
agers with more than 10 years experience in software
development and quality management; also interviews
when they assessed the framework.

ISP Indicator

ISP = (PA_prodA + PA_prodB + PA_prodC)/3

PA_prodA: Derived Measure

PA = (RA_relA1 + RA_relA2 +
RA_relA3)/ NR

PA_prodB: Derived Measure PA_prodC: Derived Measure

RA_relA1:
Base Meas.

RA

RA_relA2:
Base Meas.

RA_relA3:
Base Meas.

RA_relB2:
Base Meas.

RA_relB3:
Base Meas.

RA_relC1:
Base Meas.

PA = (RA_relB1 + RA_relB2 +
RA_relB3)/ NR PA = (RA_relC1)/ NR

PA_prodA: Base Measure
NR

PA_prodB: Base Measure
NR

PA_prodC: Base Measure
NR

RA_relB1:
Base Meas.

RA RA RA RA RA RA

Fig. 7. Instantiation of measurement system for ISP; PA, NR, and RA are defined in Table 1.

M. Staron et al. / Information and Software Technology 51 (2009) 721–737 731

Author's personal copy

The goal of the interviews was to obtain the feedback from the
practitioners and their subjective opinion on the usability of the
framework and this way of constructing measurement systems.

Re-development of an existing measurement system for project
monitoring showed a decrease of the amount of Visual Basic for
Application code by ca. 35%. The remaining code was required

Fig. 9. Measurement system for ISP: presentation of indicators.

R1 R2 R3
Product A – 3 releases in operation

Product A Downtime logs, stats,

measurement system

ISP files specification

ISP Measures specification

- Table 1

Fig. 8. Specifications and real world objects in measuring ISP. Solid lines show instantiation, dotted lines show reporting (information flow).

732 M. Staron et al. / Information and Software Technology 51 (2009) 721–737

Author's personal copy

for the development of measurement instruments as no metrics
could be reused when building this measurement system. The re-
development of the existing measurement system also provided
us with the possibility of testing whether the framework works
correctly (verify the framework). The two measurement systems
were working alongside each other and the results were automat-
ically compared on a daily basis (after the measurement systems
were updated each day, the information was compared). This ver-
ification did not find any errors in the framework or in the re-
developed measurement system.

The framework provides the stakeholders with the possibility to
add/remove/change metrics and indicators, which is an important
feature given the fact that metrics and indicators change over time
as projects or organizations change (which happens often in large
organizations, including Ericsson, as described in Section 3).

7.2. Spread in the development unit

One of the measures of success of our framework was the
spread of measurement systems in the development unit, which
size is several hundred persons. Since the ISO/IEC 15939 was intro-
duced and the culture has changed from measuring to fulfilling
information needs, metrics became more demanded. In particular
the following happened in the development unit as a result of
our research:

� Metrics in Balance-Score-Card (BSC) used by top management
team are collected automatically, which saves time and gives
the management team always up-to-date status:
– As a result of that the management team asked for more

metrics fulfilling new information needs – the situation
changed from having no automated metrics to providing
measurement systems for various aspects in several large
software projects. Using the measurement system for BSC
influences indirectly the whole development unit.

� The line organization now has more detailed metrics for per-
formance reporting and monitoring due to the fact that met-
rics are ‘‘easy to find” and ‘‘regularly updated”. The metrics
collected are used to create custom reports requested by var-
ious managers; this made the work of quality managers more
advanced – instead of administering metrics, quality manag-
ers focus on advanced statistical analysis of metrics and indi-
cators. This in turn affected the efficiency of the work of
quality managers – they could work with more projects and
provide them with better support.

� Projects have more statistics – i.e. the statistics were improved
by making them more advanced and more precise (more sui-
ted for answering the information need rather than summariz-
ing data).

� Projects have indicators which improve their ‘‘steer on facts”
principle; in addition the projects have more metrics col-
lected/updated more often which leads to much better
control.
– One of the projects made significant adjustments in

resource allocation and avoided problems due to the infor-
mation provided by one of our measurement systems: after
getting an early warning from the measurement system for
predicting defect inflow (based on the methods presented
in [43]) the project took measures, e.g. reallocating
resources at an early stage of the project. Without these
predictions the situation could escalate and the project
could be over budget and delayed.

� Stakeholders, quality managers, etc. have easier access to his-
torical data and are able to make better comparisons in shorter
time.

� The measurement systems have impact on a significant
number of employees in the development unit (which
consist of several hundred persons) – either from the per-
spective of line managers, project managers, or product
managers.

� The framework has improved the work of the quality manag-
ers working in the development unit – their work has been
automated and therefore quality managers can monitor more
projects and products on a daily basis or monitor more
aspects.

Once measurement systems begun spreading in the organiza-
tion we noticed that decision criteria were used as support for soft-
ware process improvement. Generic indicators, for example defect
inflow, were reused in different projects and some of the ‘‘new”
projects set up their acceptable levels of defect inflow at lower lev-
els, since they were aiming at being better than the past projects.
The lowered thresholds for acceptable number of defects intro-
duced more ambitious quality goals for the projects. Since exceed-
ing the thresholds is treated seriously at the company, such an
approach supports process improvement activities.

As the framework is used for several purposes within Ericsson,
we believe that it is also usable for other companies. In the future,
we intend to prepare a public version of the framework available
for other companies through a web portal.

7.3. Feedback from interviews

Prior to the workshop where we evaluated the framework we
conducted the interviews where we evaluated the complete metric
program in the development unit using the framework of Jeffery
and Berry [21]. The evaluation showed that the metric program
was indeed very successful and satisfied the needs of stakeholders,
quality managers, and developers of measurement systems. Jeffery
and Berry categorize requirements important for success of a metric
program into four categories (presented in Table 3) and assessing a
metric program is done by assigning a value 0–3 to each require-
ment in each category where 0 – requirement is not fulfilled com-
pletely, 1 – the requirement is fulfilled to some extent, 2 –
requirement is almost fully fulfilled, and 3 – requirement is fulfilled
completely. The total score is an average of these answers, e.g. score
100% is when all requirements are fulfilled completely (in category
‘‘context” below this would be 300 points = 100%) whereas 0% is all
requirements are not fulfilled completely. The assessment of fulfill-
ing each requirement was a consensus between two quality manag-
ers, developer of measurement systems and a stakeholder.

Table 3 shows that almost all requirements were fulfilled by the
metric program in the development unit. The input and product
categories (which are mainly affected by the framework) are ful-
filled to 80% and 76%, respectively. This indicates that the use of
the framework and automated measurement systems were the
key factors which contributed to this success (it was also con-
firmed by all involved in this evaluation). During the workshop
with the quality managers they found this product to be useful
in their work, and to fulfill their expectations.

Table 3
Summary of results from using Jeffery and Berry’s requirements’; larger score –
better.

Category Number of questions Score

Context 10 79%
Input 8 80%
Process 17 64%
Product 5 76%

M. Staron et al. / Information and Software Technology 51 (2009) 721–737 733

Author's personal copy

We also obtained feedback that it was about 50% faster to devel-
op a measurement system using the framework than in the previ-
ous way (which was an estimate from the developer of
measurement systems). This improvement was caused by the fact
that all the code which was generic for all measurement systems
was already in place and tested, so the code to be written was only
for measurement instruments, and even such code could be reused
(as this code is related to the databases used in the development
unit and the number of those is limited). The developers of the
measurement system do not change the code of the framework,
which implies that they cannot introduce new errors to this code.
As opposed to the previous approach, where the reuse of code was
at the lower-level (copying and changing parts of the source code
between measurement system), this results in less error-prone
measurement systems.

Stakeholder found the framework as an improvement of the
way of working with metrics and providing possibilities of reuse
of metrics. The main positive feedback of the stakeholder was that
the framework was simple to use. Being very intuitive and easy to
use allowed for the framework to spread throughout the organiza-
tion. The stakeholders are usually very busy and adding to their
responsibilities is not a feasible option. The stakeholder found
the framework satisfying his usability requirements.

The developer of measurement systems concluded that the
framework simplified his way of working significantly. Before the
framework was ready, the developer was dependent on other peo-
ple with more expertise in visual basic for applications (VBA) to
write the code, and the process of developing and setting up a mea-
surement system was very time consuming. Without a framework,
only to develop a measurement system took approximately one
week. Now, with the framework, this takes approximately one
hour (for measurement systems of very similar complexity) and
does not require being dependent on external expertise in VBA.
The framework provides the stakeholders with the possibility of
altering decision criteria, analysis models, base/derived measures,
etc. without the need to alter the VBA code (as it is not their task
to write computer programs). The no-programming made the
stakeholders independent from the developer of the measurement
system once the system was deployed.

The developer also used some concepts from the framework to
improve the existing measurement systems – in particular the cus-
tomizable decision criteria, or the presentation of metrics. This
indicates that the concepts included in the framework were not
specific to it, but rather applicable to measurement systems based
on ISO/IEC 15939.

All interviewees found our framework as help in working in a
more structural way – according to the standard and with more
structured way of thinking. This allowed to spread the measurement
systems to more people and to elevate their understanding what a
measurement system is and do not measure in an ad hoc manner.

7.3.1. Factors facilitating growth of metrics culture
In order to find out which other factors could have contributed

to our framework being successfully adopted in the organization,
during the interviews we asked which factors contributed to the
growth of metrics culture in the organization in general. By asking
this question we wanted to assess which role the framework
played in the spreading the metric culture.

We found that the framework contributed to the change of met-
ric culture in the organization. As opposed to the past, software
metrics are currently discussed at all levels in the organization
and the need for using metrics for decision support is growing all
the time. This growing need requires infrastructure where metrics
can be used (e.g. combined, summarized) by end users (e.g. manag-
ers, system owners), in a short notice (which is supported by the
framework).

In particular we found the following factors important for the
wide-spread of the use of metrics (listed in descending order of
importance):

� Cultural change to considering information needs rather than
metrics – project, line, and product managers do not focus on
finding the most important metrics, but on defining the infor-
mation needs and indicators, which makes the process of
identifying data to be collected (and processed) more efficient;

� Drivers of metrics in the company – when data is collected
there is a dedicated person/role who presents the data and
prevents it from being biased; that person is able to explain
in detail how the data is collected, processed and presented
to ensure that the numbers reflect the reality.

The above two factors and their combination is beyond doubt
the two most important factors – there should be a need for the
data and there should be a person (or a group of persons) who
can provide this data. The usability of our framework contributed
to the fact that these persons need not to be experts in program-
ming, which makes it possible for managers to play this role. Addi-
tional factors which contributed to the above two factors being
successful (or even possible) are:

� Automation of metrics collection – metrics are provided on a
daily basis and require no manual work to collect them (which
is a cost-effective solution);

� Providing means for assessing whether indicators can be
trusted or not – for each indicator there is a number of checks
which result in notification to the stakeholder if there was a
problem with the data collection or processing;

� Providing the stakeholders with the possibility to customize,
combine, or add/remove metrics and indicators in the mea-
surement systems; changing the analysis model is one of the
features which the stakeholders ask for (which was also one
of the requirements for the framework).

� Ability to integrate the measurement systems with existing
infrastructure – the measurement systems do not require
introducing new tools for the elements being measured (e.g.
no new reporting tools for software designers); this was also
a requirement for the framework.

� Building in-house competence in software metrics – the orga-
nization invested in learning advanced ways of working with
metrics rather than sub-contracting this work to a 3rd party
consultancy company.

The above factors are identified and prioritized based on our
experiences with setting up the metric program.

It should be noted that there are barriers when adopting mea-
surement systems in large organizations. One of the barriers
which we observed was the difficulty in changing the mind set,
switching from talking about ‘‘metrics” to defining ‘‘information
need”. It is always easy to define a metric or two, but it requires
some effort to define the information need that exactly pinpoints
the essence of the matter. For instance it is easy to define the
number of test cases being executed, but it is far more complex
to define how this information is used to monitor progress of
testing; e.g. should it be the number of executed test cases over
the number of planned test cases or the number of passed test
cases over the number of planned test cases (or even other com-
binations). Another barrier is the insecurity of trusting the data/
status of the information need – the stakeholder has to know that
the data is up to date and correct. So it is imperative for the
developers of measurement systems that they build them up in
such a way that the stakeholders feel confident with the informa-
tion presented.

734 M. Staron et al. / Information and Software Technology 51 (2009) 721–737

Author's personal copy

8. Threats to validity

We group the threats to validity of our case study according to
the categories discussed in [45].

The main external validity threat is the sampling and generaliza-
tion of results. We were only studying one development unit with-
in one company. The framework, however, is not specific to the
company or development unit, but structured according to two
ISO/IEC standards, which increases the possibilities of its use in
other contexts. As we constructed several measurement systems
for various purposes, we observed that the framework can be used
with different entities – e.g. projects, products, specifications, mod-
els, resources, plans. Successful spread of the framework in a large
organization shows that the framework is not specific for a single
project or purpose.

Our study was done over a period of several months (18) in a large
development organization; hence we cannot claim the full internal
validity of our claim that the framework was the only cause of the
observed improvement of metric processes. The main threat is the
maturity effect as defined in [45,46]. Since our case study was done
over a period of 1.5 years, we certainly learned along the way and we
influenced the environment around us in the development unit.
However, as it was indicated in Section 7.3.1 when discussing the
factors influencing the successful adoption of the metric program,
automation and using indicators instead of metrics, were very
important for the wide adoption of metrics in the company. As it
was also stated by the stakeholders, managers, and developers of
the measurement systems, our framework provided a solid help in
their way-of-working with metrics in the organization.

A history effect [45] could also influence the results of the
study; the history effect means that there is a danger that it was
the background of the individuals in the organization that caused
the observed improvements, not our framework. We believe that
this threat is not valid since our framework uses the knowledge
in the organization to improve the way of working. The framework
introduced such concepts to the measurement systems as custom-
izable decision criteria, new presentation of information and easy
reuse of metrics. As described in the interviews these factors in
particular indicate that the history effect did not have the influence
on the observed improvement.

Since we only interviewed a few respondents and built mea-
surement systems, we cannot use statistics to verify hypotheses
on the improvements of way of working in the company. This
threat to conclusion validity of our claims that the framework is in-
deed useful makes our evaluation an initial one. We plan to run
experiments to compare our framework with other frameworks
discussed in the related work section.

9. Contributions

The main contribution of our research is the new framework
supporting the development of measurement systems according
to the standard ISO/IEC 15939:2007 and its positive industrial
evaluation. The important parts of the framework which make it
successful are:

� the organization has the access to the framework which makes
building measurement systems much simpler; an important
aspect of our work was that the framework has been validated
in real projects;

� thanks to this framework more persons can use measurement
systems and customize the existing ones;

� the framework contributed to spreading the ISO/IEC 15939
standard, which was a very important change in the metric
culture in the development unit.

The effect, which we identified as a result of the evaluation in
this study, was that using the framework reduced the time (by
ca. 50%) required to development of measurement systems and
the size of measurement systems (by 35%).

One of the important aspects in our study was the use of the
framework to construct a measurement system summarizing the
status of all projects executed in the organization (as mentioned
in Section 5.4). This measurement system is used to provide a
high-level status of different projects and allows a high-level com-
parison of projects statuses in the development unit.

As a result of our study, we can put recommendation that in or-
der to be effective and efficient when using metric programs we
recommend adopters of ISO/IEC 15939 (which we identified as
the most important factors in Section 7.2):

� Reason in terms of information needs rather than what can be
measured. This usually leads to identifying stakeholder and
thus the person who has a real interest in collecting metrics.
This also assures that metrics are used in the decision process.

� Use indicators as the main information products provided to
the stakeholders, not base or derived measures. Using indica-
tors makes the daily monitoring efficient as the stakeholders
are not required to investigate details too frequently (although
the details should be provided to the stakeholders when
needed).

� Use customized measurement systems rather than off-the-
shelf metric tools – measurement systems should be devel-
oped to fulfill specific information needs, while metrics should
be as generic as possible (so that metrics are not specific for
information needs, but rather for entities being measured).

� Build own competence – train a dedicated team to work with
metrics rather than involve external consultants.

However, as stressed in the paper, the first bullet is the most
important one and helps to ensure that metrics are actually used
and not just collected.

Although this study has been done in the context of projects
executed according to RUP (Rational Unified Process) or Lean
Development, we do not see those as prerequisites for successful
use of this framework.

10. Conclusions

In this paper we presented a framework for building measure-
ment systems for measuring entities in software development.
The measurement systems are based on similar principles as
measurement systems in other engineering disciplines, reusing
such concepts as measurement instruments, base/derived mea-
sures, indicators or measured objects. The framework provides
the possibility to develop measurement systems based on ISO/
IEC 15939 standard in a short time, thus minimizing the effort
required for setting measurement systems. As a consequence of
this, quality managers and designers of measurement systems
are more efficient (e.g. they can work with more metrics at the
same time).

The presented framework is used in one of the development
units within Ericsson, and this paper presents its positive contribu-
tion to optimizing measurement processes in the unit. The results
of our evaluations in the development unit show that the frame-
work reduces the code required for a measurement system by
35% and reduces the development time by 50% (as perceived by
developers of measurement systems) compared to previous solu-
tions in the development unit. When using this framework the
development of new measurement systems does not require pro-
gramming experts – a basic knowledge in metrics and company’s

M. Staron et al. / Information and Software Technology 51 (2009) 721–737 735

Author's personal copy

database infrastructure suffices. The stakeholders were given the
possibility to reuse elements of measurement systems and easily
share information at various levels of abstraction with each other.
This, in turn, contributed to the wide-spread of measurement sys-
tems at the studied development unit within Ericsson.

The framework addresses such requirements as for example (i)
ease of use, (ii) modulatiry, (iii) reuse of measurement instruments,
(iv) reuse of metrics, or (v) reuse of values of metrics. These
requirements were found to be important in the studied develop-
ment unit.

The use of ISO/IEC 15939 standard proved itself useful in struc-
turing metrics and measurement systems. Our recommendation is
to use it when working with metrics since it requires structural
thinking and identifying the most important metrics for a specific
purpose.

Acknowledgements

The project has been partially sponsored by the Swedish Strate-
gic Research Foundation (www.stratresearch.se) under the pro-
gram Mobility in IT. It was also partially sponsored by Ericsson
Software Architecture Quality Center. We would like to thank the
involved managers at Ericsson for their support in this study. We
would also like to thank the anonymous reviewers for guidance
in improving our work.

Appendix A. Measurements – standard concepts

In this section we provide the definitions of the main elements
in measurement systems as defined in the ISO/IEC 15939 standard,
and in particular in its information model (of which an adapted
version is presented in Fig. 10).

In order to bridge the measurement theory, standardized vocab-
ulary of metrology, and measurement in software engineering, we
need to quote the definitions of the concepts important in this pa-
per from [32]:

� Measurement system – set of measuring (measurement) instru-
ments and other devices or substances assembled and adapted
to the measurement of quantities or specified kinds within spec-
ified intervals of values.

� Measuring instrument – device or combination of devices
designed for measurement of quantities. In software engineer-
ing, this term can be used to characterize most metric
tools.

These concepts are used in the ISO/IEC 15939:2007 standard to
define measurement processes in software engineering. This soft-
ware engineering standard is a normative specification for the pro-
cesses used to define, collect, and analyze quantitative data is
software projects or organizations. The central role in the standard
plays the information product which is a set of one or more indica-
tors with their associated interpretations that address the informa-
tion need. The information need is an insight necessary for a
stakeholder to manage objectives, goals, risks, and problems ob-
served in the measured objects (e.g. projects, organizations, soft-
ware products). We use the following definitions from ISO/IEC
15939:2007:

� Base measure – metric defined in terms of an attribute and the
method for quantifying it. This definition is based on the def-
inition of base quantity from VIM.

� Derived measure – metric that is defined as a function of two or
more values of base measures. This definition is based on the
definition of derived quantity.

� Indicator – metric that provides an estimate or evaluation of
specified attributes derived from a model with respect to
defined information needs.

� Decision criteria – thresholds, targets, or patterns used to
determine the need for action or further investigation, or to
describe the level of confidence in a given result. The analysis
contains a set of criteria which determine a set of notification
actions which should notify the stakeholder about the change
of the status of the indicator.

� Information product – one or more indicators and their
associated interpretations that address an information
need.

� Measurement method – logical sequence or operations,
described generically, used in quantifying an attribute with
respect to a specified scale.

� Measurement function – algorithm or calculation performed to
combine two or more base measures.

� Attribute – property or characteristics of an entity that can be
distinguished quantitatively or qualitatively by human or
automated means.

� Entity – object that is to be characterized by measuring its
attributes.

� Measurement process – process for establishing, planning, per-
forming and evaluating measurement within an overall pro-
ject, enterprise or organizational measurement structure.

The view on measures presented in ISO/IEC 15939 is consistent
with other engineering disciplines, the standard states at many
places that it is based on such standards as ISO/IEC 15288:2002
(Systems engineering – System life cycle processes) [47], ISO/IEC
14598-1:1999 (Information technology – Software product evalu-
ation) [48], ISO/IEC 9126-x [44] or International vocabulary of ba-
sic and general terms in metrology (VIM) [32].

Attribute Attribute

Measurement
method

Measurement
method

Base

Measure

Base

Measure

Measurement
Function

Derived

Measure

Derived

Measure

Analysis
Model

Indicator

Interpretation

Information

Product

Attribute

Measurement
method

Base

Measure
…

Measurement
Function

…

Fig. 10. Measurement information model – adapted from ISO/IEC 15939:2007.

736 M. Staron et al. / Information and Software Technology 51 (2009) 721–737

Author's personal copy

References

[1] N. Fenton, S.L. Pfleeger, R.L. Glass, Science and substance: a challenge to
software engineers, IEEE Software 11 (1994) 86–95.

[2] S.L. Pfleeger, R. Jeffery, B. Curtis, B. Kitchenham, Status report on software
measurement, IEEE Software 14 (1997) 33–34.

[3] N.E. Fenton, S.L. Pfleeger, Software Metrics: A Rigorous and Practical Approach,
International Thomson Computer Press, London, 1996.

[4] H. Zuse, A Framework of Software Measurement, Walter de Gruyter, Berlin,
New York, 1998.

[5] H. Zuse, Foundations of object-oriented software measures, in: Proceedings of
the 3rd International Software Metrics Symposium, IEEE, 1996, pp. 75–88.

[6] M. Umarji, H. Emurian, Acceptance issues in metrics program implementation,
in: H. Emurian (Ed.), 11th IEEE International Symposium Software Metrics,
2005, pp. 10–17.

[7] A. Gopal, T. Mukhopadhyay, M.S. Krishnan, The impact of institutional forces
on software metrics programs, IEEE Transactions on Software Engineering 31
(2005) 679–694.

[8] A. Gopal, M.S. Krishnan, T. Mukhopadhyay, D.R. Goldenson, Measurement
programs in software development: determinants of success, IEEE
Transactions on Software Engineering 28 (2002) 863–875.

[9] K.L. Atkins, B.D. Martin, J.M. Vellinga, R.A. Price, STARDUST: implementing a
new manage-to-budget paradigm, Acta Astronautica 52 (2003) 87–97.

[10] J. Lawler, B. Kitchenham, Measurement modeling technology, IEEE Software 20
(2003) 68–75.

[11] T. Kilpi, Implementing a software metrics program at Nokia, IEEE Software 18
(2001) 72–77.

[12] F. Niessink, H. van Vliet, Measurement program success factors revisited,
Information and Software Technology 43 (2001) 617–628.

[13] Niessink F, van Vliet H. Measurements should generate value, rather than data,
in: Sixth International Software Metrics Symposium, 1999, pp. 31–38.

[14] S. De Panfilis, B. Kitchenham, N. Morfuni, Experiences introducing a
measurement program, Information and Software Technology 39 (1997)
745–754.

[15] P. Goodman, Practical Implementation of Software Metrics, McGraw-Hill,
London, 1993.

[16] K.H. Möller, Software Metrics: A Practitioner’s Guide to Improved Product
Development, Chapman & Hall, London, 1993.

[17] L. Chirinos, F. Losavio, J. Boegh, Characterizing a data model for software
measurement, Journal of Systems and Software 74 (2005) 207–226.

[18] J. Schalken, H. van Vliet, Measuring where it matters: determining starting points
for metrics collection, Journal of Systems and Software 81 (2008) 603–615.

[19] N.P. Kolev, S.T. Yordanova, P.M. Tzvetkov, Computerized investigation of
robust measurement systems, IEEE Transactions on Instrumentation and
Measurement 51 (2002) 207–210.

[20] R.v. Solingen, The Goal/Question/Metric Approach: A Practical Handguide for
Quality Improvement of Software Development, McGraw-Hill, 1999.

[21] R. Jeffery, M. Berry, A framework for evaluation and prediction of metrics
program success, in: First International Software Metrics Symposium, IEEE
Computer Society, Los Alamitos, CA, 1993, pp. 28–39.

[22] T. Hall, N. Fenton, Implementing effective software metric programs, IEEE
Software 14 (1997) 55–65.

[23] N.E. Fenton, M. Neil, Software metrics: successes, failures and new directions,
Journal of Systems and Software 47 (1999) 149–157.

[24] D. Wisell, P. Stenvard, A. Hansebacke, N. Keskitalo, Considerations when
designing and using virtual instruments as building blocks in flexible
measurement system solutions, in: P. Stenvard (Ed.), IEEE Instrumentation
and Measurement Technology Conference, 2007, pp. 1–5.

[25] G. Kai, Virtual measurement system for muzzle velocity and firing frequency,
in: Eighth International Conference on Electronic Measurement and
Instruments, 2007, pp. 176–179.

[26] R.F. Kunz, G.F. Kasmala, J.H. Mahaffy, C.J. Murray, On the automated
assessment of nuclear reactor systems code accuracy, Nuclear Engineering
and Design 211 (2002) 245–272.

[27] H. Zhiyao, W. Baoliang, L. Haiqing, An intelligent measurement system for
powder flowrate measurement in pneumatic conveying system, IEEE
Transactions on Instrumentation and Measurement 51 (2002)
700–703.

[28] A.N. Zaborovsky, D.O. Danilov, G. V Leonov, R.V. Mescheriakov, Software and
hardware for measurements systems, in: D.O. Danilov (Ed.), The IEEE-
Siberian Conference on Electron Devices and Materials, IEEE, 2002, pp. 53–
57.

[29] A.S. Sehmi, N.B. Jones, S.Q. Wang, G.H. Loudon, Knowledge-based systems for
neuroelectric signal processing, IEE Proceedings-Science, Measurement and
Technology 141 (1994) 215–223.

[30] J. Feigin, K. Pahlavan, Measurement of characteristics of voice over IP in a
wireless LAN environment, in: K. Pahlavan (Ed.), IEEE International Workshop
on Mobile Multimedia Communications, 1999, pp. 236–240.

[31] M. Foote, D. Horn, Video measurement of swash zone hydrodynamics,
Geomorphology 29 (1999) 59–76.

[32] International Bureau of Weights and Measures, International vocabulary of
basic and general terms in metrology = Vocabulaire international des termes
fondamentaux et généraux de métrologie, International Organization for
Standardization, Genève, Switzerland, 1993.

[33] Predicate Logic: TychoMetrics, 2008. <http://www.predicatelogic.com>
(accessed 30.06.08).

[34] F. Garcia, M. Serrano, J. Cruz-Lemus, F. Ruiz, M. Pattini, ALARACOS research
group: managing software process measurement: a meta-model based
approach, Information Sciences 177 (2007) 2570–2586.

[35] W.L. Oberkampf, T.G. Trucano, Verification and validation in
computational fluid dynamics, Progress in Aerospace Sciences 38
(2002) 209–272.

[36] N.P. Kolev, P.M. Tzvetkov, S.T. Yordanova, Development of measurement
systems with robustness feedback, in: P.M. Tzvetkov (Ed.), Instrumentation
and Measurement Technology Conference, 1996, IMTC-96, Conference
Proceedings, Quality Measurements: The Indispensable Bridge between
Theory and Reality, vol. 2, IEEE, 1996, pp. 881–883.

[37] EventHelix: system availability and reliability. <http://www.eventhelix.com/
RealtimeMantra/FaultHandling/system_reliability_availability.htm>
(accessed: 10.02.08).

[38] P. Kruchten, The Rational Unified Process, Addison-Wesley, Reading, Mass,
1999.

[39] Greenlight: PROPS – project management in multi-project organization.
<http://www.greenlightpm.com/props.htm> (accessed 15.02.08).

[40] C. Robson, Real World Research, Blackwell Publishing, Oxford, 2002.
[41] M. Staron, W. Meding, Short-term Defect Inflow Prediction in Large Software

Project – An Initial Evaluation, International Conference on Empirical
Assessment in Software Engineering (EASE), British Computer Society, Keele,
UK, 2007.

[42] M. Staron, W. Meding, Predicting Monthly Defect Inflow in Large Software
Projects – An Industrial Case Study, International Symposium on Software
Reliability – Industry Track, IEEE, Trolhattan, Sweden, 2007.

[43] M. Staron, W. Meding, Predicting weekly defect inflow in large software
projects based on project planning and test status, Information and Software
Technology (2007).

[44] International Standard Organization, International Electrotechnical
Commission: ISO/IEC 9126 – Software engineering – Product quality Part: 1
Quality model. International Standard Organization/International
Electrotechnical Commission, Geneva, 2001.

[45] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslèn,
Experimentation in Software Engineering: An Introduction, Kluwer Academic
Publisher, Boston MA, 2000.

[46] W.M.K. Trochim, Research methods knowledge base, 2008. <http://
www.socialresearchmethods.net/kb/> (accessed 30.06.08).

[47] International Standard Organization, Systems engineering – System life cycle
processes 15288:2002, 2002.

[48] International Standard Organization, Information technology – Software
product evaluation 14598-1:1999, 1999.

M. Staron et al. / Information and Software Technology 51 (2009) 721–737 737

