
Compositional Verification of
Stigmergic Collective Systems

Luca Di Stefano1 Frédéric Lang2

1University of Gothenburg, Sweden
2INRIA Grenoble, France

VMCAI’2023

VMCAI’2023 1 / 15



Collective systems

• Collections of agents interacting with each other
• Found in CS, economics, biology. . .
• Interactions and feedback may lead to emergence of

collective features
• Reasoning about emergence is hard. Model checking?

Pros

• Can prove emergence,
safety, etc. (arbitrary
temporal properties)
• Push-button, no human

guidance needed

Cons

• Requires user expertise for
modelling, specification

• State space explosion as
the number/complexity of
agents increases

VMCAI’2023 2 / 15



Collective systems

• Collections of agents interacting with each other
• Found in CS, economics, biology. . .
• Interactions and feedback may lead to emergence of

collective features
• Reasoning about emergence is hard. Model checking?

Pros

• Can prove emergence,
safety, etc. (arbitrary
temporal properties)
• Push-button, no human

guidance needed

Cons

• Requires user expertise for
modelling, specification
• State space explosion as

the number/complexity of
agents increases

VMCAI’2023 2 / 15



In this talk

What LAbS is about

• High-level language to concisely specify systems/properties
• Focus on indirect, attribute-based interaction mechanisms
• Reuse of different existing verification technologies
• E.g., CADP, which offers model-checking and compositional

verification tools out of the box

Contributions

• Encoding of LAbS systems into parallel LNT programs
• Compositional verification workflow
• Sound value analysis to prune individual state spaces and

speed up verification

VMCAI’2023 3 / 15



In this talk

What LAbS is about

• High-level language to concisely specify systems/properties
• Focus on indirect, attribute-based interaction mechanisms
• Reuse of different existing verification technologies
• E.g., CADP, which offers model-checking and compositional

verification tools out of the box

Contributions

• Encoding of LAbS systems into parallel LNT programs
• Compositional verification workflow
• Sound value analysis to prune individual state spaces and

speed up verification

VMCAI’2023 3 / 15



Bully election on a stigmergy (1/2)

1 system {
2 spawn = Node: N
3 }
4 stigmergy Election {
5 link = true
6 leader: N
7 }

8 agent Node {
9 stigmergies = Election

10 Behavior =
11 leader >= id ->
12 leader <~ id;
13 Behavior
14 }

• N nodes run for election, by storing their id in a stigmergic
variable leader. If leader < id, the node waits
• All communication is implicit
• Nodes exchange their values of leader
• Values are timestamped, “newer” ones replace “older”
• link = true means broadcast messages

• Intuitively, they should converge to a state where all nodes set
leader to the lowest id in the system

VMCAI’2023 4 / 15



Bully election on a stigmergy (2/2)

Some feasible executions (with N = 3)

leader
• 0
• 1
• 2
• 3

A property of interest

fairly∞∀x : Node • x .leader = 0

Along every fair execution, there are infinitely many states where
all nodes have 0 as the leader

VMCAI’2023 5 / 15



Bully election on a stigmergy (2/2)

Some feasible executions (with N = 3)

leader
• 0
• 1
• 2
• 3

A property of interest

fairly∞∀x : Node • x .leader = 0

Along every fair execution, there are infinitely many states where
all nodes have 0 as the leader

VMCAI’2023 5 / 15



Workflow overview

.labs file
PASS

or
(FAIL + cex)

LAbS frontend
Counterexample

translator

Value analysis
+

LNT generator

MCL encoder

SVL generator

SLiVER

SVL interpreter (CADP)

Temporal
property

System
specification

MCL query

LNT program

SVL script Verification
outcome

Based on CADP and its
languages/formalisms:

LNT system description

MCL property specification
(alternation-free µ-calculus
with data)

SVL scripting of complex
verification tasks (in our
case: compositional state
space generation + model
checking)

VMCAI’2023 6 / 15



LNT crash course

Program = processes communicating over gates

Send offer

G(v1, . . . , vn)
Offer values over
gate G

Receive offer

G(?x1, . . . , ?xn) where φ(x1, . . . , xn)
Receive n values over G and
bind them to xi , i = 1, . . . , n, but
only if φ(x1, . . . , xn) holds.

Parallel composition

par G11, . . . , G1j → P1∥ · · · ∥Gn1, . . . , Gnk → Pn end par
All processes with G in their set of gates must synchronize over it

Etc.

Loops, nondeterministic choice, conditionals, guards, . . .

VMCAI’2023 7 / 15



LNT crash course

Program = processes communicating over gates

Send offer

G(v1, . . . , vn)
Offer values over
gate G

Receive offer

G(?x1, . . . , ?xn) where φ(x1, . . . , xn)
Receive n values over G and
bind them to xi , i = 1, . . . , n, but
only if φ(x1, . . . , xn) holds.

Parallel composition

par G11, . . . , G1j → P1∥ · · · ∥Gn1, . . . , Gnk → Pn end par
All processes with G in their set of gates must synchronize over it

Etc.

Loops, nondeterministic choice, conditionals, guards, . . .

VMCAI’2023 7 / 15



LNT crash course

Program = processes communicating over gates

Send offer

G(v1, . . . , vn)
Offer values over
gate G

Receive offer

G(?x1, . . . , ?xn) where φ(x1, . . . , xn)
Receive n values over G and
bind them to xi , i = 1, . . . , n, but
only if φ(x1, . . . , xn) holds.

Parallel composition

par G11, . . . , G1j → P1∥ · · · ∥Gn1, . . . , Gnk → Pn end par
All processes with G in their set of gates must synchronize over it

Etc.

Loops, nondeterministic choice, conditionals, guards, . . .

VMCAI’2023 7 / 15



From LAbS to LNT

Each agent is encoded as a process with this structure:

Make a move

Wait for another agent’s move

Send a message (if any)

React to an incoming message

Initialize

loop
select

end
select end

loop

• System = Parallel composition of all agents and additional
processes (e.g., information about timestamps)
• Multi-party synchronization to resolve the agents’ choices

VMCAI’2023 8 / 15



From LAbS to LNT

Each agent is encoded as a process with this structure:

Make a move

Wait for another agent’s move

Send a message (if any)

React to an incoming message

Initialize

loop
select

end
select end

loop

• System = Parallel composition of all agents and additional
processes (e.g., information about timestamps)
• Multi-party synchronization to resolve the agents’ choices

VMCAI’2023 8 / 15



Compositional state space generation

Given a tree of parallel processes S, generate the transition
system lts(S) by composing the (minimized) TSs of the “leaves”
P1, . . . ,Pm ∈ S

Root-leaf reduction (modulo R)

• For every Pi generate Ti = lts(Pi)

• Minimize every Ti modulo R: T ′
i = minR(Ti)

• Generate T = lts(S[T ′
i /Pi ])

• Return minR(T )

Drawback

When generating each Ti we do not know what messages we may
receive from the other processes
E.g., in the bully election, leader may be any integer in −128..127

VMCAI’2023 9 / 15



Compositional state space generation

Given a tree of parallel processes S, generate the transition
system lts(S) by composing the (minimized) TSs of the “leaves”
P1, . . . ,Pm ∈ S

Root-leaf reduction (modulo R)

• For every Pi generate Ti = lts(Pi)

• Minimize every Ti modulo R: T ′
i = minR(Ti)

• Generate T = lts(S[T ′
i /Pi ])

• Return minR(T )

Drawback

When generating each Ti we do not know what messages we may
receive from the other processes
E.g., in the bully election, leader may be any integer in −128..127

VMCAI’2023 9 / 15



Compositional state space generation

Given a tree of parallel processes S, generate the transition
system lts(S) by composing the (minimized) TSs of the “leaves”
P1, . . . ,Pm ∈ S

Root-leaf reduction (modulo R)

• For every Pi generate Ti = lts(Pi)

• Minimize every Ti modulo R: T ′
i = minR(Ti)

• Generate T = lts(S[T ′
i /Pi ])

• Return minR(T )

Drawback

When generating each Ti we do not know what messages we may
receive from the other processes
E.g., in the bully election, leader may be any integer in −128..127

VMCAI’2023 9 / 15



Value analysis of LAbS specifications

1. Compute abstract initial state ς0 from specification S
• In this work we use powersets of intervals

2. Add ς0 to a set σ
3. For every assignment a in S and every state ς in σ:

• Evaluate a on ς
• Add resulting state ς ′ to σ

4. Reach a fixed point

5. Merge all states in σ to obtain σ̄

Example

In the bully election system we find out that leader ∈ {0, . . . ,N} in
every state

VMCAI’2023 10 / 15



Value analysis of LAbS specifications

1. Compute abstract initial state ς0 from specification S
• In this work we use powersets of intervals

2. Add ς0 to a set σ
3. For every assignment a in S and every state ς in σ:

• Evaluate a on ς
• Add resulting state ς ′ to σ

4. Reach a fixed point

5. Merge all states in σ to obtain σ̄

Example

In the bully election system we find out that leader ∈ {0, . . . ,N} in
every state

VMCAI’2023 10 / 15



Pruning the state space

We use σ̄ to prune out receptions of impossible messages:

Make a move

Wait for another agent’s move

Send a message (if any)

React to an incoming message
such that its contents are in σ̄

Initialize

loop
select

end
select end

loop

(In practice we plug σ̄ as a where-clause on receive offers)

VMCAI’2023 11 / 15



Experimental evaluation

Baseline Compositional Parallel
System Time (s) Memory (MiB) Time (s) Memory (MiB) Time (s) Memory (MiB)
flock-rr 1875 12000 4461 11805 4426 11805
flock 4787 30865 4071 11113 4038 11113
formation-rr 1670 1657 2511 1938 1558 5875
leader5 10 41 34 117 18 212
leader6 77 147 104 225 65 258
leader7 1901 2038 374 404 326 404
twophase2 9 50 67 93 34 210
twophase3 500 209 233 322 131 560

Baseline Previous (sequential) LNT encoding

Compositional Our work spaces on a dedicated core

Parallel What would happen if we split state space
generation across multiple cores

-rr Round-robin scheduling

VMCAI’2023 12 / 15



Experimental evaluation

Baseline Compositional Parallel
System Time (s) Memory (MiB) Time (s) Memory (MiB) Time (s) Memory (MiB)
flock-rr 1875 12000 4461 11805 4426 11805
flock 4787 30865 4071 11113 4038 11113
formation-rr 1670 1657 2511 1938 1558 5875
leader5 10 41 34 117 18 212
leader6 77 147 104 225 65 258
leader7 1901 2038 374 404 326 404
twophase2 9 50 67 93 34 210
twophase3 500 209 233 322 131 560

• B wins on very small instances (no overhead)
• C scales better and has fewer issues with full interleaving
• P brings further gains wrt verification times but may be more

memory hungry

VMCAI’2023 12 / 15



Wrap up

Conclusion

• Model checking enables verification of expressive properties
in collective systems
• Compositional verification can palliate state space explosion
• Value analysis speeds up state space generation

Future work

• Investigate tighter approximations (better abstract domains,
better algorithm)
• Actually parallelize workflow across multiple cores/machines

VMCAI’2023 14 / 15



Wrap up

Conclusion

• Model checking enables verification of expressive properties
in collective systems
• Compositional verification can palliate state space explosion
• Value analysis speeds up state space generation

Future work

• Investigate tighter approximations (better abstract domains,
better algorithm)
• Actually parallelize workflow across multiple cores/machines

VMCAI’2023 14 / 15



References

1. De Nicola, Di Stefano, Inverso. Multi-agent systems with virtual
stigmergy. Sci. Comput. Program. 187 (2020). DOI:
https://doi.org/10.1016/j.scico.2019.102345
General introduction to LAbS

2. Di Stefano, De Nicola, Inverso. Verification of Distributed Systems
via Sequential Emulation. TOSEM 31 (2022). DOI:
https://doi.org/10.1145/3490387
Describes our general approach to LAbS verification

3. Di Stefano and Lang. Verifying Temporal Properties of Stigmergic
Collective Systems Using CADP. In ISoLA2021. DOI:
https://doi.org/10.1007/978-3-030-89159-6_29
Baseline CADP-based verification workflow and benchmark
description

VMCAI’2023 0 / 15

https://doi.org/10.1016/j.scico.2019.102345
https://doi.org/10.1145/3490387
https://doi.org/10.1007/978-3-030-89159-6_29


Backup slides

VMCAI’2023 1 / 5



Stigmergic variables

Evaluation (x)

• Read val(x)
• Mark x for a
qry-message

Assignment (x <~ v)

• Compute the current timestamp t
• Record val(x)← v , ts(x)← t
• Mark x for a put-message
• Unmark x for qry

Messaging

• Messages are sent asynchronously to all neighbours
• Neighbourhood is defined as a predicate on sender and

potential receiver
• Different variables may have different predicates

VMCAI’2023 2 / 5



Stigmergic variables

Evaluation (x)

• Read val(x)
• Mark x for a
qry-message

Assignment (x <~ v)

• Compute the current timestamp t
• Record val(x)← v , ts(x)← t
• Mark x for a put-message
• Unmark x for qry

Messaging

• Messages are sent asynchronously to all neighbours
• Neighbourhood is defined as a predicate on sender and

potential receiver
• Different variables may have different predicates

VMCAI’2023 2 / 5



Stigmergic variables

Evaluation (x)

• Read val(x)
• Mark x for a
qry-message

Assignment (x <~ v)

• Compute the current timestamp t
• Record val(x)← v , ts(x)← t
• Mark x for a put-message
• Unmark x for qry

Messaging

• Messages are sent asynchronously to all neighbours
• Neighbourhood is defined as a predicate on sender and

potential receiver
• Different variables may have different predicates

VMCAI’2023 2 / 5



Stigmergic messages

Receiving ⟨put, x, v , t⟩

• If t > ts(x):
1. Record val(x)← v , ts(x)← t
2. Mark x for a put-message

• Otherwise, ignore the message

Receiving ⟨qry, x, v , t⟩

• Mark x for a put-message
• If t > ts(x), then record val(x)← v , ts(x)← t

VMCAI’2023 3 / 5



Compositional vs parallel workflow

Table: Time and memory requirements for the Compositional and
Parallel workflows.

Compositional Parallel
Time

∑
Tasks time(T ) maxi {time(Ti)}+ time(TP) + time(T|=)

Memory maxTasks mem(T ) max
{∑

i mem(Ti),mem(TP),mem(T|=)
}

VMCAI’2023 4 / 5



Priorities

◦ a0 //
a2

��

◦
a2

��
◦

a1
??

a2

��

a0 // ◦a1

??

a2

��

◦ a0 // ◦

◦a1

??

a0
// ◦

a1
??

Figure: Example of a diamond when 3 agents perform independent
actions a0, a1, and a2. Dotted transitions are cut by applying the priority
relation a0 ≻ a1 ≻ a2.

VMCAI’2023 5 / 5


	Appendix

