Intuitive Modelling and Formal Analysis of Collective Behaviour in Foraging Ants

Rocco De Nicola¹ Serenella Valiani¹

Luca Di Stefano² Omar Inverso³

¹IMT, Lucca, Italy ²University of Gothenburg, Sweden ³Gran Sasso Science Institute, L'Aquila, Italy

CMSB'23 13 Sep 2023 Luxembourg

Lablished by the European Commissio

Goal

Describe/design/reason about collective systems

How?

- Formulate hypotheses about
 - Individual behaviour
 - Interaction mechanisms (agent-agent, agent-environment)
- Check if collective features emerge with time + interactions

• Modelling languages that are

- Agent-based
- High-level
- Intuitive (close to the domain of interest)
- Formally defined

- Modelling languages that are
 - Agent-based
 - High-level
 - Intuitive (close to the domain of interest)
 - Formally defined
- Analysis tools and workflows that are
 - Automated
 - Intuitive (easy to use)
 - Built on top of mature off-the-shelf solutions
 - Extensible

- Modelling languages that are
 - Agent-based
 - High-level
 - Intuitive (close to the domain of interest)
 - Formally defined
- Analysis tools and workflows that are
 - Automated
 - Intuitive (easy to use)
 - Built on top of mature off-the-shelf solutions
 - Extensible
- Effective methodologies to put all this at work

CHALMERS

UNIVERSITY OF GOTHENBURG

- Isolate features of agents & environment
- Come up with a high-level behavioural skeleton
- Flesh out the skeleton into a model
- Get feedback from simulation/verification
- Refine the model

Why?

- Well-known, extensively studied
- Several interesting mechanisms at play
 - Stigmergic (pheromone-based) interaction
 - Path integration

Scenario: Ant foraging

Why?

- Well-known, extensively studied
- Several interesting mechanisms at play
 - Stigmergic (pheromone-based) interaction
 - Path integration

Our setting

- Arena: square grid of cells
- One cell contains food (X)
- One cell contains the nest (▲)
- Cells may be marked with pheromone

LAbS = simple, formal language for agent-based models

Parameters

size: Length of the sides of the arena

n: Number of ants (see line 4)

foodx, foody: Food cell coordinates

m, k: Related to ants' behaviour, initial state (coming soon)

Shared state

ph: 2-D array, tracks whether a cell is marked with pheromone

- 1 system {
- 2 **extern** = size, n, foodx, foody, m, k

UNIVERSITY OF GOTHENBURG

- 3 environment = ph[size, size]: 0
- 4 spawn = Ant: n

CHALMERS

5 }

Behaviour

- Explore surroundings for food
 - Exploration is random
 - But may be influenced by pheromone trail-following
- Bring found food to the nest
 - Dead reckoning (go back to the nest along a straight line)
 - Release pheromone along the way

Pheromone sensing

- 1. Sample two random cells within range m
- 2. If either cell is marked, move there;

Otherwise move to a random cell within range

. . . .

1	agent Ant {
2	interface = x: 0size; y: 0size;
3	nextX: 0; nextY: 0
4	
5	Behavior = Explore; GoHome; Behavior
6	
7	Explore =
8	$x \neq foodx \text{ or } y \neq foody \Rightarrow ($
9	SmellPheromone; Move; Explore)
10	
11	Move =
12	(nextX = x and nextY = y \Rightarrow {
13	dX, dY := [-mm+1], [-mm+1];
14	nextX ← x+dX;
15	nextY ← y+dY;
16	nextX \leftarrow max(nextX, 0);
17	nextY \leftarrow max(nextY, 0);
18	nextX \leftarrow min(nextX, size-1);
19	nextY \leftarrow min(nextY, size-1)
20	});
21	x v ← nextX nextY

```
39
40
41 }
```

Assumptions

CHALMERS | 🚳 UNIVERSITY OF GOTHENBURG

Additional constraints on the initial state

- At least one ant starts at the food location
- All the others start "far" from the shortest path (shaded area) between food and nest

LAbS: Quantified predicate in a separate section of the model

```
assume {
 1
 2
      FoodAnt = exists Ant a,
 3
         (x of a = foodx) and (y of a = foody)
 4
 5
      FarFromThePath = forall Ant a.
 6
         ((x of a = foodx) and (y of a = foody)) or
 7
         (x of a > foodx + k) or
 8
         (y \text{ of } a > foody + k) \text{ or }
 9
         (y \text{ of } a < foody - k)
10 }
```


A tool to verify/simulate LAbS models¹

- · Converts model into a symbolic intermediate representation
- Converts IR into imperative programs (here, sequential C)
- Reuses off-the-shelf analysis tools (here, SAT-based BMC²)

¹https://github.com/labs-lang/sliver ²https://www.cprover.org/cbmc

Parameter values

size	Lenght of the arena's sides	20
foodx	Food x-coordinate	10
foody	Food y-coordinate	10
k	Initial distance from trail	2
n	Number of ants	10
т	Ants' movement range	1
В	Simulation bound	800
	Number of simulations	200

Average ant-trail distance

- Ants end up close to the pheromone trail in most simulations
- ... even though pheromone sensing is rather simple (nondeterministic, memoryless)

CHALMERS | 🕲 UNIVERSITY OF GOTHENBURG

Now, let us specify that we would like *every* ant to be *within* the shaded region after a certain number of steps *B*

6 (y of a
$$\leq$$
 foody + k

7 }

We can also use verification to generate "interesting" traces **Example.** If *exactly one ant* starts at \times , can *every* ant end up close to the trail (after *B* steps)?

We can also use verification to generate "interesting" traces **Example.** If *exactly one ant* starts at \times , can *every* ant end up close to the trail (after *B* steps)?

(🕌) CHALM<u>ERS</u>

UNIVERSITY OF GOTHENBURG

Verify against the negation of the property:

```
assume {
                                         9
                                            check {
1
     FoodAnt =
2
                                        10
                                              NegShortestPath =
3
       exists-unique Ant a,
                                        11
                                              after B exists Ant a.
4
         (x of a = foodx) and
                                        12
                                                (x \text{ of } a > foodx + k) \text{ or }
5
         (y of a = foody)
                                        13
                                                (y \text{ of } a < foody - k) \text{ or }
6
                                                (y of a > foody + k)
                                        14
7
     FarFromThePath = ...
                                       15 }
8 }
```


- Agent-based modelling of collective systems requires appropriate languages and tools
- These need to be supported by an adequate methodology
 - · Gradual refinement of informal descriptions into formal models
 - Analysis-driven, iterative improvements to the model
- Simulation and exhaustive techniques complement each other

- Support more expressive properties (e.g., full LTL)
- Improve simulation/verification performance
- Implement runtime verification, statistical model checking, ...
- Look for new case studies

Backup slides

Simulation results: Median distance (Omitted from the paper)

CHALMERS

(A) UNIVERSITY OF GOTHENBURG

Simulation results: Box plot (Omitted from the paper)

CHALMERS

Ð

UNIVERSITY OF GOTHENBURG