Intuitive Modelling and Formal Analysis of Collective Behaviour in Foraging Ants

Rocco De Nicola ${ }^{1} \quad$ Luca Di Stefano ${ }^{2}$ Omar Inverso ${ }^{3}$ Serenella Valiani ${ }^{1}$
${ }^{1}$ IMT, Lucca, Italy
${ }^{2}$ University of Gothenburg, Sweden
${ }^{3}$ Gran Sasso Science Institute, L'Aquila, Italy

CMSB'23
13 Sep 2023
Luxembourg

G S
erc

Agent-based modelling

Goal

- Describe/design/reason about collective systems

How?

- Formulate hypotheses about
- Individual behaviour
- Interaction mechanisms (agent-agent, agent-environment)
- Check if collective features emerge with time + interactions

- Modelling languages that are
- Agent-based
- High-level
- Intuitive (close to the domain of interest)
- Formally defined
- Modelling languages that are
- Agent-based
- High-level
- Intuitive (close to the domain of interest)
- Formally defined
- Analysis tools and workflows that are
- Automated
- Intuitive (easy to use)
- Built on top of mature off-the-shelf solutions
- Extensible
- Modelling languages that are
- Agent-based
- High-level
- Intuitive (close to the domain of interest)
- Formally defined
- Analysis tools and workflows that are
- Automated
- Intuitive (easy to use)
- Built on top of mature off-the-shelf solutions
- Extensible
- Effective methodologies to put all this at work

- Isolate features of agents \& environment
- Come up with a high-level behavioural skeleton
- Flesh out the skeleton into a model
- Get feedback from simulation/verification
- Refine the model

Why?

- Well-known, extensively studied
- Several interesting mechanisms at play
- Stigmergic (pheromone-based) interaction
- Path integration

Why?

- Well-known, extensively studied
- Several interesting mechanisms at play
- Stigmergic (pheromone-based) interaction
- Path integration

Our setting

- Arena: square grid of cells
- One cell contains food (X)
- One cell contains the nest ($\mathbf{\Delta}$)
- Cells may be marked with pheromone

LAbS: System description

LAbS = simple, formal language for agent-based models

Parameters

size: Length of the sides of the arena
n : Number of ants (see line 4)
foodx, foody: Food cell coordinates
$\boldsymbol{m}, \boldsymbol{k}$: Related to ants' behaviour, initial state (coming soon)

Shared state

ph: 2-D array, tracks whether a cell is marked with pheromone
system \{
extern = size, n, foodx, foody, m, k environment $=\mathrm{ph}[$ size, size]: 0
spawn $=$ Ant: n
5 \}

Ant behaviour: overview

Behaviour

- Explore surroundings for food
- Exploration is random
- But may be influenced by pheromone trail-following
- Bring found food to the nest
- Dead reckoning (go back to the nest along a straight line)
- Release pheromone along the way

Pheromone sensing

1. Sample two random cells within range m
2. If either cell is marked, move there; Otherwise move to a random cell within range
```
agent Ant { 22
    interface = x: 0..size; y: 0..size; 23
            nextX: 0; nextY: 0
    Behavior = Explore; GoHome; Behavior
    Explore =
        x\not= foodx or y f= toody }
            SmellPheromone; Move; Explore) 30
        31
    Move = 32
            (nextX = x and nextY = y { { 33
            dX, dY := [-m..m+1], [-m..m+1]; 34
            nextX \leftarrow }\leftarrow+\textrm{d}\mathrm{ d;; 35
            nextY \leftarrowy+dY; 36
            nextX \leftarrow < max(nextX, 0); 
            nextY \leftarrowmax(nextY, 0); 38
            nextX \leftarrow min(nextX, size-1); 39
```



```
            });
            x, y nextX, nextY
```

```
SmellPheromone \(=\{\)
    \(\mathrm{dX}:=[1 . . m+1]\);
    \(\mathrm{dY}:=[1 . . m+1] ;\)
    testx1, testy \(1:=\min (x+d X\), size -1\(), \min (y+d Y\), size -1\()\);
    testx2, testy2 \(:=\max (x-d X, 0), \max (y-d Y, 0)\);
    nextX \(\leftarrow\) if ph[testx1, testy1] then testx1 else
            if ph[testx2, testy2] then testx2 else \(x\);
    next \(Y \leftarrow\) if ph[testx1, testy1] then testy1 else
            if ph[testx2, testy2] then testy2 else \(y\)
\}
GoHome \(=\)
    \(\mathrm{x} \neq 0\) or \(\mathrm{y} \neq\) food \(\Rightarrow\) ( \(\{\)
        \(\mathrm{ph}[\mathrm{x}, \mathrm{y}] \Leftarrow 1\);
        \(x \leftarrow \max (0, x-1)\)
    \}; GoHome)
```


Assumptions

Additional constraints on the initial state

- At least one ant starts at the food location
- All the others start "far" from the shortest path (shaded area) between food and nest

LAbS: Quantified predicate in a separate section of the model

```
assume{
    FoodAnt = exists Ant a,
        (x of a = foodx) and (y of a=foody)
    FarFromThePath = forall Ant a,
    ((x of a = foodx) and (y of a=foody)) or
    (x of a > food }x+k\mathrm{ ) or
    (y of a > foody +k) or
    (y of a < foody - k)
```

10 \}

A tool to verify/simulate LAbS models ${ }^{1}$

- Converts model into a symbolic intermediate representation
- Converts IR into imperative programs (here, sequential C)
- Reuses off-the-shelf analysis tools (here, SAT-based BMC^{2})

[^0]
Simulation results

Parameter values

size	Lenght of the arena's sides	20
foodx	Food x-coordinate	10
foody	Food y-coordinate	10
k	Initial distance from trail	2
n	Number of ants	10
m	Ants' movement range	1
B	Simulation bound	800
	Number of simulations	200

Average ant-trail distance

- Ants end up close to the pheromone trail in most simulations
- ...even though pheromone sensing is rather simple (nondeterministic, memoryless)

Verification

Now, let us specify that we would like every ant to be within the shaded region after a certain number of steps B

```
check {
2 ShortestPath =
3 after B forall Ant a,
4 (x of a }\leqfoodx+k) an
5 (y of a }\geq\mathrm{ food y -k) and
6 (y of a }\leq\mathrm{ foody +k)
7 }
```


(1 frame $=10$ epochs $=100$ steps)
Initial state: ant \bullet finds food

(1 frame $=10$ epochs $=100$ steps)
Ant \bullet goes from \times towards $\boldsymbol{\Delta}$, leaves trail

(1 frame $=10$ epochs $=100$ steps)
Several ants find food, go back to nest

We can also use verification to generate "interesting" traces
Example. If exactly one ant starts at \times, can every ant end up close to the trail (after B steps)?

We can also use verification to generate "interesting" traces
Example. If exactly one ant starts at \times, can every ant end up close to the trail (after B steps)?
Verify against the negation of the property:

```
assume {
    9 check {
    FoodAnt =
        exists-unique Ant a,
            (x of a = foodx) and
            (y of a=foody)
    FarFromThePath = ...
        10 NegShortestPath =
    11 after B exists Ant a,
    12 (x of a > foodx +k) or
    13 (y of a < foody - k) or
    14 (y of a > foody +k)
    15 }
```

8 \}

(1 frame $=10$ epochs $=100$ steps) Initial state: ant \bullet finds food

(1 frame = 10 epochs = 100 steps)
Ant \bullet goes from \times towards $\boldsymbol{\Delta}$, leaves trail

(1 frame $=10$ epochs $=100$ steps)
Other ants explore arena, get on the trail

(1 frame $=10$ epochs $=100$ steps)
Other ants explore arena, get on the trail

- Agent-based modelling of collective systems requires appropriate languages and tools
- These need to be supported by an adequate methodology
- Gradual refinement of informal descriptions into formal models
- Analysis-driven, iterative improvements to the model
- Simulation and exhaustive techniques complement each other
- Support more expressive properties (e.g., full LTL)
- Improve simulation/verification performance
- Implement runtime verification, statistical model checking, ...
- Look for new case studies

Backup slides

Simulation results: Median distance

(Omitted from the paper)

(Omitted from the paper)

[^0]: ${ }^{1}$ https://github.com/labs-lang/sliver
 ²https://www.cprover.org/cbmc

