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Abstract. Many natural and artificial systems studied across a variety
of disciplines, from biology to social sciences, consist of relatively simple
agents with a partial knowledge of the system as a whole, where complex
collective dynamics that are difficult to anticipate emerge from local
interaction. We argue how formal methods broadly understood can be
of assistance in such studies with a systematic approach to specification
and analysis. To convey our argument, we elaborate a proof of concept
inspired from an instance of emergent behaviour commonly observed in
flocks of birds.

1 Introduction

Sophisticated collective dynamics can be observed in a variety of biological sys-
tems [18], such as herds of animals [25], colonies of insects [28], flocks of birds
and schools of fish [23], but also in artificial systems such as political parties [27],
smart cities [29], cyber-physical systems, and many others [8, 15, 21]. The study
of such systems poses several challenges, such as intuitive specification and fast
validation of different hypotheses on so-called emergent behaviour and other
complex properties.

In this paper, we argue that concepts, methods, and tools from the the wider
area of formal methods, to which Frits Vaandrager has dedicated most of his
research efforts, can be of assistance in such activities. In particular, with the
right ingredients, an integrated approach to formal specification and verification
can open up to seemingly distant disciplines, where there could be plenty to be
gained. The right ingredients here consist of a domain-specific formal language
and effective verification procedures.

We consider a well-known example of collective behaviour known as flock-
ing, that spontaneously emerges from the movement of birds in a flock. It is
a fascinating natural phenomenon studied in a variety of disciplines, including
ethology [22], optimization [1], economics [11], biology [18], and many others.

Flocking was considered as the combined effect of conflicting forces in the
1950s by Emlen, who proposed a model where an attractive force, which causes
the birds to move closer to each other, is combined with a repulsive force that
limits the size of the flock [17]. In the late 1980s, Reynolds refined this concept
by introducing three separate rules, namely cohesion, alignment, and separation,



2 Rocco De Nicola, Luca Di Stefano, Omar Inverso, and Serenella Valiani(�)

where flockmates move closer to each other when far apart, adapt their move-
ments according to those of their neighbours, and avoid collisions by keeping
a minimum distance from each other, respectively [23]. In practice, the com-
bined effect of Reynold’s rules can generate collective patterns of movement
that resemble those of flocks of birds in the nature. Reynold’s flocking model
is an interesting example of bottom-up modelling of sophisticated collective be-
haviour via simple local rules. Indeed, the idea that collective behaviour can be
expressed in terms of local interactions in a natural way is also backed up by
more recent studies, from biology [18, 12] to physics [3, 4].

Elaborating an accurate model of flocking is outside the scope of this paper.
Rather, we are interested in the study of minimalistic models that can mimic
the dynamics described above at least in part. We focus on cohesion, which is
commonly acknowledged as a core property of flocking [26, 13, 28]. Cohesion is
usually defined based on the capability of each bird to determine a flock centroid
(e.g., in Reynold’s model, the barycentre of birds in the cohesion zone [23]). We
would like to see whether it would be possible to achieve something similar
to cohesion with minimal specifications, for instance by simply having birds
approach pairwise non-deterministically.

We thus develop an initial model of flocking behaviour using a process alge-
bra for collective systems [14] (Sect. 2). We carry out the analysis of cohesion
using sequential emulation [16], spotting a corner case in the specifications which
prevents cohesion (Sect. 3). We use the counterexample produced by our analysis
to refine the specifications, and re-analyse cohesion (Sect. 4). We report some
final considerations in Sect. 5.

2 A simplified model of a flocking behaviour

Let us now consider a minimalistic model of flocking behaviour, where each bird
b looks at another bird a in the flock, estimates the future position of a based
on a’s current movement, and aims at moving towards that position (Fig. 2). To
account for inertia, the new direction of b is averaged with its previous direction.
To avoid collisions, in case the position where b wants to move is already occupied
by another flockmate, b slows down. Assuming that all birds in the flock behave
like this, we would like to know whether such rules would be sufficient to achieve
cohesion.

Cohesion is usually defined based on the capability of each bird to determine
a flock centroid (e.g., in Reynold’s model, the barycentre of birds in the cohesion
zone [23]). In our model, instead, a bird tries to approach a point where another
bird in the system is likely going to be in the future.

We formalise the description given above by relying on the process description
language LAbS [14]. A simplified version of the formal specifications is shown in
Algorithm 1. Lines 2–6 describe the interface, i.e. the set of features, or attributes,
that a bird exposes to the rest of the system. Here, the interface contains two
attributes x and y describing the position of a bird on a two-dimensional grid, and
two attributes dir x and dir y representing the movement vectors of the bird
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Fig. 2: Bird b targets bird a (a), looks at a’s direction (b), and gets closer (c).

along the two axes. Each attribute has a range of feasible values. The position
attributes may range over the interval [0, G[ and the direction attributes over
[−D,D+1[. G and D are two parameters that respectively denote the size of the
grid where the birds move, and the maximum length of the movement vectors
(see Fig. 5 for the possible directions with D = 1). The symbol ← denotes
assignments to attributes. To model non-deterministic initialisation, attributes
are assigned ranges of values rather than specific ones. Each agent also has an
implicit attribute id, which is a unique identifier between 0 and the number of
agents in the system.

The behaviour of each bird is defined in lines 8–27. The recursive definition
at line 8 indicates that each bird repeatedly performs the same actions, given
in process Move. This process is in turn defined as a sequence of assignments.
Please note the symbol := that denotes assignments to local variables, and the
enclosing curly braces that enforce atomicity.

The Move process consists of two parts. The first part (lines 11–19) imple-
ments the mechanism presented at the beginning of the section (Fig. 2). First,
we non-deterministically select one agent by means of the pick 1 command and
assign it to a variable p (line 11). Then, we check whether this agent is isolated or
not. We define p to be isolated when its distance from every other agent is larger
than a parameter δ (line 12). Note that, in general, an attribute name decorated
with an id (e.g., xp) evaluates to the value of the attribute for the agent with the
given id. If the selected bird p is not isolated, the bird will approach it; other-
wise, the bird will keep moving in its current direction. Also note that we define
the distance operator d(·) at line 12 as the Manhattan distance, or `1-norm [7]:
the distance between two points is the sum of the absolute differences between
their components. Specifically, given two points b,p in a two-dimensional space,
we have d((xb, yb), (xp, yp)) = |xb−xp| + |yb−yp|, which corresponds to the
combined length of the segments shown in Fig. 3. Starting from line 14 the bird
estimates the future position (ax, ay) of the agent appId to approach by multi-
plying its direction vector by a parameter ω. It then approximates a movement
vector adir towards that position by comparing (x, y) and (ax, ay) component-
wise with a tolerance parameter ε. We only report the instructions for the x
component of the vector; the y component is computed similarly.

In the second part of the Move process (lines 22–26), the bird updates its
own attributes. Specifically, the bird’s new direction is the average between the
previous one and the vector adir computed beforehand. Please note that the
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Listing 1: Initial specifications for a flock of birds.

1 agent Bird {
2 Interface =
3 x← 0..G;
4 y← 0..G;
5 dir x← −D..D + 1;
6 dir y← −D..D + 1
7

8 Behaviour = Move; Behaviour
9

10 Move = {
11 p := pick 1;
12 pIsIsolated := forall Bird b, b 6= p⇒ d((xp, yp), (xb, yb)) > δ;

13 appId := if pIsIsolated then id else p;
14 ax := xappId + ω · dir xappId;
15 sgn x := if x > ax then 1 else −1;

adir x :=16 if a = id then
17 dir x

18 else
19 if |x− ax| < ε then 0 else sgn x ·D;

20 # assign ay, sgn y, adir y as above
21

22 dir x← (dir x + adir x)/2;
23 dir y← (dir y + adir y)/2;
24 posIsFree := forall Bird b, (xb 6= x + dir x) ∨ (yb 6= y + dir y);
25 x← if posIsFree then x + dir x else x

26 y← if posIsFree then y + dir y else y

27 }
28 }

division used here is an integer division with rounding. Finally, the bird checks
whether the cell it would reach by moving along its new direction is free: if so,
the bird moves there by updating its attributes x and y; otherwise, it stays in
its current cell (lines 24–26).

3 Analysis of cohesion

We now carry out the analysis of cohesion for the model of flocking behaviour
given in the previous section. The key element of our verification flow is a sym-
bolic encoding of the specifications into a sequential imperative program, which
we call an emulation program [16]. The encoding reduces the problem of check-
ing whether the system satisfies the given property to checking reachability in
the emulation program. This has the twofold advantage of detaching the speci-
fication language from the verification technique, and allowing to automatically
re-use program analysis tools for general-purpose languages.
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Fig. 3: Manhattan distance between two points in two dimensions.

The emulation program uses a minimal set of features (i.e., loops and statically-
sized arrays), and can be concretised with limited effort into different target
languages, depending on the verification technology of preference; it also em-
beds an explicit scheduler, which allows to apply specific scheduling policies. We
target the C language and rely on bounded model checking [9] for the actual
analysis; we choose round-robin scheduling, i.e., agents perform their actions
in a round-robin fashion. We call epoch an execution fragment in which every
agent in the system performs precisely one action. This allows us to consider
verification bounds in terms of epochs. The verification flow described above is
implemented in our prototype tool SLiVER4, that takes care of generating the
emulation program from the specifications of the system under analysis, instru-
menting the emulation program for verification to be carried out by the back
end model checker, and translating any counterexample from the model checker
into a human-readable output with respect to the initial system specifications.

In order to assess cohesion, we set up an scenario with two separate groups
of birds positioned at a certain distance from each other (Fig. 4), and check
whether, given enough epochs for the system to evolve, the two groups end up
forming a single flock. We thus instantiate the system of Listing 1 with four
agents, a grid of size G = 1024 (lines 3–4), movement vectors of max modulo
D = 1 for the possible directions of agents (lines 5–6), a sensitivity ω = 10 to
estimate the future position of the bird to approach (line 14), a distance δ=32
to determine whether an agent is isolated (line 12), and a tolerance parameter
ε = 5 to approximate the approach vector (line 19). We non-deterministically
position the two groups of birds into two smaller sub-grids of size 9×9, the birds
in the left-hand group oriented bottom to top, and those in the right-hand group
oriented right to left. The two regions are 40 cells apart, therefore the Manhattan
distance between any two birds from different groups is initially at most 76 cells.
Figure 6a shows a feasible initial state under these constraints. We enforce these
constraints by specifying them as quantified predicates in a dedicated section of
the specifications (Listing 2).

With the above set up, we use our prototype to check whether, after B steps,
every execution of the system reaches a state where all birds are at most k cells
apart (lower values of k indicating a more compact flock and thus a stronger
cohesion). To express this property, we decorate the specifications of Listing 1
as shown in Listing 3. Since birds are initially not farther than 76 cells, we
start checking the property for a cohesion distance k of 75, to check whether

4 The tool is available at https://github.com/labs-lang/sliver.
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Fig. 4: Initial areas, in grey, where agents can position themselves.
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Fig. 5: Possible directions of a bird with movement vectors of max. size D=1.

the birds can get barely closer together than in the initial state. Indeed, our
tool immediately produces a counterexample showing that the specifications of
Listing 1 fail to guarantee even such minimal degree of cohesion.

The counterexample is shown in Fig. 7. Intuitively, since each bird keeps
approaching a bird within the same group, the groups will stay separate in-
definitely if they don’t meet by accident, and thus the flock will never achieve
cohesion. Figure 6a shows the initial state of the system. During the first epoch,
first the 1-orange and 2-blue agents choose to approach the 3-red and 4-green
ones, respectively, altering their direction accordingly (Figures 6b). Then, the
3-red and 4-green agents make the symmetrical choice (Figure 6c). At this point,
the two subgroups have parallel direction vectors and the cohesion property is
still unsatisfied, as the red agent is more than 75 cells apart from the green one.
From now on, agents in each subgroup keep selecting each other as the agent to
approach, meaning that the subgroups keep moving parallel to each other and
never achieve the desired degree of cohesion (Figure 6d).

4 Revising the model

The counterexample obtained in Sect. 3 shows that when adopting the behaviour
of Listing 1 the birds may never achieve cohesion, as they will completely ignore
the other birds outside their group. In this section we modify the specification
of Listing 1 to address this problem so that each bird can also approach agents
outside its own group. We then repeat the analysis to check whether the revised
specifications improve cohesion.
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Fig. 7: Two groups of birds failing to achieve cohesion.

Intuitively, as a possible way to improve cohesion, a bird should be able to
alternately approach other birds from his own group and from the other group.
To accommodate this, we change the specifications as shown in Listing 4. An
attribute groupId initialized to either 0 or 1 keeps track which group a bird ini-
tially belongs to. Another attribute, check, is initialized to 0 and is used to guide
the selection of the bird to be approached (lines 4–5). Finally, line 11 of Listing 1
is replaced by lines 9–10 of Listing 4. After this change, the non-deterministic
selection of the bird p to be approached is constrained by a predicate, introduced
by the keyword where. This predicate states that, if the attribute check is cur-
rently set to 0, the agent may pick any bird indiscriminately. However, if check
is set to 1, then the agent must pick a bird whose groupId is different from its
own (line 9). Then, the agent flips the value of check (line 10). This means that
a bird will necessarily pick somebody outside its own initial group at least every
other epoch.

We repeat the same experiment described in Sect. 3 on the specifications
revised as above to verify flocks of 4, 6, and 8 agents with the same parameters
listed in Section 3, increasing the verification bound until obtaining a positive
verdict. Figure 8 reports the minimum number of epochs needed to reach a
positive verdict for varying systems and values of k. The number of epochs
grows linearly as the cohesion distance k decreases and does not blow up as the
number of birds increases, suggesting that achieving cohesion does not become
particularly harder for larger flocks, at least not for such simple specifications.

Figure 9 report additional measurements on the amount of time and memory
needed to obtain the positive verdicts reported in Fig. 8, where we can observe
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Listing 2: Initial scenario with two separate groups of birds.

1 assume {
2 DifferentPositions =

forall Bird a, forall Bird b, a = b ∨ xa 6= xb ∨ ya 6= yb
3 GridLeft =

forall Bird b, (idb mod 2 = 0) ∨ ((480 < xb < 490) ∧ (480 < yb < 490))
4 GridRight =

forall Bird b, (idb mod 2 6= 0) ∨ ((510 < xb < 520) ∧ (510 < yb < 520))
5 AlignmentLeft = forall Bird b, (idb mod 2 = 0)∨ (dirxb = 0∧ diry = 1)
6 AlignmentRight =

forall Bird b, (idb mod 2 6= 0) ∨ (dirxb = −1 ∧ diry = 0)
7 }

Listing 3: Cohesion property.

1 check {
2 Cohesion = finally forall Bird b, forall Bird c, d((xb, yb), (xc, yc)) < k
3 }

that the performance quickly degenerates when increasing the number of birds
and of epochs; the model checker must in fact exhaustively explore the state
space up to a bound which is given by the number of epochs multiplied by the
number of agents. Changing the back end technology can affect the efficiency
of analysis significantly [16], but comparing different techniques is outside the
scope of this paper.

We performed all the experiments in a virtualized environment on a dedicated
machine running 64-bit GNU/Linux with kernel 5.4.0 and equipped with four
2-GHz Xeon E7-4830v4 10-core processors and 512 GB of physical memory.

5 Conclusion

The main point we intend to make with this paper is that existing methodologies,
techniques, and tools from the wider area of formal methods, when appropriately
combined, can be of assistance in the study of different classes of so-called col-
lective systems of interest in a variety of disciplines. To support our argument,
we have shown how formal languages and modern verification procedures can be
combined to study the behaviour of flocks of birds. The technical contribution
of this paper is clearly only a proof of concept to support our argument, but in
our opinion points out relevant research directions which it may be worthwhile
pursuing.

With respect to the specific scenario considered in this paper, we plan to
devise further refined models of flocking behaviour and formally verify different
properties, possibly working on the back end verification technique to improve
efficiency, considering distributed analysis or large-scale simulation with com-
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Listing 4: Revised version of the specifications in Listing 1.

1 agent Bird {
2 Interface =
3 ...
4 groupId← 0..2;
5 check← 0
6

7 Behaviour = Move; Behaviour
8 Move = {
9 p := pick 1 where (check = 0) ∨ (groupId 6= groupIdp);

10 check← (check + 1) mod 2;
11 ...
12 }
13 }
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Fig. 8: Number of epochs to achieve cohesion at different distances.

puting clusters. We certainly plan to apply our methodology to other classes
of systems, either artificial or natural, and would like to try to interact with
researchers from different areas in the long run.

From a technical standpoint, our approach can be improved in several ways.
With respect to scalability, techniques for parameterized model checking may
help, as they would enable us to demonstrate that a property holds for all sys-
tems larger than a threshold. So far, these techniques have been demonstrated
on models and languages with limited agent capabilities [19, 5, 20]; the ques-
tion whether they may be adapted to more high-level languages such as LAbS
is open. Orthogonal approaches such as symmetry reduction and partial order
reduction [10, 2] could facilitate the verification of larger systems, but their inte-
gration in our verification flow might require considerable efforts. Lastly, in this
paper we have only experimented with bounded analysis. Indeed, our verifica-
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tion workflow can accommodate other kinds of back end technologies. It would
be interesting to experiment with unbounded verification of properties using
state-of-the-art inductive techniques such as k-induction [24] or PDR [6].
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